Submit or Track your Manuscript LOG-IN

Investigation of Bovine Disease and Events through Machine Learning Models

Investigation of Bovine Disease and Events through Machine Learning Models

Ghalib Nadeem* and Muhammad Irfan Anis 

High Performance Research Group, FEST, Iqra University Defence View, Karachi, Pakistan.

 
*Correspondence | Ghalib Nadeem, High Performance Research Group, FEST, Iqra University Defence View, Karachi, Pakistan; Email: [email protected]

ABSTRACT

Bovine disease identification utilizing multiple information sources and methods is widely applicate in the field of bovine disease prevention and health monitoring. Bovine disease detection is an emerging subject today to accomplish the farms demands of individuals across the globe. This research delves into the realm of bovine disease and event detection using advanced Machine Learning (ML) techniques. Focusing on the critical events of estrus, acidosis, mastitis, lameness, and calving, our study aims to revolutionize disease identification and timely intervention within the dairy industry. By leveraging four distinct ML models—Random Forest, XGBoost, Logistic Regression, and Single Perceptron we meticulously analyze four diverse data-sets to uncover intricate patterns and unveil hidden insights. The efficiency of random sampling in resolving the class imbalance issue is tested along with the validity and adaptability of these models utilizing GridSearchCV optimum parameter modification. The performance evaluation is based on accuracy, precision, recall, F1 score, and Area Under the Curve (AUC) metrics. With a resounding highest accuracy metric, the Random Forest model achieves a notable accuracy of up to 98.25%, while the recall score of 100, and Precision up to 97% affirming its supremacy in classifying bovine events. This achievement underscores the efficacy of employing ML algorithms for accurate and timely disease identification. This ground-breaking fusion of ML techniques with bovine disease detection holds trans-formative potential, promising to elevate animal welfare standards, optimize dairy productivity, and usher in a new era of data-driven dairy management.

To share on other social networks, click on any share button. What are these?

Pakistan Journal of Agricultural Research

September

Vol.37, Iss. 3, Pages 190-319

Featuring

Click here for more

Subscribe Today

Receive free updates on new articles, opportunities and benefits


Subscribe Unsubscribe