ABSTRACT
Vegetable waste has been analyzed for bioelectricity production in locally designed U-shaped microbial fuel cell. These fuel cells were subjected to different concentrations of NaCl and pH for evaluation of power generation. The MFC with 50 mM NaCl concentration showed maximum response and gave 88.9 W/m2 power densities and 569 mV of open circuit voltage. The results showed that NaCl, at its optimum level, plays an important role in increasing the bioelectricity and sustaining the internal resistivity. Six different pH parameters were subjected to check the effectiveness of the treatment on the power production. The maximum power production achieved at pH 4.5 i.e. 70.5 W/m2 of power density at external load of 200 Ω. Which reveals that if the pH difference between the two chambers is increased the power density increases. Bioelectricity production from molasses has not been studied considerably. Present study describes the use of molasses with different organic loads in MFC-1, MFC-2 and MFC-3 with 10, 15 and 20% of sugar contents, respectively, for bioelectricity production. These MFCs were designed locally and maximum power densities of 72820mW/m2, 104400mW/m2and 44340mW/m2for MFC-1, MFC-2 and MFC-3, respectively were obtained at 400Ω external load. The columbic efficiencies were 73.9%, 81.7%and 63.2%, respectively.
To share on other social networks, click on any
share button. What are these?