Molecular Identification of Serratia marcescens Isolated from Milk and Detection of Beta-Lactam Resistance Genes
Special Issue:
Emerging and Re-emerging Animal Health Challenges in Low and Middle-Income Countries
Molecular Identification of Serratia marcescens Isolated from Milk and Detection of Beta-Lactam Resistance Genes
Lubna M. Abdul Kareem*, Ali B. Al-Deewan
Department of Veterinary Microbiology, College of Veterinary Medicine, University of Basrah, Iraq.
Abstract | On a global scale, milk is an essential and basic source of food nutrition. It is not only rich in high-quality protein but also an excellent source of vitamins and minerals. One of the most important causes of food poisoning is the contamination of milk with pathogenic microorganisms. Serratia marcescens is a significant but less studied bacteria in public health. This pathogen causes milk contamination and infects humans and animals. However, studies are less common and therefore, this study aims to investigate Serratia marcescens in raw, pasteurized, and mastitis milk. Additionally, to identify how resistant Serratia is to antibiotics, whether the isolates contain beta-lactam resistance genes, and detect the bsmB gene for protease and lipase production. We collected 200 milk samples from various areas of Basrah. We found and confirmed Serratia marscecens in 11 (5.5%) of the 200 milk samples by growing them, staining them with gram stain, and then identifying them by PCR with specific primers and sequencing. We also used the disk diffusion method to investigate the antibiotic resistance of the isolates. The results showed that the isolated strains were sensitive to gentamycin (5/11, 45.45), imipenem (11/11, 100%), and Cefotaxime (8/11, 72.72%). All isolates shared ampicillin, amoxicillin, penicillin G, oxacillin, amikacin, and neomycin as the most common resistance. Additionally, the presence of beta-lactam resistant and virulence genes was examined. 90.90% of isolates carried the blaTEM gene. A total of 18.18% carried the blaSHV gene and 27.27% carried the blaCTX-M1 while the bsmB gene was detected in all isolates. These findings indicate the significance of Serratia marcescens in both animal health and public health.
Keywords | Milk, Serratia, Resistant, Beta-lactam, Protease, Lipase
Received | August 24, 2024; Accepted | November 19, 2024; Published | December 06, 2024
*Correspondence | Lubna M. Abdul Kareem, Department of Veterinary Microbiology, College of Veterinary Medicine, University of Basrah, Iraq; Email: [email protected]
Citation | Kareem LMA, Al-Deewan AB (2024). Molecular identification of Serratia marcescens isolated from milk and detection of beta-lactam resistance genes. J. Anim. Health Prod. 12(s1): 263-276.
DOI | https://dx.doi.org/10.17582/journal.jahp/2024/12.s1.263.276
ISSN (Online) | 2308-2801
Copyright: 2024 by the authors. Licensee ResearchersLinks Ltd, England, UK.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Introduction
Humans consume a substantial amount of milk, which is an optimal growth environment filled with nutrients for microbes when kept at the right temperature (Msalya, 2017). Therefore, it is necessary to work with the highest hygiene during the handling and production process of dairy products to prevent any external threats. It is important to handle the contamination and observe the microbial growth during product storage and transportation. Bad hygienic conditions lead to the presence of microorganisms, resulting in poor-quality products (Bauman et al., 2018).
Serratia species are gram-negative, rod-shaped, and opportunistic bacterias. They are classified within the recently reclassified family Yersiniaceae within the Enterobacterales order (Friman et al., 2019). Serratia species is set apart from other genera by its ability to produce three enzymes: DNase, lipase, and gelatinase (Giri et al., 2004). Different environmental sources contain these organisms, like soil, water, and different types of plants, suggesting they have a widespread in the environment (Chen et al., 2017).
Serratia species, mainly Serratia marcescens and Serratia liquefaciens, are common environmental bacteria that can cause opportunistic diseases in humans and animals (Mahlen, 2011). Including mastitis in dairy cows (Schukken et al., 2012) and causing spoilage at different stages of milk processing (Decimo et al. 2014).
There are many virulence factors causing the high pathogenicity of Serratia marcescens, such as hemolysin, lipase, protease, prodigiosin, and motility (Khayyat et al., 2021).
Antibiotic therapy is the main method for treating most bacterial infections, including Serratia marcescens (Tavares-Carreon et al., 2023). However, as new resistant strains emerge over time, the effectiveness of this therapy has been reduced (Iguchi et al., 2014). As a result, treating Serratia marcescens infections is complicated due to the bacteria’s multidrug-resistant nature (González-Juarbe et al., 2015).
Studies show that the commonly used beta-lactam antibiotics face an increasingly concerning resistance when used in treating Serratia marcescens infections (Abbas and Hegazy, 2020).
The resistance is practically due to various determinants, including encoding extended-spectrum beta-lactamase genes (blaSHV, blaTEM, and blaCTX) and carbapenemase genes (blaOXA-48, blaOXA-1), which contribute to beta-lactam resistance. Accordingly, this study aims to isolate Serratia marcescens from milk samples in Basrah, Iraq, and identify antibiotic resistance in isolates with detectable resistance and virulence genes.
Materials and Methods
Samples collection
In our study, two hundred milk samples (Raw and mastitis milk) were collected from College of Veterinary Medicine, University of Basrah, the College of Agriculture, University of Basrah, and dairy farms in different areas of Basrah, including Abi Al-Khasib, Al-Seeba, Qurna, Dair, Faw, Shatt Al-Arab, Um Qasr, Safwan, and Zubair as shown in Table 1. A clinical examination was conducted according to (Massé et al., 2020). Consequently, every udder was examined closely to ensure that the quarters were symmetrical, and then each udder was thoroughly palpated to look for signs of fibrosis, inflammatory swellings, obvious damage, tick infestation, tissue atrophy, and swelling of the supra mammary lymph nodes. Additionally, each mammary quarter’s milk secretion’s viscosity and appearance were checked for the presence of clots, flakes, blood, and watery secretions. Along with udder and teat morphological abnormalities, the presence of clots, flakes, blood, and other consistency alterations was one of the markers for clinical mastitis (Tezera and Ali, 2021). Additionally, the California Mastitis Test (CMT) was applied to milk that appeared normal in order to identify subclinical mastitis, as described by (Michael, 2011). Before milk sample collection, the udder was cleaned with tap water and dried with a clean towel. The teat was then dipped in a 1:1000 iodine solution and allowed to dry. The teat was then dipped in 70% alcohol and allowed to dry. One or two streams of milk were sampled and discarded. The milk was collected in a sterile container (60 ml), and the samples were transferred into an ice box.
Table 1: Regions and the total number of collected samples per region.
Regions |
Number of samples |
Collage of agriculture |
5 |
College of veterinary medicine |
5 |
Abu Al-Khaseeb |
10 |
Al Qurnah |
20 |
Al Zubair |
3 |
Al Dayr |
50 |
Al Hartha |
49 |
Al-Faw |
16 |
Al Seeba |
14 |
Safwan |
7 |
Shat Al-Arab |
2 |
Um Qasr |
19 |
Identification of Serratia marcescens
Cultural characteristics
The morphology and pigmentation of the colonies were analyzed after the specimens were cultured on chrome Serratia agar (Himedia, India). The colonies that exhibited typical morphology and pigmentation were subsequently cultivated in two cultures, on MacConkey’s agar and nutrient agar. We then placed each pair of colonies in incubators at temperatures of 30 and 37 °C, respectively. Furthermore, we employed Gram staining to determine whether the microorganisms were Gram-positive or Gram-negative.
Antimicrobial susceptibility testing
The antimicrobial susceptibility of Serratia marcescens was assessed using the disk diffusion method on Mueller-Hinton agar to test 11 antimicrobial agents, according to the Clinical and Laboratory Standards Institute (CLSI, 2018) protocol. Antimicrobial agents examined in this study
Table 2: Primers used in this study.
S. No. |
Primers |
Sequence |
Size of product |
Reference |
1 |
Serratia specific primers |
F:GGTGAGCTTAATACGTTCATCAA R: AATTCCGATTAACGCTTGCAC |
107bp |
Bussalleu and Althouse (2018) |
2 |
bsmB |
F: GCGGATGTGTA TGCCTTCG R: GCCACGCATTTCTTCACTCA |
200bp |
Fekrirad et al. (2020) |
3 |
blaTEM |
F: TGCGGTATTATCCCGTGTTG R: TCGTCGTTTGGTATGGCTTC |
296bp |
Ferreira et al. (2020) |
4 |
blaSHV |
F:AGCCGCTTGAGCAAATTAAAC R:ATCCCGCAGATAAATCACCAC |
712bp |
Ferreira et al. (2020) |
5 |
Blaoxa-48 |
F: GCGTGGTTAAGGATGAACAC R: CATCAAGTTCAACCCAACCG |
438bp |
Ferreira et al. (2020) |
6 |
Blaoxa-1 |
F: GGCACCAGATTCAACTTTCAAG R: GACCCCAAGTTTCCTGTAAGTG |
563bp |
Ferreira et al. (2020) |
7 |
Blactx-m1 |
F: ACAGCGATAACGTGGCGATG R: TCGCCCAATGCTTTACCCAG |
216bp |
Ferreira et al. (2020) |
8 |
16S rRNA |
F: AGAGTTTGATCCTGGCTCAG R: CGGTTACCTTGTTACGACTT |
1500bp |
Hasan et al. (2022) |
include Ampicillin (10μg), Ceftriaxone (30μg), Oxacillin (1μg), Amoxicillin (10μg), Penicillin G (10μg), Tobramycin (10μg), Amikacin (10μg), Gentamycin (10μg), Neomycin (10μg), Imipenem (10μg), and Cefotaxime (30μg).
Molecular identification and detection of resistance genes
DNA extraction
Genomic DNA was extracted from overnight broth cultures using a genomic DNA extraction kit (trans/china). In summary, 180 μl of the sample suspension was mixed with 20 μl of proteinase K and 200 μl of lysis buffer and then incubated at 70 °C for 10 minutes. Following the incubation, 200 μl of 100% ethanol was added to the lysate. The sample was then washed and centrifuged according to the manufacturer’s instructions. Finally, the nucleic acid was eluted using 100 μl of the provided elution buffer from the kit and kept at -20 C until use.
DNA Concentration Estimation
We measured the concentration and the quality of DNA samples using a nanodrop spectrophotometer (nanodrop one C, Thermo Fisher).
Oligonucleotide Primer
Primers used were supplied by Macrogen, Korea, as listed in Table 2.
PCR amplification
In all the PCR reactions, we used the GoTaq® G2 green master mix (Promega, USA). The reagents were added to each PCR tube for the genes listed in Table 3. The thermocycling conditions for Taq polymerase PCR amplification are listed in Table 4.
Table 3: The reaction mixture (25 µl) for each gene.
S. No. |
Green master mix |
12.5 µl. |
1 |
F primer (10 µl) |
1.5 µl. |
2 |
R primer (10 µl) |
1.5 µl. |
3 |
DNA Template |
4 μl. |
4 |
Nuclease free water |
5.5 μl. |
Analysis of the PCR Products
The PCR products were separated by electrophoresis on 1.5% agarose gel in 1x TBE buffer (Promega/USA). Ten μl of DNA and 5μl of ladder were loaded into the wells of the agarose gel. After the electrophoresis, the gels were examined under a UV transilluminator.
Sequencing and phylogenic analysis
To further confirm the isolates, the 16S RNA gene was PCR amplified using universal primers. We conducted the sequencing in Macrogen, Korea, using 16S RNA forward and reverse primers on both DNA strands. In addition, the Maximum Likelihood approach and Tamura-Nei model were used to determine the evolutionary history of the isolates and other closely related ones from the NCBI deposited sequences are listed in the supplementary material. The tree with the maximum log probability (-1753.05) was generated. This analysis included a total of 12 nucleotide sequences. Evolutionary studies were performed using the MEGA11 software (Tamura et al., 2021).
Results and Discussion
Cultural characteristics
Out of 200 milk samples, the bacterial isolation results identified 11 samples as Serratia marcescens, representing 5.5%. The positive isolates showed different morphological
Table 4: PCR thermocycler conditions for each gene.
Genes |
Initial denaturation |
Denaturation |
Annealing |
Extension |
Final extension |
Cycles |
Serratia specific primers |
95 ºC 5 min |
95 ºC 15 sec |
59.5 ºC 15 sec |
72 ºC 20 sec |
72 ºC 7 min |
35 |
bsmB |
95 ºC 5 min |
95 ºC 15 sec |
57 ºC 20 sec |
72ºC 45 sec |
72 ºC 7 min |
35 |
Blashv |
95 ºC 10 min |
95 ºC 40 sec |
55.5ºC 40 sec |
72 ºC 1 min |
72 ºC 7 min |
35 |
BlaTEM |
95 ºC 5 min |
95 ºC 20 sec |
56 ºC 15 sec |
72 ºC 30 sec |
72 ºC 10 min |
35 |
Blaoxa-1 |
95 ºC 5 min |
95 ºC 15 sec |
53 ºC 20 sec |
72 ºC 45 sec |
72 ºC 10 min |
35 |
Blaoxa-48 |
95 ºC 5 min |
95 ºC 15 sec |
56 ºC 20 sec |
72 ºC 45 sec |
72 ºC 10 min |
35 |
Blactx-m1 |
95 ºC 5 min |
95 ºC 15 sec |
57 ºC 20 sec |
72 ºC 45 sec |
72 ºC 10 min |
35 |
16s rRNA |
95 ºC 5 min |
95 ºC 15 sec |
49 ºC 20 sec |
72 ºC 1.5 min |
72 ºC 10 min |
35 |
and cultural characteristics. On chrome agar, MacConkey agar, and nutrient agar, isolates displayed colonies with varying colors according to the incubation temperature. On chrome agar, colonies appeared pink with a dark center at 30 °C, while others exhibited blue to purple colonies at 37 °C, as shown in Figure 1A, B. After 24 hours of incubation at 30 and 37 °C, colonies on MacConkey agar showed lactose fermentation and appeared red, as shown in Figure 1C. On nutrient agar, after 24 hours of incubation at 30 °C, colonies appeared red like blood due to Serratia marcescens’ ability to produce pigment. This characteristic makes it simple to differentiate Serratia marcescens from other Enterobacteriaceae, as shown in Figure 1D. Microscopic examination of the isolated bacteria showed gram-negative rods, as shown in Figure 2.
Antibiotics susceptibility testing
Antibiotic susceptibility test showed that Serratia marcescens were resistant to ampicillin (11/11, 100%), amoxicillin (11/11, 100%), penicillin G (11/11, 100%), oxacillin (11/11, 100%), ceftriaxone (10/11, 90.90%), tobramycin (5/11, 45.45%), amikacin (11/11, 100%), neomycin (11/11,100%), while sensitive to gentamycin (5/11, 45.45), Imipenem (11/11, 100%) and cefotaxime (8/11, 72.72%) as shown in Table 5 and Figure 3.
Table 5: Results of antibiotic resistance expressed as numbers and present of sensitive, Intermediate and resistant antibiotic to S. marcescens.
Antibiotics |
Sensitive |
Intermediate |
Resistant |
||||
No. |
% |
No. |
% |
No. |
% |
||
Ampicillin |
0 |
0 |
0 |
0 |
11 |
100 |
|
Ceftriaxone |
1 |
9.09 |
0 |
0 |
10 |
90.90 |
|
Oxacillin |
0 |
0 |
0 |
0 |
11 |
100 |
|
Amoxicillin |
0 |
0 |
0 |
0 |
11 |
100 |
|
Penicillin G |
0 |
0 |
0 |
0 |
11 |
100 |
|
Tobramycin |
3 |
27.27 |
3 |
27.27 |
5 |
45.45 |
|
Amikacin |
0 |
0 |
0 |
0 |
11 |
100 |
|
Gentamycin |
5 |
45.45 |
2 |
18.18 |
4 |
36.36 |
|
Neomycin |
0 |
0 |
0 |
0 |
11 |
100 |
|
Imipenem |
11 |
100 |
0 |
0 |
0 |
0 |
|
Cefotaxime |
8 |
72.72 |
0 |
0 |
3 |
27.27 |
Serratia specific PCR
Isolates showed positive results at 107 bp using a 100bp DNA ladder marker as shown in Figure 4.
16S rRNA gene PCR amplification
The 16S rRNA gene was amplified in all the isolates, and the PCR bands showed 1500 bp as shown in Figure 5.
bsmB gene PCR
All isolates showed positive results at 200bp using a 100bp DNA ladder marker as shown in Figure 6 and 7.
Screening of resistance genes encoding extended-spectrum beta-lactamase
Results of resistant genes encoding extended-spectrum beta-lactamase indicate that all Serratia marcescens isolates carried blaTEM (10/11, 99.99%), blaSHV (2/11, 18.18%) and blaCTX-M1 (3/11, 27.27%), as shown in Figures 8, 9, 10. blaOXA-1, and blaOXA-48 genes were not detected in any of the isolates Table 6.
Table 6: Results of resistance genes detection.
Samples |
blaTEM |
blaSHV |
blaCTX- M1 |
blaOXA -1 |
blaOXA- 48 |
1 |
+ |
- |
- |
- |
- |
2 |
+ |
- |
- |
- |
- |
3 |
+ |
- |
- |
- |
- |
4 |
+ |
- |
- |
- |
- |
5 |
- |
- |
- |
- |
- |
6 |
+ |
+ |
+ |
- |
- |
7 |
+ |
- |
- |
- |
- |
8 |
+ |
+ |
+ |
- |
- |
9 |
+ |
- |
+ |
- |
- |
10 |
+ |
- |
- |
- |
- |
11 |
+ |
- |
- |
- |
- |
Sequencing and the evolutionary analysis by maximum likelihood method
The sequence and blast analysis showed that all the sequenced isolates were Serratia marcescens. The sequences were deposited in the NCBI gene bank with the following accession numbers: PP856650, PP856651, PP856652, PP856653, PP856654, PP856655, and PP856656 as shown in Figure 11.
Serratia marcescens is an important opportunistic pathogen that poses a risk to public health. The bacterial isolation results of 200 milk samples showed that 11 samples were identified as Serratia marcescens, accounting for 5.5% of the milk samples. This finding is higher than (Abdullah et al., 2017) who found that 6 out of 150 (4%) cows were affected by Serratia marcescens mastitis and a previous study reported in Iraq. Also, higher than Di Guardo et al. (1997), who revealed that 4(3%) Serratia marcescens isolates out of 120 reported in China. The isolates were also identified using the polymerase chain reaction of the 16S rRNA gene, Serratia specific primers, and sequencing.
The sample culture findings revealed distinct morphological attributes of bacteria on various media following a 24h incubation period at 30°C or 37°C. The colonies observed on MacConkey agar exhibited lactose fermentation and appeared as red colonies. These findings are consistent with the results reported by Abdou (2003). When using Chrome agar (Himedia/India), the isolates showed colonies of different colors. Some colonies were pink with a dark center, while others were blue to purple. After 24 h of incubation at 28°C on nutrient agar, colonies of Serratia marcescens turned red. This red pigment production by Serratia marcescens allows for easy differentiation from other Enterobacteriaceae. These findings are consistent with the research conducted by Samrot et al. (2011). The isolated bacteria appeared as gram-negative rods under the light microscope.
Due to the global problem of antibiotic resistance, the effectiveness of antibacterial drugs has been diminished. The excessive and widespread use of these antimicrobials on dairy farms may be linked to increased resistance levels (Swinkels et al., 2015). The commonly used aminoglycosides and penicillins groups antimicrobials in treatment were chosen for this study. Serratia marcescens has shown high resistance levels to antibiotics including ampicillin (11/11, 100%), amoxicillin (11/11, 100%), penicillin G (11/11, 100%), oxacillin (11/11, 100%), and ceftriaxone (10/11, 90.90%), tobramycin (5/11, 45.45%), amikacin (11/11, 100%) and neomycin (11/11, 100%). Studies by Ahmed and Shimamoto (2011), Hawkey and Choy (2015), and Yang et al. (2018) have consistently shown that both Serratia marcescens and other Enterobacteriaceae isolates commonly display resistance to these antimicrobials. However, the bacteria showed susceptibility to gentamycin (5/11, 45.45%), imipenem (11/11, 100%), and cefotaxime (8/11, 72.72%) as reported by Stock et al. (2003) and Abdullah et al. (2017).
The phenotypic resistance is mainly granted by the genes that encode that specific type of resistance. These can be passed to other bacteria and become a risk factor to public health through the food chain. Serratia marcescens harbors blaTEM and blaSHV genes, which encode conventional class A beta-lactamases located on plasmids. These genes hydrolyze penicillins and cephalosporins that belong to the first generation (Bush, 2010).
Our study observed the blaTEM gene in 10 isolates and the blaSHV gene in two isolates. The blaCTX-M gene is frequently present in several bacterial species, especially in members of the Enterobacteriaceae family. It is important to mention that this gene is transmitted through plasmids, making it highly mobile and capable of spreading among many bacteria (Sun et al., 2017). This study observed the blaCTX-M1 in 3 isolates. According to (Ferreira et al., 2020), Serratia marcescens bacteria that carry the genes blaOXA-1 and blaOXA-48 have been found in number of investigations conducted in Brazil and other countries. These strains may carry these genes alone or in combination with extended-spectrum beta-lactamases (ESBL) genes such as blaTEM, blaSHV, and blaCTX-M. While in this study blaOXA-1, blaOXA-48 were not detected. To invade the host and elude its defenses and cause diseases, pathogenic bacteria normally express several virulence factors (Leitão, 2020). In this study, all Serratia marcescens isolates carried bsmB gene. The bsmB gene plays an important role in virulence factor production such as protease, serralysin, lipase, and S-layer protein synthesis (Liang et al., 2023). Our research has revealed the presence of Serratia marcescens in the local environment and has mapped out the antibiotic resistance patterns in the local isolates. Furthermore, we demonstrated that Serratia marcescens poses a potential risk to human populations with regard to of public health.
Conclusions and Recommendations
Serratia marcescens are opportunistic pathogen, that poses a risk to public health and also can lead to food quality issues. Serratia marcescens can harbor several types of antibiotic resistance including resistance to beta-lactam antibiotics. This study identified the presence of Serratia marcescens in milk samples collected from local markets and dairy farms in Basrah province. The isolation percentage is as following, 3(27.27%) in zubair, 3(27.27%) in Hartha, 1(9.09%) in college of agriculture/ university of Basrah, 3(27.27%) in Seeba and 1(9.09%) in safwan. Molecular detection was performed using PCR and sequencing, which confirmed the presence of Serratia marcescens. The study also involved determining the antibiotic susceptibility of the isolates, which showed a high percentage of resistance to most antibiotics. Additionally, the study identified antibiotic resistance genes in the isolates; 90.90% of the isolates had the blaTEM gene, 18.18% had the blaSHV gene and 27.27% had the blaCTX-M1. The study also involved the detection of the virulence gene (bsmB gene) and revealed its presence in all isolates.This study is the first in Basrah province and first that involved antibiotic resestance and virulence gene, which require further investigation and also should increase the focus on public health effects of Serratia marcescens in Basra province.
Acknowledgement
We would like to express our gratitude to the facilities of Basrah univercity, collage of veterinary medicine for allowing us to conduct this study.
Novelty Statement
This is the first study in Basra Governorate, south of Iraq, as we did not find a previous study that addressed the topic of our current study, as the study addressed to investigate Serratia marcescens in raw, pasteurized, and mastitis milk additionally, to identify how resistant to antibiotics, whether the isolates contain beta-lactam resistance genes, and detect the bsmB gene for protease and lipase production.
Author’s Contribution
This study was conducted with the participation of both researchers in the work. Both researchers read and approved the final manuscript .
Conflict of interest
The authors have declared no conflict of interest.
References
Abbas HA, Hegazy WAH (2020). Repurposing anti-diabetic drug Sitagliptin as a novel virulence attenuating agent in Serratia marcescens. PLoS One, 15(4): e0231625. https://doi.org/10.1371/journal.pone.0231625
Abdou AM (2003). Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J. Dairy Sci., 86(1): 127–132. https://doi.org/10.3168/jds.S0022-0302(03)73591-7
Abdullah AH, Nadhom BN, Al-Ammiri HH (2017b). Isolation and identification of Serratia marcescens from bovine mastitis infections in iraq and their susceptibility to antibiotics. J. Ent. Zool. Stud., 5(2): 489–492. https://www.entomoljournal.com/archives/2017/vol5issue2/PartG/5-1-48-351.pdf
Ahmed AM, Shimamoto T (2011). Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt. Microbiol. Immunol., 55(5): 318–327. https://doi.org/10.1111/j.1348-0421.2011.00323.x
Bauman CA, Barkema HW, Dubuc J, Keefe GP, Kelton DF (2018). Canadian national dairy study: Herd level milk quality. J. Dairy Sci., 101(3): 2679-2691. https://doi.org/10.3168/jds.2017-13336
Bush K (2010). The coming of age of antibiotics: Discovery and therapeutic value. Annls N. Y. Acad. Sci., 1213(1): 1–4. https://doi.org/10.1111/j.1749-6632.2010.05872.x
Bussalleu E, Althouse G (2018). A PCR detection method for discerning Serratia marcescens in extended boar semen. J. Microbiol. Methods, 151: 106–110. https://doi.org/10.1016/j.mimet.2018.06.012
Chen S, Blom J, Walker ED (2017). Genomic, physiologic, and symbiotic characterization of Serratia marcescens strains isolated from the mosquito Anopheles stephensi. Front. Microbiol., 8. https://doi.org/10.3389/fmicb.2017.01483
Clinical and Laboratory Standards Institute.(2018). Performance standards for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (11th ed.).CLSI standard M07. Clinical and Laboratory Standards Institute, Wayne, PA.
Decimo M, Morandi S, Silvetti T, Brasca M (2014). Characterization of gram-negative psychotropic bacteria isolated from Italian bulk tank milk. J. Food Sci., 79: M2081–2090. https://doi.org/10.1111/1750-3841.12645
Di Guardo G, Battisti A, Agrimi U, Forletta R, Reitano ME, Calderini P (1997). Pathology of Serratia marcescens mastitis in cattle, Zent. Vet. B., 44(9): 537-463. https://doi.org/10.1111/j.1439-0450.1997.tb01005.x
Fekrirad Z, Gattali B, Kashef N (2020). Quorum sensing-regulated functions of Serratia marcescens are reduced by eugenol. Iran. J. Microbiol., 12(5):451-459. https://doi.org/10.18502/ijm.v12i5.4607
Ferreira RL, Rezende GS, Damas MSF, Oliveira-Silva M, Pitondo-Silva A, Brito MCA, Leonardecz E, Góes FRD, Campanini EB, Malavazi I, Da Cunha AF, Pranchevicius MCDS (2020). Characterization of KPC-producing Serratia marcescens in an intensive care unit of a Brazilian tertiary hospital. Front. Microbiol., 11. https://doi.org/10.3389/fmicb.2020.00956
Friman MJ, Eklund MH, Pitkälä AH, Rajala-Schultz PJ, Rantala MHJ (2019). Description of two Serratia marcescens associated mastitis outbreaks in Finnish dairy farms and a review of literature. Acta Vet. Scand., 61(1). https://doi.org/10.1186/s13028-019-0488-7
Giri A, Anandkumar N, Muthukumaran G, Pennathur G (2004). A novel medium for the enhanced cell growth and production of prodigiosin from Serratia marcescens isolated from soil. BMC Microbiol., 4(1): 11. https://doi.org/10.1186/1471-2180-4-11
González-Juarbe N, Mares CA, Hinojosa CA, Medina JL, Cantwell A, Dube PH, Orihuela CJ, Bergman MA (2015). Requirement for Serratia marcescens cytolysin in a murine model of hemorrhagic pneumonia. Infect. Immun., 83(2): 614–624. https://doi.org/10.1128/IAI.01822-14
Hasan MF, Islam MA, Sikdar B (2022). First report of Serratia marcescens associated with black rot of Citrus sinensis fruit, and evaluation of its biological control measures in Bangladesh. F1000 Res., 9: 1371. https://doi.org/10.12688/f1000research.27657.2
Hawkey S, Choy A (2015). Serratia marcescens: A rare cause of recurrent implantable cardioverter defibrillator site infection. Case Rep. Cardiol., 2015: 1–3. https://doi.org/10.1155/2015/641297
Iguchi A, Nagaya Y, Pradel E, Ooka T, Ogura Y, Katsura K, Kurokawa K, Oshima K, Hattori M, Parkhill J, Sebaihia M, Coulthurst SJ, Gotoh N, Thomson NR, Ewbank JJ, Hayashi T (2014). Genome evolution and plasticity of Serratia marcescens, an important multidrug-resistant nosocomial pathogen. Genome Biol. Evol., 6(8): 2096–2110. https://doi.org/10.1093/gbe/evu160
Khayyat AN, Hegazy WAH, Shaldam MA, Mosbah R, Almalki AJ, Ibrahim TS, Khayat MT, Khafagy ES, Soliman WE, Abbas HA (2021). Xylitol inhibits growth and blocks virulence in Serratia marcescens. Microorganisms, 9(5): 1083. https://doi.org/10.3390/microorganisms9051083
Leitão JH (2020). Microbial virulence factors. Int. J. Mol. Sci., 21(15): 5320. https://doi.org/10.3390/ijms21155320
Liang Z, Shen J, Liu J, Sun X, Yang Y, Lv Y, Zheng J, Mou X, Li H, Ding X, Yang F (2023). Prevalence and characterization of Serratia marcescens isolated from clinical bovine mastitis cases in ningxia hui autonomous region of China. Infect. Drug Resist., 16: 2727–2735. https://doi.org/10.2147/IDR.S408632
Mahlen SD (2011). Serratia infections from military experiments to current practice. Clin. Microbiol. Rev., 24(4): 755–791. https://doi.org/10.1128/CMR.00017-11
Massé J, Dufour S, Archambault M (2020). Characterization of Klebsiella isolates obtained from clinical mastitis cases in dairy cattle. J. Dairy Sci., 103(4): 3392–3400. https://doi.org/10.3168/jds.2019-17324
Michael M (2011). California mastitis test and milk quality, michigan. Dairy Rev., 16(2).
Msalya, G., 2017. Contamination levels and identification of bacteria in milk sampled from three regions of Tanzania: Evidence from literature and laboratory analyses. Hindawi Vet. Med. Int.. Article ID 9096149, pp. 10. https://doi.org/10.1155/2017/9096149
Samrot AV, Pachiyappan S, Chandana K, Gopakumaran N (2011). Optimization of prodigiosin production by Serratia marcescens SU-10 and evaluation of its bioactivity. ResearchGate. https://www.researchgate.net/publication/229_SU-10_and_evaluation_of_its_bioactivity
Schukken Y, Chuff M, Moroni P, Gurjar A, Santisteban C, Welcome F, Zadoks R (2012). The other gram-negative bacteria in mastitis. The œ veterinary clinics of north America. Food Anim. Pract., 28(2): 239–256. https://doi.org/10.1016/j.cvfa.2012.04.001
Stock I, Grueger T, Wiedemann B (2003). Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. Int. J. Antimicrob. Agents, 22(1): 35–47. https://doi.org/10.1016/S0924-8579(02)00163-2
Sun P, Bi Z, Nilsson M, Zheng B, Berglund B, Lundborg CS, Börjesson S, Li X, Chen B, Yin H, Nilsson LE (2017). Occurrence of bla KPC-2, bla CTX-M, and mcr-1 in Enterobacteriaceae from well water in rural China. Antimicrob. Agents Chemother., 61(4). https://doi.org/10.1128/AAC.02569-16
Swinkels J, Hilkens A, Zoche-Golob V, Krömker V, Buddiger M, Jansen J, Lam T (2015). Social influences on the duration of antibiotic treatment of clinical mastitis in dairy cows. J. Dairy Sci., 98(4): 2369–2380. https://doi.org/10.3168/jds.2014-8488
Tamura K, Stecher G, Kumar S (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol., 38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120
Tavares-Carreon F, De Anda-Mora K, Rojas-Barrera IC, Andrade A (2023). Serratia marcescens antibiotic resistance mechanisms of an opportunistic pathogen: A literature review. PeerJ, 11: e14399. https://doi.org/10.7717/peerj.14399
Tezera M, Ali EA (2021). Prevalence and associated risk factors of Bovine mastitis in dairy cows in and around Assosa town, Benishangul-Gumuz Regional State, Western Ethiopia. Vet. Med. Sci., 7(4): 1280–1286. https://doi.org/10.1002/vms3.454
Yang F, Zhang S, Shang X, Wang L, Li H, Wang X (2018). Characteristics of quinolone-resistant Escherichia coli isolated from bovine mastitis in China. J. Dairy Sci., 101(7): 6244–6252. https://doi.org/10.3168/jds.2017-14156
Supplementary Material
>PP856650.1
TAACATGCAAGTCGAGCGGTAGCACAGGGGAGCTTGCTCCCTGGGTGACGAGCGGCGGACGGGTGAGTAA
TGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAA
GACCAAAGAGGGGGACCTTCGGGCCTCTTGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGG
TAATGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACAC
GGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGC
CGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAGGTGGTGAACTTAATACG
TTCATCAATTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAG
GGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAAT
CCCCGGGCTCAACCTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTCGTAGAGGGGGGTAGAATTCC
AGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGAC
TGACGCTCAGGTGCGAAAGCGTGGGGAGCAGACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGAT
GTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAG
TACGGCCGCA
>PP856651.1
TGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTCGATTTGGAGGTTGTGCCCTTG
AGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAA
ATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTAC
CTACTCTTGACATCCAGAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGC
ATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTG
TTGCCAGCGGTTCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGT
CAAGTCATCATGGCCCTTACGAGTAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAAGCGACCT
CGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAG
TCGGAATCGCTAGTAATCGTAGATCAGAATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC
GTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGTAGCTTAACCTTCGGGAGGGCGCTTACCACTTCGA
>PP856652.1
GGGAGGAAAGGGGGGAGAAATCTTTATTCCCTTCCTTCAATTGGTCTTTCTCTGCGAAGAAAGACACCCC
GGGTTTAATTTCCGTCCCCGCCGCCGCGGTTAATAGGGAGGGGTCCAAGCTTTTATTGGAAATTTCTGGG
CGAAAAGCGCCCCGCCGGGCGGTTTGTTAAGTCAAGATGAGAAATCCCCGGGGCTCAACCTGGGAACTGC
ATTTGAAACTGGCAAGCTAGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGA
GATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGG
TGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTCGATTTGGAGGTTGTGCCCTTG
AGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAA
ATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTAC
CTACTCTTGACATCCAGAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGC
ATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTG
TTGCCAGCGGTTCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGT
CAAGTCATCATGGCCCTTACGAGTAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAAGCGACCT
CGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAG
TCGGAATCGCTAGTAATCGTAGATCAGAATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCC
GTCACACCATGGGAGTGGGT
>PP856653.1
TAACATGCAAGTCGAGCGGTAGCACAGGGGAGCTTGCTCCCTGGGTGACGAGCGGCGGACGGGTGAGTAA
TGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAA
GACCAAAGAGGGGGACCTTCGGGCCTCTTGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGG
TAATGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACAC
GGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGC
CGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAGGTGGTGAACTTAATACG
TTCATCAATTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAG
GGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAAT
CCCCGGGCTCAACCTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTCGTAGAGGGGGGTAGAATTCC
AGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGAC
TGACGCTCAGGTGCGAAAGCGTGGGGAGCAGACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGAT
GTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAG
TACGGCCGCAAGGTTAGAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCAC
>PP856654.1
TAACATGCAAGTCGAGCGGTAGCACAGGGGAGCTTGCTCCCTGGGTGACGAGCGGCGGACGGGTGAGTAA
TGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAA
GACCAAAGAGGGGGACCTTCGGGCCTCTTGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGG
TAATGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACAC
GGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGC
CGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAGGTGGTGAACTTAATACG
TTCATCAATTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAG
GGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAAT
CCCCGGGCTCAACCTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTCGTAGAGGGGGGTAGAATTCC
AGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGAC
TGACGCTCAGGTGCGAAAGCGTGGGGAGCAGACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGAT
GTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAG
TACGGCCGCAAGGTTAGAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCACGTGGGTTTAT
TTTATGCAACGCGGAGAAACCTTACTACTCTTGGCATCCCGAGAAATTTTCCAGAGAGGATTGTTGCCCT
CCGGAAACCTTAGAAAAGGGGTGGAAGGGTGGCCTCCCCCTCCCCTTTGAAAAAGATTGGTTAAATCCCG
CACCCACTGCCACCCCCTTCCTTTGTGTTCGCCGGGTCGGCCCGGGACCCAAAAAAAACACCCCCCCCCT
TCCCCGAGAAAAGGGGGGGGGGGGGGGAAAAACCTCTTGGCCCTTCCACAAAAAGAAA
>PP856655.1
TCTGCGAAGAAAGACACCCCGGGTTTAATTTCCGTCCCCGCCGCCGCGGTTAATAGGGAGGGGTCCAAGC
TTTTATTGGAAATTTCTGGGCGAAAAGCGCCCCGCCGGGCGGTTTGTTAAGTCAAGATGAGAAATCCCCG
GGGCTCAACCTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTCGTAGAGGGGGGTAGAATTCCAGGT
GTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGAC
GCTCAGGTGCGAAAGCGTGGTGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTCG
ATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACG
GCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGA
TGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAACTTTCCAGAGATGGATTGGTGCCTTCGGG
AACTCTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACG
AGCGCAACCCTTATCCTTTGTTGCCAGCGGTTCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTG
GAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAGTAGGGCTACACACGTGCTACAATGGCA
TATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGTC
TGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCAGAATGCTACGGTGAATACGTTCCC
GGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGTAGCTTAACCTTCGG
GAGGGCGCTTACCACTTCGA
>PP856656.1
TAACATGCAAGTCGAGCGGTAGCACAGGGGAGCTTGCTCCCTGGGTGACGAGCGGCGGACGGGTGAGTAA
TGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAA
GACCAAAGAGGGGGACCTTCGGGCCTCTTGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGG
TAATGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACAC
GGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGC
CGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAGGTGGTGAACTTAATACG
TTCATCAATTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAG
GGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTTGTTAAGTCAGATGTGAAAT
CCCCGGGCTCAACCTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTCGTAGAGGGGGGTAGAATTCC
AGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGAC
>MN725741.1 Serratia marcescens strain AS001 16S ribosomal RNA gene, partial sequence
CATGCAGTCTGAGCGGTAGCACAGGGGAGCTTGCTCTCTGGGTGACGAGCGGCGGACGGGTGAGTAATGT
CTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGAC
CAAAGAGGGGGACCTTCGGGCCTCTTGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAA
TGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGT
CCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGC
GTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAGGTGGTGAGCTTAATACGCTC
ATCAATTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGT
GCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCCGGCGGTTTGTTAAGTCAGATGTGAAATCCC
CGGGCTCAACCTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTCGTAGAGGGGGGTAGAATTCCAGG
TGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGA
CGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTC
GATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTAC
GGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCG
ATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAACTTTCCAGAGATGGATTGGTGCCTTCGG
GAACTCTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAAC
GAGCGCAACCCTTATCCTTTGTTGCCAGCGGTTCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACT
GGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAGTAGGGCTACACACGTGCTACAATGGC
ATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGT
CTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCAGAATGCTACGGTGAATACGTTCC
CGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGTAGCTTAACCTTCG
GGAGGGCGCT
>MN725737.1 Serratia marcescens strain AA002 16S ribosomal RNA gene, partial sequence
GCAGTCGAGCGGTAGCACAGGGGAGCTTGCTCCCTGGGTGACGAGCGGCGGACGGGTGAGTAATGTCTGG
GAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAA
GAGGGGGACCTTCGGGCCTCTTGCCATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAATGGC
TCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAG
ACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGT
GTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAGGTGGTGAGCTTAATACGCTCATCA
ATTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAA
GCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCCGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGG
CTCAACCTGGGAACTGCATTTGAAACTGGCAAGCTAGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTA
GCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCT
CAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGATGTCGATT
TGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCC
GCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGC
AACGCGAAGAACCTTACCTACTCTTGACATCCAGAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAAC
TCTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGC
GCAACCCTTATCCTTTGTTGCCAGCGGTTCGGCCGGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAG
GAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGAGTAGGGCTACACACGTGCTACAATGGCATAT
ACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGACCTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGC
AACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGTAGATCAGAATGCTACGGTGAATACGTTCCCGGG
CCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAGT
>CP157869.1:256671-257583 Serratia marcescens strain KS10 chromosome, complete genome
TCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACG
CAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTTGAAACTGGCAAGC
TAGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCG
GTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAG
ATACCCTGGTAGTCCACGCTGTAAACGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAG
CTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCC
CGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAG
AGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCTGTCGTCAGCTC
GTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTTCGGCC
GGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCT
TACGAGTAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGAC
CTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAAT
CGTAGATCAGAATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTG
GGT
>PP657488.1:492-1404 Serratia marcescens strain AN58 16S ribosomal RNA gene, partial sequence
TCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACG
CAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTTGAAACTGGCAAGC
TAGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCG
GTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAG
ATACCCTGGTAGTCCACGCTGTAAACGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAG
CTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCC
CGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAG
AGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTCTGAGACAGGTGCTGCATGGCTGTCGTCAGCTC
GTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTTCGGCC
GGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCT
TACGAGTAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGAC
CTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAAT
CGTAGATCAGAATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTG
GGT
>OL824926.1:475-1387 Serratia marcescens strain SL112 16S ribosomal RNA gene, partial sequence
TCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACG
CAGGCGGTTTGTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATTTGAAACTGGCAAGC
TAGAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCG
GTGGCGAAGGCGGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAG
ATACCCTGGTAGTCCACGCTGTAAACGATGTCGATTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAG
CTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCC
CGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCAG
AGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAASTCTGAGACAGGTGCTGCATGGCTGTCGTCAGCTC
GTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTATCCTTTGTTGCCAGCGGTTCGGCC
GGGAACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCT
TACGAGTAGGGCTACACACGTGCTACAATGGCATATACAAAGAGAAGCGACCTCGCGAGAGCAAGCGGAC
CTCATAAAGTATGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAAT
CGTAGATCAGAATGCTACGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTG
GGT
To share on other social networks, click on any share button. What are these?