Submit or Track your Manuscript LOG-IN

Advances in Animal and Veterinary Sciences

AAVS_MH20160613190654-R1_Hassan et al

 

 

Review Article

 

Gas Chromatography Mass Spectrometric (GCMS) Analysis of Essential Oils of Medicinal Plants

 

Waseem Hassan*, Shakila Rehman, Hamsa Noreen, Shehnaz Gul, Neelofar, Nauman Ali

Institute of Chemical Sciences, University of Peshawar, Peshawar- 25120, Khyber Pakhtunkhwa, Pakistan.

 

Abstract | Since ancient times aromatic plants had not only been used to impart flavor and aroma to food but also for their medicinal & preservative properties. Essential oils are source of numerous bioactive compounds and are commercially significant for food, household, pharmaceutical and cosmetic industries. Because of the mode of extraction, mostly by distillation from aromatic plants, they comprise terpenoids, terpenes, aliphatic components and phenol-derived aromatic components. Essential oils have innumerable biological activities including antiviral, antibacterial, antiparasitical, anti-inflammatory, insecticidal, antifungal, anticarcinogenic, antioxidant and antimutagenic activities. Consequently, bioactivities of essential oils have become increasingly important in the search for safe and natural alternative remedies. For the purpose the current review provides a comprehensive summary on the essential oils and their components of ninety (90) medicinal plants from more than twenty different families. Furthermore, this review covers up-to-date literatures on sources, composition, extraction techniques, characterization, general biological activities and therapeutic potentials of essential oils. The results studied in this review are aimed at attracting the attention of researchers searching for new drugs from natural products as well as those exploring the pharmaceutical diversity of essential oils.

 

Keywords | Medicinal plants, Essential Oils, Biological Activities

 

Editor | Kuldeep Dhama, Indian Veterinary Research Institute, Uttar Pradesh, India.

Received | June 13, 2016; Accepted | August 13, 2016; Published | August 15, 2016

Correspondence | Waseem Hassan (PhD), Institute Of Chemical Sciences, University of Peshawar, Peshawar -25120, Khyber Pakhtunkhwa, Pakistan; Email: waseem_anw@yahoo.com

Citation | Hassan W, Rehman S, Noreen H, Gul S, Neelofar, Ali N (2016). Gas chromatography mass spectrometric (GCMS) analysis of essential oils of medicinal plants. Adv. Anim. Vet. Sci. 4(8): 420-437.

DOI | Http://dx.doi.org/10.14737/journal.aavs/2016/4.8.420.437

ISSN (Online) | 2307-8316; ISSN (Print) | 2309-3331

Copyright © 2016 Hassan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 

Essential oil can be defined as a “product obtained from natural raw material, either by distillation with water and steam, or from the epicarp of citrus fruits by mechanical processing (Schnaubelt, 1999; ISO, 2014). Similarly, other names like essence, fragrant oil, volatile oil, etheric oil, aetheroleum or aromatic oil (Başer et al., 2007) have been used to describe essential oils. Essential oils can be obtained from various aromatic plants, most commonly grown in tropical and subtropical countries. They are obtained from various parts of the plants, such as seeds, buds, leaves, roots, fruits, rhizomes, barks and flowers. Oil cells, secretary ducts, cavities or in glandular hairs are some of the prominently explored cellular sources of essential oils in plants. Among many others, Apiaceal, Lauraceae, Rutaceae, Asteraceae, Pinaceae and Cupressaceae are the well know and famous families rich in essential oil. Some of the essential oils can be found in animals sources such as musk, sperm whale, civet and can be produced by microorganism. Hydrodistillation, steamdistillation, microwave-assisted distillation, solvent extraction, cold pressing and supercritical fluid extraction (Fadel et al., 2011; Asghari et al., 2012; Mohamadi et al., 2013) are some the applied techniques used for extraction of oils.

 

Historically, the ancient Romans and Greeks in 1st century described the instrumental procedures for extraction (Guenther, 1948). Clear evidence which depicts the primitive form of distillation technology, which was in use in 400 BC can find in Taxila Museum, Pakistan (Sell, 2010). While In late 12th or early 13th century (1235–1311 AD), Arnald de Villanova compiled detailed information about the conventional hydrodistillation method (Sell, 2010).

 

 

Traditionally and even presently essential oils have been used for the treatment or betterment of various pathological disorders like; respiratory tract infections, colds, inhalation therapy (to treat acute and chronic bronchitis), acute sinusitis, abdominal pain, abscess, acne, fever, flu, headaches, gingivitis, bronchitis, bruises, burns, influenza, insect bites, insomnia, shock, sinusitis, sore throat, constipation, coughs, cuts, diarrhea, wounds and toothache etc. While presently, essential oils have been used in various products such as cosmetics, air fresheners, hygiene products, agriculture and food etc., (Silva et al., 2003; Hajhashemi et al., 2003; Perry et al., 2003). Approximately, 3000 essential oils are known and about 300 of which are commercially available in worldwide market (Sadgrove and Jones, 2015; Hamdy et al., 2012).

 

Essential oils characterization is a diverse topic and has been extensively explored in literature. For the sake of simplicity it’s worthy to note that various major organic components have been identified and the primary ones are terpene hydrocarbons, monoterpene hydrocarbons, sesquiterpenes, phenols, alcohols, oxygenated compounds, sesquiterpene alcohols, esters, lactones, ketones, coumarins, ethers, monoterpene alcohols, aldehydes and various oxides as shown in Figure 1 (Sadgrove and Jones, 2015; Hamdy et al., 2012).

 

Data is available which represent the antioxidant potential (Wei and Shibamoto, 2010; Tomaino et al., 2005; El-Ghorab et al., 2007, 2008; Sokmen et al., 2004; Botsoglou et al., 2004; Papageorgiou et al., 2003; Tepe et al., 2004; Candan et al., 2003; Mau et al., 2003; El-massry et al., 2006; Mimica-Dukic et al., 2004; Yanishlieva-Maslarova et al., 2001), antimicrobial properties (Hulin et a., 1998; Gutierrez et al., 2008; Bozin et al., 2006; Kelly, 1998; Burt, 2004; O’Gara et al., 2000; Santoyo et al., 2006), antifungal activity (Tripathi et al., 2008; Fisher et al., 2008; Razzaghi-Abyaneh et al., 2009; Davidson and Naidu, 2000; El-Seedi, 2008; Nejad Ebrahimi, 2008; Stefanello et al., 2008; Suhr and Nielsen, 2003; Daferera et al., 2000), antiviral activity (Allahverdiyev et al., 2004; Armaka et al., 1999; Garcia et al., 2003; Edris et al., 2007), anti-inflammatory activity (Schmid-Scheonbein, 2006; Vogler and Ernst, 1999; Chithra et al., 1998; Heggers et al., 1993; Reynolds and Dweck, 1999; Shelton, 1991; Tanaka and Shibamoto, 1999), antimutagenic activity (Ramel, 1986; Odin, 1997; Kada and Shimoi, 1987; De-Oliveira, 1997; Bakkali et al., 2006), anticarcinogenic activity (Trichopoulou et al., 2000; Guba, 2000; Greenwald et al., 2001; Abdalla et al., 2007) of essential oil. Some of the miscellaneous activities like digestive activity (Sandhar et al., 2011; Meister et al., 1999; Barocelli et al., 2004; Shen et al., 2005), photo toxicity (Averbeck et al., 1990) and other activities (Muhlbauer et al., 2003; Yamaguchi et al., 1999; Aloisi et al., 2002; Ceccarelli et al., 2004; Wei Chen et al., 2004; Can et al., 2004) are also provided in detail.

 

It’s important to note that cytotoxicity (Knobloch et al., 1989; Sikkema et al., 1994; Helander et al., 1998; Ultee et al., 2000, 2002; Di Pasqua et al., 2007; Turina et al., 2006; Gustafson et al., 1998; Burt, 2004; Juven et al., 1994; Lambert et al., 2001; Oussalah et al., 2006), phototoxicity (Averbeck et al., 1990; Dijoux et al., 2006), nuclear mutagenicity (Andersen and Jensen, 1984; Franzios et al., 1997; Nestman and Lee, 1983; Hasheminejad and Caldwell, 1994; Goggelmann and Schimmer, 1983), cytoplasmic mutagenicity (Schmolz et al., 1999; Conner et al., 1984; Abrahim et al., 2003), carcinogenicity (Guba, 2001; Averbeck et al., 1990; Averbeckand Averbeck, 1998), antimutagenic properties (Hartman and Shankel, 1990; Sharma et al., 2001; Ipek et al., 2005; Ramel et al., 1986; De Flora and Ramel, 1988) and medicinal applications (Schwartz, 1996; Zheng et al., 1997; Ohizumi et al., 1997; Crowell, 1999; Buhagiar et al., 1999; Legault et al., 2003; Hata et al., 2003; Salim and Fukushima, 2003; Mazie`res et al., 2003; Carvalho de Sousa et al., 2004; Carnesecchi et al., 2004; Chen et al., 2004) have also been described in comprehensive details in literature.

 

Extraction of Essential Oils

 

The extraction of essential oils from phytomedicines is carried out by different methods which depend on the plant morphology. Literature exposed that extraction is a separation process that explore the quality of chemical components of essential oil from different aromatic species. Extraction must be done carefully because the significance of phytochemistry and bioactivity of essential oils is lost as a result of inappropriate extraction process. In some cases, off-odor / flavour, discoloration as well as physiological changes like the increased viscosity can also happen, which must be avoided during the extraction.

 

Furthermore, extraction can be performed by numerous methods including the conventional methods (steam distillation, hydro-distillation, soxhlet extraction and solvent extraction) while the unconventional techniques are pulsed electric field assisted extraction, microwave-assisted extraction, ultrasound assisted extraction, enzyme-assisted extraction, supercritical fluid extraction and pressurized liquid extraction. Although these methods have been employed since many years for essential oil extraction, their application has shown a wide range of drawbacks like low extraction efficiency, losses of some volatile compounds through hydrolytic or thermal effects, degradation of unsaturated and possible poisonous solvent residues in essential oil. Among all these oil extraction processes, solvent extraction method is selective and considered clean because it is one of the favoured separation techniques due to its elegance, speed, simplicity and applicability to both macro and tracer amounts of metal ions and bioactive compounds. Frequently this is one of the ideal methods of separating bioactive components from large amounts of medicinal plants. In addition, the process is very selective and the isolation of the constituents of essential oil can usually be made as complete by repetitions of the extraction process. Furthermore, different solvents comprising acetone, hexane, ethanol, methanol and petroleum ether can be used for extraction process (Kosar et al., 2005).

 

Generally, in order to abstract the essential oils the plant sample is dissolved in the solvent and then after heating it’s filtered. Consequently, the filtrate is concentrated by solvent evaporation and the concentrate is concrete (a combination of wax, fragrance and essential oil). From the concentrate, the essential oil is extracted by dissolving it in pure alcohol which alcohol absorbs the scent at low temperatures. The aromatic absolute oil is left after the vaporization of alcohol. However, this technique is time-consuming and makes the oils more expensive as compare to other techniques (Li et al., 2009).

 

Characterization of Essential Oils

 

Essential oils are complex compounds that need to characterize by different methods to confirm the consumer safety, quality and fair trade. Thus, there is a large number of instrumental techniques available such as organoleptic, physical, chemical, chromatography and spectroscopy. Furthermore, the application of processes e.g. differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform near-infra red (FTNIR) and Fourier transform infrared (FTIR) spectroscopy have also been studied for the isolation of chemical components of essential oil.

 

Literature has reported that characterization of essential oils is commonly performed by GC-MS, through which small size of essential oil constituents (volatile compounds) can be abstracted according to their boiling points. The process carried out in a long column (i.e., 30 m) which is pre-packed with a porous stationary phase that is either apolar (polymethylsiloxane) or polar wax column (polyethylene glycol). In addition, at 300 °C the essential oils is injected into the heat injection chamber leads to the precipitation of essential oil constituents in the column. The separation in gas chromatography is completed in the oven at automatic temperature ramp by gradually increasing the temperature; occasionally isothermal (constant temperature) programs are used. The separation of chemical constituents takes place by increasing the component’s individual boiling points. At this point the component vaporizes and is passed by the gas to the detector (GC-MS). The sizes and the presence of functional groups are revealed by the retention time of components in a GC-MS chromatogram. After that the separated component is fragmented by electron impact ionization, which gives a spectrum of ions which are diverted on the detector. The ions have different masses with different relative abundances. Finally, each mass spectrum is compared across a spectral library.

 

In present review, we focus only on five chemical constituents of the essential oils of selected plants. As plant essential oils are usually the complex mixture of natural compounds, both polar and nonpolar compounds. Generally, the constituents in essential oils are hydrogenated and oxygenated terpenes (monoterpenes and sesquiterpenes), aromatic compounds like ketones, phenols, alcohols, methoxy derivative, coumarins and terpenoids (isoprenoids) (Tongnuanchan and Benjakul, 2014). Therefore this is not possible to mention the bioactive components of 90 medicinal plants in Table 1 (given at the end).

 

Conclusively, a broad spectrum of literature of bioactive compounds is available for 90 medicinal plants as given in Table 1 (given at the end); therefore in this review we only focus on the five chemical components of essential oil to highlight the biological importance of medicinal plants. Besides, the review has also opened up the possibility of the use of these plants in medical and herbal preparations against different diseases.

 

Essential Oil Profiles of Ninety (90) Medicinal Plants

The essential oil profiles of ninety (90) medicinal plants of Pakistan (Table 1, given at the end) have obtained after a deep insight into the available literature. The collected data show that majority of the plants essential oils are composed of terpenes as their major components.

 

Pinenes, the bicyclic monoterpens are reported as the most abundant compounds in essential oil fraction of C. cyminum (29.2%), T. ammi (0.87%), F. vulgare (1.7%) and the second most abundant compounds in A. indica (2.04%) and W. fruiticosa (23.53%). Pinenes are known for various biological activities, such as natural insecticides, antimicrobial agents particularly against gram positive bacteria causing infectious endocarditis, play effective role against malignant melanoma and also possess antiviral activities against infectious bronchitis virus.

 

Beta-caryophyllene, a sesquiterpene compound constitute 33.44% of P. longum, 23.49% of P. nigrum and 36.37% of W. fruiticosa essential oil fractions while S. rebaudiana (9.6%), M. spicata (2.969%), Z. jujobe (9.16%), T. linearis (5.76%), M. piperata (2.31%) C. sativa (1.33%) and O. sanctum (26.53%) contain a comparative lower concentration of beta-caryophyllene in their total oil composition. Literature has exposed that Beta-caryophyllene is the most famous antiviral compound. Several other biological activities as anti-inflammatory, anaesthetic, anticarcinogenic, antimicrobial and insecticidal activities for beta-caryophyllene are reported in literature.

 

Furthermore, alcoholic terpenoids like borneol is present as major component in O. basillicum (0.20%), A. vasica (58.60%), alpha-terpineol in M. longifolia (1185.56%), C. deodara (30.2%) and menthol in A. nilotica (34.9%) essential oils. These compounds account for antiseptic, anti-inflammatory, spasmolytic, anaesthetic, balancing, tonifying and antimicrobial activities of essential oil of medicinal plants. Ketonic terpenoids such as carvone is present abundantly in M. spicata (59.40%) and C. carvi (23.3%) oils. Alpha-thujone is the main component of R. communis (31.71%) essential oil. Termerone, a sesquiterpenoide ketone constitutes the major portion of C. longa (49.04%) essential oil displayed in Table 1 (given at the end). The biological activities such as cell regeneration, neurotoxic effects, sedatives, analgesics, antiviral activities, digestive, spasmolytic and mucolytic properties have been reported for ketonic compounds of essential oils. Cymenes, myrcenes, sabinenes and limonenes catogarized as the carburemonoterpenes are found in higher concentrations in plants like C. album (40.9%), C. sativa (67.11%), V. negundo (19.04%) and C. sinensis (95.46%), respectively. The hydrocarbon monoterpenes are reported in literature with antitumour, antibacterial, stimulant, antiviral, hepatoprotective and decongestant activities. Myrcene particularly exhibit analgesic effects and an increase in sleeping time. In addition, limonene is found effective against gastric carcinogenesis, D-limonene is known to posseschemo preventive effects against hepatocarcinogenesis in mice (Uedo, 1999).

 

Important phenolic monoterpenes like thymol and carvacrol are reported as the chief components in essential oils of T. linearis (36.5%) and O. vulgare (18.6%) respectively. The aromatic phenol, eugenol has been reported in E. aromatica (71.56%), Z.jujobe (48.3%) and O. sanctum (43.88%) oils in higher concentrations (Table 1, given at the end). The phenol containing terpenes and aromatic compounds contribute to the spasmolytic, irritant, anesthetic, immune stimulating and antimicrobial activities of the oils (467-469). Thymol and carvacrol display potent antioxidant activities for many essential oils which contain them (Baratta, 1998). Eugenol exhibited strong antibacterial activity against infectious endocarditis. Moreover, antihelminthic, insecticidal and nematocidal activities of eugenol and antioxidative activity of both thymol and eugenol in LDL oxidation has also reported (Naderi et al., 2004).

 

Conclusions

 

The biological and pharmacological activities of essential oils are well documented and it has been suggested that the major components of the oils may be responsible for their therapeutic potentials. Highlighting this fact, the literature was reviewed for the biological activities of the most abundant essential oil constituents of the selected ninety plants. It has been observed that the activities of 90% (approx.) major components of the selected plants are reported by various researchers worldwide. Furthermore, it is interesting to note that we did not find any evidence about pronounced activities of 1-Phenyl butanone, l-Guanidinosuccinimide, maaliol, 3, 6-Dioxa-2,4,5,7-tetraoctane,2,2,4,4,5,5,7,7-Octamethyl, 1,2,3,4,5-Cyclophentanepentol, α Gingiberene and 8,11-Octadecadienic acid which are the major components of V. odorata, C. bursapestoris, V. wallichii, P. guajava, G. sylvestre, Z. officinale and B. papyrifera essential oils respectively. However it is worthy to note here that variations do occur in chemical composition of essential oils for a particular plant which may be due to various agronomic and climatic conditions, method of extraction, harvesting time and plant part used. In conclusion, this literature survey can be helpful in determining the mask potential activities of the above mentioned natural constituents, which may act as lead sources in formulation of new drugs.

 

Acknowledgments

 

Financial support of Higher Education Commission, Pakistan is cordially acknowledged and appreciated.

 

Conflict of interests

 

The authors declare no conflict of interest.

 

authors’ contribution

 

All authors contributed significantly in the preparation of review.

 

References

 

  • Abbasi MA, Raza A, Riaz T, Shahzadi T, Rehman A (2010). Investigation on the volatile constituents of juglansregiaand there in vitro antioxidant potential. Proc. Pakistan Acad. Sci. 47(3): 137-141.
  • Abdalla AE, Darwish SM, Ayad EH, El-Hamahmy RM (2007). Egyptian mango by-product 2: Antioxidant and antimicrobial activities of extract and oil from mango seed kernel. Food Chem. 103(4): 1141-1152. http://dx.doi.org/10.1016/j.foodchem.2006.10.017
  • Abirami P, Rajendran A (2011). GC-MS analysis of tribulusterrestris. Asian J. Plant Sci. Res. 1(4): 13-16.
  • Abrahim D, Francischini AC, Pergo EM, Kelmer-Bracht AM, Ishii-Iwamoto EL (2003). Effects of α-pinene on the mitochondrial respiration of maize seedlings. Plant Physiol. Biochem. 41(11): 985-991. http://dx.doi.org/10.1016/j.plaphy.2003.07.003
  • Akintayo L, Ogundajo1, Ibrahim A, OladosuIsiaka A, Flamini OG, Owolabi MS (2013). Study on the volatile constituents of Solanumnigrum var. virginicum L. from Nigeria. Asian J. Plant Sci. Res. 3(1): 94-98.
  • Albuquerque MRJR, Costa SMO, Bandeira PN, Santiago GMP, Andrade-Neto M, Silveira ER, Pessoa OD (2007). Nematicidal and larvicidal activities of the essential oils from aerial parts of pectis oligocephala and pectis apodocephala baker. Anais da Academia Brasileira de Ciências. 79(2): 209-213. http://dx.doi.org/10.1590/S0001-37652007000200003
  • Allahverdiyev A, Duran N, Ozguven M, Koltas S (2004). Antiviral activity of the volatile oils of Melissa officinalis L. against herpes simplex virus type-2. Phytomedicine. 11(7): 657-661. http://dx.doi.org/10.1016/j.phymed.2003.07.014
  • Aloisi AM, Ceccarelli I, Masi F, Scaramuzzino A (2002). Effects of the essential oil from citrus lemon in male and female rats exposed to a persistent painful stimulation. Behaviour. Brain Res. 136(1): 127-135. http://dx.doi.org/10.1016/S0166-4328(02)00099-2
  • Al-Reza SM, Rahmanb A, Leec J, Kanga SC (2010). Potential roles of essential oil and organic extracts of Zizyphus jujube in inhibiting food-borne pathogens. Food Chem. 119(3): 981–986. http://dx.doi.org/10.1016/j.foodchem.2009.07.059
  • Al‐Shahib W, Marshall RJ (2003). Fatty acid content of the seeds from 14 varieties of date palm Phoenix dactylifera L. Int. J. Food Sci. Technol. 38(6): 709-712. http://dx.doi.org/10.1046/j.1365-2621.2003.00723.x
  • Aly HI, El-Sayed AB, Gohar YM, Salem MZ (2013). The value-added uses of ficus retusa and dalbergia sissoo Grown in Egypt: GC/MS analysis of extracts. J. Forest Prod. Ind. 2(3): 34-41.
  • Andersen PH, Jensen NJ. (1984). Mutagenic investigation of peppermint oil in the salmonella/mammalian-microsome test. Mutation Res. Genetic Toxicol. 138(1): 17-20. http://dx.doi.org/10.1016/0165-1218(84)90080-6
  • Andrade EHA, Maia JGS, Maria das Graças BZ (2000). Aroma volatile constituents of Brazilian varieties of mango fruit. J. Food Comp. Anal. 13(1): 27-33. http://dx.doi.org/10.1006/jfca.1999.0841
  • Armaka M, Papanikolaou E, Sivropoulou A, Arsenakis M (1999). Antiviral properties of isoborneol, a potent inhibitor of herpes simplex virus type 1. Antiviral Res. 43(2): 79-92. http://dx.doi.org/10.1016/S0166-3542(99)00036-4
  • AponjolosunBS,Fasola TR, Oloyede GK (2011). Chemical composition, toxicity and antioxidant activities of essential oils of stem bark of Nigerian species of guava (Psidiumguajava Linn.). EXCLI J. 10:34-43.
  • Asghari J, Touli CK, Mazaheritehrani M (2012). Microwave-assisted hydrodistillation of essential oils from echinophora platyloba DC. J. Med. Plants Res. 6: 4475-4480.
  • Asif A, Kakub G, Mehmood S, Khunum R, Gulfraz M (2007). Wound healing activity of root extracts of berberis lyceum royal in rats. Phytother. Res. 21(6): 589–591. http://dx.doi.org/10.1002/ptr.2110
  • Averbeck D, Averbeck S (1998). DNA Photodamage, repair, gene induction and genotoxicity following exposures to 254 Nm Uv and 8‐Methoxypsoralen plus Uva in a eukaryotic cell system. Photochem. Photobiol. 68(3): 289-295. http://dx.doi.org/10.1111/j.1751-1097.1998.tb09683.x
  • Averbeck D, Averbeck S, Dubertret L, Young A, Morliere P (1990). Genotoxicity of bergapten and bergamot oil in saccharomyces cerevisiae. J. Photochem. Photobiol. 7(2): 209-229. http://dx.doi.org/10.1016/1011-1344(90)85158-S
  • Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Omar AKM (2013). Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 117(4): 426-436. http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014
  • Bakkali F, Averbeck S, Averbeck D, Zhiri A, Baudoux D, Idaomar M (2006). Antigenotoxic effects of three essential oils in diploid yeast (Saccharomyces Cerevisiae) after treatments with Uvc Radiation, 8-Mop plus Uva and Mms. Mutation Res. Genetic Toxicol. Environ. Mutagenesis. 606(1): 27-38. http://dx.doi.org/10.1016/j.mrgentox.2006.02.005
  • Baratta MT, Dorman HD, Deans SG, Biondi DM, Ruberto G (1998). Chemical composition, antimicrobial and antioxidative activity of laurel, sage, rosemary, oregano and coriander essential oils. J. Essential Oil Res. 10(6): 618-627. http://dx.doi.org/10.1080/10412905.1998.9700989
  • Barocelli E, Calcina F, Chiavarini M, Impicciatore M, Bruni R, Bianchi A, Ballabeni V (2004). Antinociceptive and gastroprotective effects of inhaled and orally administered lavandula hybrida reverchon “Grosso” essential oil. Life Sci. 76(2): 213-223. http://dx.doi.org/10.1016/j.lfs.2004.08.008
  • Başer KHC, Demirci F (2007). Chemistry of essential oils. In: Fragrance and flavours: chemistry, bioprocessing and sustainability, 1st ed.; Berger, R.G., Ed.; Springer: Leipzig, Germany.
  • Bisht A, Bisht GRS, Singh M, Gupta R, Singh V (2011). Chemical composition and antimicrobial activity of essential oil of tubers of Cyperusrotundus Linn. collected from Dehradun (Uttarakhand). Int. J. Res. Pharm. Biomed. Sci. 2(2): 661-665.
  • Bhaskar A, Nithya V, Vidhya VG (2011). Phytochemical evaluation by GC-MS and antihyperglycemic activity of Mucunapruriens on Streptozotocin induced diabetes in rats. J. Chem. Pharm. Res. 3(5): 689-696.
  • Bhuiyan MNI, Begum J, Sultana M (2009). Chemical composition of leaf and seed essential oil of Coriandrumsativum L. from Bangladesh. Bangladesh J. Pharmacol. 4(2): 150-153. http://dx.doi.org/10.3329/bjp.v4i2.2800
  • Botsoglou N, Florou-Paneri P, Christaki E, Giannenas I, Spais A (2004). Performance of rabbits and oxidative stability of muscle tissues as affected by dietary supplementation with oregano essential oil. Arch. Anim. Nutr. 58(3): 209-218. http://dx.doi.org/10.1080/00039420410001701404
  • Boukhebti H, Chaker AN, BelhadjH, Sahli F, Ramdhani M, Laouer H, Harzallah D (2011). Chemical composition and antibacterial activity of Menthapulegium L. and Menthaspicata L. essential oils. Der. Pharmacia Letter. 3 (4): 267-275.
  • Bozin B, Mimica-Dukic N, Simin N, Anackov G (2006). Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 54(5): 1822-1828. http://dx.doi.org/10.1021/jf051922u
  • Buhagiar J, Podesta M, Wilson A, Micallef M, Ali S (1998). The induction of apoptosis in human melanoma, breast and ovarian cancer cell lines using an essential oil extract from the conifer tetraclinis articulata. Anticancer Res. 19(6B): 5435-5443.
  • Burt S (2004). Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 94(3): 223-253. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022
  • Can A, Akev N, Ozsoy N, Bolkent S, Arda BP, Yanardag R, Okyar A (2004). Effect of aloe vera leaf gel and pulp extracts on the liver in type-ii diabetic rat models. Biol. Pharma. Bulletin. 27(5): 694-698.
  • Candan F, Unlu M, Tepe B, Daferera D, Polissiou M, Sökmen A, Akpulat HA (2003). Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea Millefolium Subsp. Millefolium Afan. (Asteraceae). J. Ethnopharmacol. 87(2): 215-220.
  • Carnesecchi S, Bras-Gonçalves R, Bradaia A, Zeisel M, Gossé F, Poupon M-F, Raul F (2004). Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-Fluorouracil efficacy on human colon tumor xenografts. Cancer Letters. 215(1): 53-59.
  • Carrano A, Natarajan A. (1988). International commission for protection against environmental mutagens and carcinogens. Icpemc publication No. 14. Considerations for population monitoring using cytogenetic techniques. Mutation Res. 204(3): 379.
  • Ceccarelli I, Lariviere WR, Fiorenzani P, Sacerdote P, Aloisi AM (2004). Effects of long-term exposure of lemon essential oil odor on behavioral, hormonal and neuronal parameters in male and female rats. Brain Res. 1001(1): 78-86.
  • Chatterjee A, Sukul N, Laskar S, Ghoshmajumdar S (1982). Nematicidal principles from two species of lamiaceae. J. Nematol. 14(1): 118.
  • Chavan M, Wakte P, Shinde D (2010). Analgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. Bark. Phytomed. 17(2): 149-151.
  • Chavan S, Nikam S. (1982). Mosquito larvicidal activity of ocimum basilicum linn. Indian J. Med. Res. 75: 220-222.
  • Chekem MSG, Lunga PK, Tamokou JDD (2010). Antifungal properties of chenopodium ambrosioides essential oil against candida species. Pharma. 3(9): 2900-2909.
  • Chemat F (2011) Techniques for oil extraction. In: Sawamura M (ed) Citurs essential oils: flavor and fragrance. Wiley, New Jersey. Pp. 9–20.
  • Chen SW, Min L, Li WJ, Kong WX, Li JF, Zhang YJ (2004). The effects of angelica essential oil in three murine tests of anxiety. Pharmacol. Biochem. Behavior. 79(2): 377-382.
  • Chen YC, Shen SC, Chow JM, Ko CH, Tseng SW (2004). Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. Int. J. Oncol. 25(3): 661-670.
  • Chithra P, Sajithlal G, Chandrakasan G (1998). Influence of aloe vera on the healing of dermal wounds in diabetic rats. J. Ethnopharmacol. 59(3): 195-201.
  • Chouitah O, Meddah B, Aoues A, Sonnet P (2011). Chemical composition and antimicrobial activities of the essential oil from glycyrrhizaglabra leaves. J. Essent. Oil Bear. Pl. 14(3): 284-288.
  • Conner D, Beuchat L, Worthington R, Hitchcock H (1984). Effects of essential oils and oleoresins of plants on ethanol production, respiration and sporulation of yeasts. Int. J. Food Microbiol. 1(2): 63-74.
  • Crowell PL (1999). Prevention and therapy of cancer by dietary monoterpenes. J. Nutr. 129(3): 775S-778S.
  • Cuba R (2001). Toxicity myths essential oils and their carcinogenic potential. Int. J. Aromatherapy. 11(2): 76-83.
  • Daferera DJ, Ziogas BN, Polissiou MG (2000). Gc-Ms analysis of essential oils from some greek aromatic plants and their fungitoxicity on penicillium digitatum. J. Agric. Food Chem. 48(6): 2576-2581.
  • Dar SA, Ganai FA, Yousuf AR, Balkhi MH (2012). Bioactive potential of leaf extracts from Urticadioica L. against fish and human pathogenic bacteria. Afr. J. Microbiol. Res. 6(41): 6893-6899.
  • Davidson P, Naidu A (2000). Phyto-phenols. Natural Food Antimicrobial Syst. Pp. 265-294.
  • Devendran G, Balasubramanian U (2011). Qualitative phytochemical screening and GC-MS analysis of Ocimum sanctum L. leaves. Asian J. Plant Sci. Res. 1(4): 44-48.
  • Deans S, Svoboda K, Gundidza M, Brechany E (1990). Essential oil profiles of several temperate and tropical aromatic plants: Their antimicrobial and antioxidant activities. Paper presented at the International Symposium on Medicinal and Aromatic Plants, XXIII IHC. Pp. 306.
  • de Barros NA, Rocha RR, Assis AR, Mendes MF (2013). Extraction of basil oil (Ocimum basilicum L.) using supercritical fluid. III Iberoamerican Conference on Supercritical Fluids Cartagena de Indias, Colombia. Pp. 1-8.
  • Debnath S, Raghavarao KSMS, Lokesh BR (2011). Hydrodynamic, thermo-analytical and molecular structural investigations of enzyme interesterified oil and its thermo-oxidative stability by thermogravimetric analysis. J. Food Eng. 105(4): 671-679.
  • De Flora S, Ramel C (1988). Mechanisms of inhibitors of mutagenesis and carcinogenesis: Classification and overview. Mutation Res. Fundamental Mol. Mechanisms Mutagenesis. 202(2): 285-306.
  • De-Oliveira AC, Ribeiro-Pinto FL, Paumgartten FJ (1997). In vitro inhibition of Cyp2b1 monooxygenase by Β-myrcene and other monoterpenoid compounds. Toxicol. Letters. 92(1): 39-46.
  • De Rodríguez GO, de Godoy VM, de Colmenares NG, Salas LC, de Ferrer BS (1998). Composition of venezuelan lemon essential oil Citrus limon (L.) Burm. F. Rev. Fac. Agron. 15(4): 343-349.
  • Derwich E, Benziane Z, Manar A, Boukir A, Taouil R (2010). Phytochemical analysis and in vitro antibacterial activity of the essential oil of organumvulgare from Morocco. Am-Eur. J. Sci. Res. 5(2): 120-129.
  • De Sousa DP (2011). Analgesic-like activity of essential oils constituents. Molecules. 16(3): 2233-2252.
  • Dev N, Das AK, Hossain MA, Rahman SMM (2011). Chemical compositions of different extracts of ocimumbasilicum leaves. J. Sci. Res. 3 (1): 197-206.
  • Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G (2007). Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem. 55(12): 4863-4870.
  • Di Sotto A, Mazzanti G, Carbone F, Hrelia P, Maffei F (2010). Inhibition by Β-caryophyllene of ethyl methanesulfonate-induced clastogenicity in cultured human lymphocytes. Mutation Res. Genetic Toxicol. Environ. Mutagenesis. 699(1): 23-28.
  • Do TK, Hadji-Minaglou T, Antoniotti F, Fernandez X (2015). Authenticity of essential oils. Trends Anal. Chem. 66: 146-157.
  • Douiri LF, Boughdad A, Assobhei O, Moumni M (2013). Chemical composition and biological activity of Allium sativum essential oils against Callosobruchus maculates. J. Environ. Sci. Toxicol. Food Technol. 3(1): 30-36.
  • Ebrahimi SN, Hadian J, Mirjalili M, Sonboli A, Yousefzadi M (2008). Essential oil composition and antibacterial activity of thymus caramanicus at different phenological stages. Food Chem. 110(4): 927-931.
  • Edris AE (2007). Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phytother. Res. 21(4): 308-323.
  • El-Ghorab A, Shaaban HA, El-Massry KF, Shibamoto T (2008). Chemical composition of volatile extract and biological activities of volatile and less-volatile extracts of juniper berry (Juniperus drupacea L.) fruit. J. Agric. Food Chem. 56(13): 5021-5025.
  • El-Ghorab A, Shibamoto T, ÖZCAN MM (2007). Chemical composition and antioxidant activities of buds and leaves of capers (Capparis Ovata Desf. Var. Canescens) cultivated in Turkey. J. Essential Oil Res. 19(1): 72-77.
  • El-massry K, El-Ghorab A (2006). Effect of essential oils and non-volatile extracts of some aromatic plants on Cu++-induced oxidative modification of human low-density lipoprotein (Ldl). J. Essential Oil Bearing Plants. 9(3): 292-299.
  • El-Seedi HR, Khattab A, Gaara AH, Mohamed TK, Hassan NA, El-kattan AE (2008). Essential oil analysis of micromeria nubigena Hbk and its antimicrobial activity. J. Essential Oil Res. 20(5): 452-456.
  • Esmaeili N, Ebrahimzadeh H, Abdi K, Safarian S (2011). Determination of some phenolic compounds in Crocus sativus L. corms and its antioxidant activities study. Pharmacogn. Mag. 7(25): 74.
  • Fadel O, Ghazi Z, Mouni L, Benchat N, Ramdani M, Amhamdi H, Wathelet JP, Asehraou A, Charof R (2010). Comparison of microwave-assisted hydrodistillation and traditional hydrodistillation methods for the rosmarinus eriocalyx essential oils from Eastern Morocco. J. Mater. Environ. Sci. 2(2): 112-117.
  • Fisher K, Phillips C (2008). Potential antimicrobial uses of essential oils in food: Is citrus the answer? Trends Food Sci. Technol. 19(3): 156-164.
  • Franzios G, Mirotsou M, Hatziapostolou E, Kral J, Scouras ZG, Mavragani-Tsipidou P (1997). Insecticidal and genotoxic activities of mint essential oils. J. Agric. Food Chem. 45(7): 2690-2694.
  • Freitas J, Presgrave O, Fingola F, Menezes M, Paumgartten F (1993). Effect of Beta-Myrcene on pentobarbital sleeping time. Braz. J. Med. Biol. Res. 26(5): 519-523.
  • Gaikwad M, Kale S, Bhandare S, Urunkar V, RajmaneA (2011). Extraction, characterization and comparison of fixed oil of Moringaoleifera L. and Moringaconcanensis Nimmo Fam. Moringaceae. Int. J. Pharm. Tech. Res. 3(3): 1567-1575.
  • Gali-Muhtasib H, Hilan C, Khater C (2000). Traditional uses of salvia libanotica (East Mediterranean Sage) and the effects of its essential oils. J. Ethnopharmacol. 71(3): 513-520.
  • Garcia C, Talarico L, Almeida N, Colombres S, Duschatzky C, Damonte E (2003). Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytother. Res. 17(9): 1073-1075.
  • Gerige SJ, Gerige MKY, Rao M (2009). GC-MS Analysis of nigella sativa seeds and antimicrobial activity of its volatile oil. Braz. Arch. Biol. Technol. 52 (5): 1189-1192.
  • Ghelardini C, Galeotti N, Mannelli LDC, Mazzanti G, Bartolini A (2001). Local anaesthetic activity of Β-Caryophyllene. Il Farmaco. 56(5): 387-389.
  • Ghelardini C, Galeotti N, Salvatore G, Mazzanti G (1999). Local anaesthetic activity of the essential oil of Lavandula angustifolia. Planta Medica. 65(8): 700-703.
  • Giri RK, Parija T, Das BR (1999). D-Limonene chemoprevention of hepatocarcinogenesis in akr mice: Inhibition of C-Jun and C-Myc. Oncol. Reports. 6(5): 1123-1130.
  • Göggelmann W, Schimmer O (1983). Mutagenicity testing of Β-Asarone and commercial calamus drugs with salmonella typhimurium. Mutation Res. Letters. 121(3): 191-194.
  • Goren AC, Piozzi F, Akcicek E, Kılıç T, Çarıkçı S, Mozioğlu E, Setzer WN (2011). Essential oil composition of twenty-two stachys species (Mountain Tea) and their biological activities. Phytochem. Letters. 4(4): 448-453.
  • Greenwald P, Clifford C, Milner J (2001). Diet and cancer prevention. Eu. J. Cancer. 37(8): 948-965.
  • Griffin SG, Wyllie SG, Markham JL, Leach DN (1999). The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flav. Fragr. J. 14(5): 322-332.
  • Guenther E (2013). The essential oils. Vol 1: History-origin in plants production analysis. Read Books Ltd., New York, USA.
  • Gustafson J, Liew Y, Chew S, Markham J, Bell H, Wyllie S, Warmington J (1998). Effects of tea tree oil on escherichia coli. Letters Appl. Microbiol. 26(3): 194-198.
  • Gutierrez J, Barry-Ryan C, Bourke P (2008). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 124(1): 91-97.
  • Hajhashemi V, Ghannadi A, Sharif B (2003). Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of lavandula angustifolia mill. J. Ethnopharmacol. 89(1): 67-71. http://dx.doi.org/10.1016/S0378-8741(03)00234-4
  • Hammami I, KamounN, RebaiA (2011). Biocontrol of Botrytis cinerea with essential oil and methanol extract of Viola odorata L. flowers. Arch. Appl. Sci. Res. 3(5): 44-51.
  • Hartman PE, Shankel DM (1990). Antimutagens and anticarcinogens: A survey of putative interceptor molecules. Environ. Mol. Mutagenesis. 15(3): 145-182. http://dx.doi.org/10.1002/em.2850150305
  • Hasheminejad G, Caldwell J (1994). Genotoxicity of the Alkenylbenzenes α− and β-asarone, myristicin and elemicin as determined by the uds assay in cultured rat hepatocytes. Food Chem. Toxicol. 32(3): 223-231.
  • Hata T, Sakaguchi I, Mori M, Ikeda N, Kato Y, Minamino M, Watabe K (2002). Induction of apoptosis by citrus paradisi essential oil in human leukemic (Hl-60) cells. In Vivo. 17(6): 553-559.
  • Huang H, Chang T, Chang L, Wang HF, Yih K, Hsieh W, Chang T (2012). Inhibition of melanogenesis versus antioxidant properties of essential oil extracted from leaves of vitexnegundo linn and chemical composition analysis by GC-MS. Molecules. 17(4): 3902-3916. http://dx.doi.org/10.3390/molecules17043902
  • Heggers JP, Pelley RP, Robson MC (1993). Beneficial effects of aloe in wound healing. Phytother. Res. 7(7): S48-S52. http://dx.doi.org/10.1002/ptr.2650070715
  • Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, Gorris LG, von Wright A (1998). Characterization of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 46(9): 3590-3595. http://dx.doi.org/10.1021/jf980154m
  • Hulin V, Mathot A-G, Mafart P, Dufosse L (1998). Les proprietés anti-microbiennes des huiles essentielles et composés d’arômes. Sciences des aliments. 18(6): 563-582.
  • Hussain AI, Anwar F, Chatha SA, Latif S, Sherazi ST, Ahmad A, Sarker SD (2013). Chemical composition and bioactivity studies of the essential oils from two Thymus species from the Pakistani flora. LWT-Food Sci. Technol. 50(1): 185-192.
  • Iacobellis NS, Lo Cantore P, Capasso F, Senatore F (2005). Antibacterial activity of Cuminumcyminum L. and Carumcarvi L. essential oils. J. Agric. Food Chem. 53(1): 57-61. http://dx.doi.org/10.1021/jf0487351
  • Ipek E, Zeytinoglu H, Okay S, Tuylu BA, Kurkcuoglu M, Baser KHC (2005). Genotoxicity and antigenotoxicity of origanum oil and carvacrol evaluated by ames salmonella/microsomal test. Food Chem. 93(3): 551-556. http://dx.doi.org/10.1016/j.foodchem.2004.12.034
  • ISO. International Standards Organization— http://www.iso.org/iso/home.htm (accessed on 12 December 2014).
  • Jananie RK, Priya V, Vijayalakshmia K (2011). Determination of bioactive components of cynodondactylon by GC-MS analysis. N.Y. Sci. J. 4(4): 16-20.
  • Juven B, Kanner J, Schved F, Weisslowicz H (1994). Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 76(6): 626-631. http://dx.doi.org/10.1111/j.1365-2672.1994.tb01661.x
  • Joseph B, Ajisha AU, Kumari S, Sujatha S (2011). Effect of bioactive compounds and its pharmaceutical activities of sidacordifolia (Linn.). Int. J. Biol. Med. Res. 2(4): 1038-42.
  • Kada T, Shimoi K (1987). Desmutagens and Bio‐antimutagens–Their modes of action. Bioessays. 7(3): 113-116. http://dx.doi.org/10.1002/bies.950070305
  • Kadri A, Gharsallah N, Damak M, Gdoura R (2011). Chemical composition and in vitro antioxidant properties of essential oil of Ricinuscommunis L. J. Med. Plants Res. 5(8): 1466-1470.
  • Kaur R, Kaur H (2010). The antimicrobial activity of essential oil and plant extracts of wood for diafruticosa. Arch. Appl. Sci. Res. 2(1): 302-309.
  • Kelly DJ. (1998). The physiology and metabolism of the human gastric pathogen helicobacter pylori. Adv. Microb. Physiol. 40: 137-189. http://dx.doi.org/10.1016/S0065-2911(08)60131-9
  • Khanzada SK, Shaikh W, Sofia S, Kazi TG, Usmanghani K, Kabir A, Sheerazi TH (2008). Chemical constituents of Tamarindusindica L. medicinal plant in Sindh. Pak. J. Bot. 40(6): 2553-2559.
  • Knobloch K, Pauli A, Iberl B, Weigand H, Weis N (1989). Antibacterial and antifungal properties of essential oil components. J. Essential Oil Res. 1(3): 119-128. http://dx.doi.org/10.1080/10412905.1989.9697767
  • Kocić‐Tanackov S, Dimić G, Lević J, Tanackov I, Tepić A, Vujičić B, Gvozdanović‐Varga J (2012). Effects of onion (Allium cepa L.) and garlic (Allium sativum L.) essential oils on the aspergillus versicolor growth and sterigmatocystin production. J. Food Sci. 77(5): 278-284. http://dx.doi.org/10.1111/j.1750-3841.2012.02662.x
  • Koria L, Nithya G (2012). Analysis of Daturastramonium Linn. biodiesel by gas chromatography-mass spectrometry (gc-ms) and influence of fatty acid composition on the fuel related characteristics. J. Phytol. 4(1): 06-09.
  • Kosar M, Dorman HJD, Hiltunen R (2005). Effect of an acid treatment on the phytochemical and antioxidant characteristics of extracts from selected Lamiaceae species. Food Chem. 91: 525–33. http://dx.doi.org/10.1016/j.foodchem.2004.06.029
  • Kyong-Su K (2006). Essential oil constituents of swertiachirata buch.-ham. J. Food Sci. Nutr. 11(3): 232-236. http://dx.doi.org/10.3746/jfn.2006.11.3.232
  • Kumar SM, Kumar VD, Kumar SA, Aslam A, Shajahan A (2011). The phytochemical constituents of withania somniferaand withania obtusifoliaby GCMS analysis. Int. J. Pharm. Phytochem. Res. 3(3): 31-34.
  • Kumar SS, Akram AS, Ahmed TS, Jaabir MS (2010). Phytochemical analysis and antimicrobial activity of the ethanolic extract of Acoruscalamus rhizome. Orient J. Chem. 26(1): 223-227.
  • Lambert R, Skandamis PN, Coote PJ, Nychas GJ (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91(3): 453-462. http://dx.doi.org/10.1046/j.1365-2672.2001.01428.x
  • Legault J, Dahl W, Debiton E, Pichette A, Madelmont JC (2003). Antitumor activity of balsam fir oil: Production of reactive oxygen species induced by alpha-humulene as possible mechanism of action. Planta Medica. 69(5): 402-407. http://dx.doi.org/10.1055/s-2003-39695
  • Leite AM, Lima EDO, Souza ELD, Diniz Md FFM, Trajano VN, Medeiros IAD (2007). Inhibitory effect of beta-pinene, alpha-pinene and eugenol on the growth of potential infectious endocarditis causing gram-positive bacteria. Revista Brasileira de Ciências Farmacêuticas. 43(1): 121-126. http://dx.doi.org/10.1590/S1516-93322007000100015
  • Lemos JDA, Passos XS, Fernandes ODFL, Paula JRD, Ferri PH, Lemos ADA, Silva MDRR (2005). Antifungal activity from Ocimum Gratissimum L. towards cryptococcus neoformans. Memórias do Instituto Oswaldo Cruz. 100(1): 55-58. http://dx.doi.org/10.1590/S0074-02762005000100011
  • Li G, Jia H, Wu R, HussainS, Teng Y (1991). Characterization of aromatic volatile constituents in 11 Asian pear cultivars belonging to different species. Afr. J. Agric. Res. 7(34): 4761-4770.
  • Li TSC, Beveridge THJ, Drover JCG (2007). Phytosterol content of sea buckthorn (Hippophaerhamnoides L.) seed oil: Extraction and identification. Food Chem. 101(4): 1633-1639. http://dx.doi.org/10.1016/j.foodchem.2006.04.033
  • Li XM, Tian SL, Pang ZC, Shi JY, Feng ZS, Zhang YM (2009). Extraction of Cuminumcyminum essential oil by combination technology of organic solvent with low boiling point and steam distillation. Food Chem. 115: 1114–9. http://dx.doi.org/10.1016/j.foodchem.2008.12.091
  • Lin X, Wu Y, Lin S, Zeng J, Zeng P, Wu J (2010). Effects of volatile components and ethanolic extract from ecliptaprostrata on proliferation and differentiation of primary osteoblasts. Molecules. 15(1): 241-250. http://dx.doi.org/10.3390/molecules15010241
  • Liu L, Song G, Hu Y (2007). GC–MS Analysis of the essential oils of Piper nigrum L. and Piper longum L. Chromatographia. 66(9): 785-790.
  • Liu ZL, He Q, Chu SS, Wang CF, Du SS, Deng ZW (2011). Essential oil composition and larvicidal activity of Saussurealappa roots against the mosquito Aedesalbopictus (Diptera: Culicidae). Parasitol. Res. 110(6): 2125-30.
  • Marquez AJ, Maza GB (2003). Application of differential scanning calorimetry (DSC) at the characterization of the virgin olive oil. Grasas Y Aceites. 54(4): 403-409.
  • Matsuo AL, Figueiredo CR, Arruda DC, Pereira FV, Scutti JAB, Massaoka MH, Travassos LR, Sartorelli P, Lago JH (2011). α-pinene isolated from schinus terebinthifolius raddi (Anacardiaceae) induces apoptosis and confers antimetastatic protection in a melanoma model. Biochem. Biophys. Res. Communic. 411(2): 449-454.
  • Mau JL, Lai EY, Wang NP, Chen CC, Chang CH, Chyau CC (2003). Composition and antioxidant activity of the essential oil from curcuma zedoaria. Food Chem. 82(4): 583-591.
  • Mazières J, Pradines A, Favre G (2003). Les inhibiteurs de farnésyl transférase: une cible peut en cacher une autre. Med. Sci. Rev. 19: 211-216.
  • Mba O, Adewale P, Dumont MJ, Ngadi M (2014). Application of near-infrared spectroscopy to characterize binary blends of palm and canola oils. Ind. Crops Prod. 61: 472–478.
  • Meister A, Bernhardt G, Christoffel V, Buschauer A (1999). Antispasmodic activity of thymus vulgaris extract on the isolated guinea-pig trachea: Discrimination between drug and ethanol effects. Planta Medica. 65(6): 512-516.
  • Memon AA, Memon N, Devanand L, Pitafi AA, Bhanger MI (2012). Phenolic compounds and seed oil composition of Ziziphusmauritiana L. fruit. Pol. J. Food Nutr. Sci. 62 (1): 1-7.
  • Mimica-Dukic N, Bozin B, Sokovic M, Simin N (2004). Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 52(9): 2485-2489.
  • Mohamadi M, Shamspur T, Mostafavi A (2013). Comparison of Microwave-assisted distillation and conventional hydrodistillation in the essential oil extraction of flowers rosa damascena mill. J. Essential Oil Res. 25(1): 55-61.
  • Mohammadpour H, Moghimipour E, Rasooli I, Fakoor MH, Astaneh SA, Moosaie SS, Jalili Z (2012). Chemical Composition and Antifungal Activity of Cuminumcyminum L. essential oil from Alborz Mountain on growth of Aspergillus spp. Jundishapur. J. Nat. Pharm. Prod. 7(2): 50-5.
  • Moussa MM, Mona MI, Zeitoun MA (2005). Identification of some volatile compounds extracted from certain medicinal plants. Alex. J. Food. Sci. Technol. 2 (1): 9-18.
  • Mühlbauer R, Lozano A, Palacio S, Reinli A, Felix R (2003). Common herbs, essential oils, and monoterpenes potently modulate bone metabolism. Bone. 32(4): 372-380.
  • Naderi GA, Asgary S, Ani M, Sarraf-Zadegan N, Safari MR (2004). Effect of some volatile oils on the affinity of intact and oxidized low-density lipoproteins for adrenal cell surface receptors. Mol. Cell. Biochem. 267(1-2): 59-66.
  • Nassar MI, Gaara AH, El-Ghorab AH, Farrag A, Shen H, Huq E, Mabry TJ (2007). Chemical constituents of clove (Syzygiumaromaticum, Fam. Myrtaceae) and their antioxidant activity. Rev. Latinoam. Quím. 35(3): 47.
  • Nathalie D, Yannick G, Caroline B, Sandrine D, Claude F, Corinne C, Pierre-Jacques F (2006). Assessment of the phototoxic hazard of some essential oils using modified 3t3 neutral red uptake assay. Toxicol. in Vitro. 20(4): 480-489.
  • Negi JS, Bisht VK, Bhandari AK, Bisht R, Negi SK (2013). Major constituents, antioxidant and antibacterial activities of zanthoxylumarmatum DC. essential oil. Iranian J. Pharmacol. Ther. 11(2): 68-72.
  • Neha B, Honey J, Ranjan B (2012). Pharmacognostical and preliminary phytochemical investigation of acoruscalamuslinn. Asian J. Pharm. Res. 2 (1): 39-42.
  • Nestmann ER, Lee EGH (1983). Mutagenicity of constituents of pulp and paper mill effluent in growing cells of saccharomyces cerevisiae. Mutation Res. Letters. 119(3): 273-280.
  • Nicholas S, Jones G (2015). A contemporary introduction to essential oils: chemistry, bioactivity and prospects for Australian agriculture. Agriculture. 5 (1): 48-102.
  • O’Gara EA, Hill DJ, Maslin DJ (2000). Activities of garlic oil, garlic powder and their Diallyl constituents against helicobacter pylori. Appl. Environ. Microbiol. 66(5): 2269-2273. http://dx.doi.org/10.1128/AEM.66.5.2269-2273.2000
  • Ogunbinu AO, Okeniyi S, Flamini G, Cioni PL, Ogunwande IA, Babalola IT (2010). Essential oil composition of acacia nilotica Linn., and Acacia albida Delile (Leguminosae) from Nigeria. J. Essential Oil Res. 22(6): 540-542. http://dx.doi.org/10.1080/10412905.2010.9700393
  • Odin AP (1997). Vitamins as antimutagens: Advantages and some possible mechanisms of antimutagenic action. Mutation Res. Rev. Mutation Res. 386(1): 39-67. http://dx.doi.org/10.1016/S1383-5742(96)00044-0
  • Ohizumi H, Masuda Y, Yoda M, Hashimoto S, Aiuchi T, Nakajo S, Sakai I, Ohsawa S, Nakaya K (1996). Induction of apoptosis in various tumor cell lines by geranylgeraniol. Anticancer Res. 17(2A): 1051-1057.
  • Otsuka RD, Lago JHG, Rossi L, Galduróz JCF, Rodrigues E (2010). Psychoactive plants described in a brazilian literary work and their chemical compounds. Cent. Nerv. Syst. Agents Med. Chem. 10(3): 218-237. http://dx.doi.org/10.2174/1871524911006030218
  • Ottai MES, Mostafa EAH, Ibrahim MM (2012). Hereditary performance of three lepidiumsativum cultivars in Egypt. Aust. J. Basic Appl. Sci. 6(3): 169-175.
  • Oussalah M, Caillet S, Lacroix M (2006). Mechanism of action of spanish oregano, chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia Coli O157: H7 and Listeria monocytogenes. J. Food Protect. 69(5): 1046-1055.
  • Park I, Kim J, Lee S, Shin S (2007). Nematicidal activity of plant essential oils and components from ajowan (Trachyspermumammi), allspice (Pimentadioica) and litsea (Litseacubeba) essential oils against pine wood nematode (Bursaphelenchus Xylophilus). J. Nematol. 39(3): 275–279.
  • Panda H (2003). The Complete technology book on herbal perfumes & cosmetics, Asia Pacific Business Press Inc., Delhi. Pp. 688.
  • Pande KK, Pande L, Pande B, Pujari A, Sah P, Sah S (2011). Limonene dominates the Phytochemistry of Trigonellafoenum-graceum in Nature. Nat. Sci. 9(5): 17-20.
  • Papageorgiou G, Botsoglou N, Govaris A, Giannenas I, Iliadis S, Botsoglou E (2003). Effect of dietary oregano oil and α‐tocopheryl acetate supplementation on iron‐induced lipid oxidation of turkey breast, thigh, liver and heart tissues. J. Anim. Physiol. Anim. Nutr. 87(9‐10): 324-335.
  • Peana AT, D’Aquila PS, Panin F, Serra G, Pippia P, Moretti MDL (2002). Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomed. 9(8): 721-726. http://dx.doi.org/10.1078/094471102321621322
  • Pengelly A. (2004). Essential oils and resins. In: Pengelly A. The Constituents of Medicinal Plants: An introduction to the chemistry and therapeutics of herbal medicine. 2.ed. Cambridge: CABI Publishing. 85-109.
  • Perry NS, Bollen C, Perry EK, Ballard C (2003). Salvia for dementia therapy: Review of pharmacological activity and pilot tolerability clinical trial. Pharmacol. Biochem. Behavior. 75(3): 651-659.
  • Pérez-Gutiérrez S, Zavala-Sánchez MA, González-Chávez MM, Cárdenas-Ortega NC, Ramos-López MA (2011). Bioactivity of Carica papaya (Caricaceae) against Spodopterafrugiperda (Lepidoptera: Noctuidae). Molecules. 16(9): 7502-9. http://dx.doi.org/10.3390/molecules16097502
  • Pessoa L, Morais S, Bevilaqua C, Luciano J (2002). Anthelmintic activity of essential oil of ocimum gratissimum Linn. and eugenol against haemonchus contortus. Vet. Parasitol. 109(1): 59-63. http://dx.doi.org/10.1016/S0304-4017(02)00253-4
  • Phakawat T, Benjakul S (2014). Essential oils: Extraction, bioactivities and their uses for food preservation. J. Food Sci. 79 (7): 1231-1249. http://dx.doi.org/10.1111/1750-3841.12492
  • Radulović NS, BlagojevićPD (2010). A Note on the volatile secondary metabolites of foeniculumvulgaremill. (Apiaceae). Chem. Phys. Tech. 8 (1): 25 – 37.
  • Ramasubramaniaraja R (2011). Pharmacognostical phytochemical including GC-MS investigation of ethanolic leaf extracts of Abutilon indicum (Linn). Asian J. Pharm. Ana. 1(4): 88-92.
  • Ramel C, Alekperov U, Ames B, Kada T, Wattenberg L (1986). Inhibitors of mutagenesis and their relevance to carcinogenesis: Report by icpemc expert group on antimutagens and desmutagens. Mutation Res. Rev. Genetic Toxicol. 168(1): 47-65. http://dx.doi.org/10.1016/0165-1110(86)90021-7
  • Ramesh R, Dhanaraj TS (2015). GC-MS analysis of bioactive compounds in Terminalia Arjuna Root. Int. J. Multidiscip. Res. Dev. 2(9): 460-462.
  • Ramesh S, Chandran C, Venkatesan G (2014). Phytochemical And GC-MS analysis of leaf extract of Mimosa pudica L. Int. J. Curr. Res. Dev. 2(1): 78-87.
  • Rao V, Menezes A, Viana G (1990). Effect of myrcene on nociception in mice. J. Pharm. Pharmacol. 42(12): 877-878. http://dx.doi.org/10.1111/j.2042-7158.1990.tb07046.x
  • Razzaghi-Abyaneh M, Shams-Ghahfarokhi M, Rezaee MB, Jaimand K, Alinezhad S, Saberi R, Yoshinari T (2009). Chemical composition and antiaflatoxigenic activity of Carum carvi L., thymus vulgaris and citrus aurantifolia essential oils. Food Control. 20(11): 1018-1024. http://dx.doi.org/10.1016/j.foodcont.2008.12.007
  • RehmanJ, Khan IU, Asghar MN (2013). Antioxidant activity and GC-MS analysis of Grewiaoptiva E3. J. Biotechnol. Pharm. Res. 4(1): 14-21.
  • Reynolds T, Dweck A (1999). Aloe vera leaf gel: A review update. J. Ethnopharmacol. 68(1): 3-37. http://dx.doi.org/10.1016/S0378-8741(99)00085-9
  • Rodilla JM, Tinoco MT, Morais JC, Gimenez C, Cabrera R, Martín-Benito D, Castillo L, Gonzalez-Coloma A (2008). Laurus novocanariensis essential oil: Seasonal variation and valorization. Biochem. System. Ecol. 36(3): 167-176. http://dx.doi.org/10.1016/j.bse.2007.09.001
  • Ross SA, ElSohly MA (1996). The volatile oil composition of fresh and air-dried buds of Cannabis sativa. J. Nat. Prod. 59(1): 49-51. http://dx.doi.org/10.1021/np960004a
  • Sadgrove N, Jones G (2015). A contemporary introduction to essential oils: chemistry, bioactivity and prospects for australian agriculture. Agric. 5(1): 48-102. http://dx.doi.org/10.3390/agriculture5010048
  • Saeidi Z, babaahmadi H, Saeidi KA, Salehi A, Jouneghani RS, Amirshekari H, Taghipour A (2012). Essential oil content and composition of Menthalongifolia (L.) hudson grown wild in Iran. J. Med. Plants Res. 6(29): 4522-4525.
  • Salem MZ, Aly M, Gohar H, El-Sayed AW (2013). Biological activity of extracts from Morusalba L., Albizzialebbeck (L.) Benth. And Casuarinaglauca Sieber against the growth of some pathogenic bacteria. Int. J. Res. Agric. Food Sci. 2(1): 9-22.
  • Salim EI, Fukushima S (2003). Chemopreventive potential of volatile oil from black cumin (Nigella sativa L.) seeds against rat colon carcinogenesis. Nutr. Cancer. 45(2): 195-202. http://dx.doi.org/10.1207/S15327914NC4502_09
  • Sah SP, Mathela CS, Chopra K (2012). Valerianawallichii DC (Maaliol Chemotype): Antinociceptive studies on experimental animal models and possible mechanism of action. Pharmacologia. 3: 432-437. http://dx.doi.org/10.5567/pharmacologia.2012.432.437
  • Sandhar HK, Kumar B, Prasher S, Tiwari P, Salhan M, Sharma P (2011). A review of phytochemistry and pharmacology of flavonoids. Int. Pharma. Sci. 1(1): 25-41.
  • Santoyo S, Cavero S, Jaime L, Ibanez E, Senorans F, Reglero G (2006). Supercritical carbon dioxide extraction of compounds with antimicrobial activity from Origanum Vulgare L.: Determination of optimal extraction parameters. J. Food Protect. 69(2): 369-375.
  • Sartoratto A, Ana Lúcia M, Delarmelina MC, Figueira GM, Duarte MCT, Rehde VLG (2004). Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz. J. Microbiol. 35(4): 275-280. http://dx.doi.org/10.1590/S1517-83822004000300001
  • Sarker AK, Chowdhury JU, Bhuiyan HR (2011). Chemical Composition and antimicrobial activity of essential oil collected from Adhatodavasica leaves. Bangladesh J. Sci. Ind. Res. 46(2): 191-194. http://dx.doi.org/10.3329/bjsir.v46i2.8185
  • Schmid-Schönbein GW (2006). Analysis of inflammation. Annu. Rev. Biomed. Eng. 8: 93-151. http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095708
  • Schmolz E, Doebner R, Auste R, Daum R, Welge G, Lamprecht I (1999). Bioenergetic investigations on tea-tree and related essential oils. Thermochimica Acta. 337(1): 71-81. http://dx.doi.org/10.1016/S0040-6031(99)00231-2
  • Schnaubelt K (1999). Medical aromatherapy: Healing with essential oils. Frog Books. Berkeley, California, USA.
  • Schwartz J, Shklar G, Trickler D (1993). Vitamin C enhances the development of carcinomas in the hamster buccal pouch experimental model. Oral Surg. Oral Med. Oral Pathol. 76(6): 718-722.
  • Seifi H, Masoum S, Seifi S, Ebrahimabadi EH (2014). Chemometric resolution approaches in characterisation of volatile constituents in plantagoovata seeds using gas chromatography–mass spectrometry: Methodology and performance assessment. Phytochem. Anal. 25(3): 273-281. http://dx.doi.org/10.1002/pca.2503
  • Sell C (2010). Chemistry of essential oils. In: Handbook of essential oils: Science, technology, and applications; Başer, K.H.C., Buchbauer, G., Eds.; CRC Press, Taylor and Francis Group: London, UK.
  • Setty VK, Santhosh D, Rao ND (2011). Preliminary phytochemical screening and antidiabetic activity of Zingiberofficinale rhizomes. Int. J. of Pharm. Life Sci. 2(12): 1287-1292.
  • Shaaban HA, El-Ghorab AH, Shibamoto T (2012). Bioactivity of essential oils and their volatile aroma components: A review. J. Essential Oil Res. 24(2): 203-212. http://dx.doi.org/10.1080/10412905.2012.659528
  • Sharma N, Trikha P, Athar M, Raisuddin S (2001). Inhibition of Benzo [a] pyrene and cyclophoshamide induced mutagenicity by Cinnamomum cassia. Mutation Res. Fundament. Mol. Mechanisms Mutagenesis. 480: 179-188. http://dx.doi.org/10.1016/S0027-5107(01)00198-1
  • Sharma P, Sarin R (2012). Isolation and identification of stigmasterol in vivo and in vitro from sesamumindicum. Asian J. Biol. Life Sci. 1(2): 90-95.
  • Sharma U, BalaM, SainiR, VermaPK, Kumar N (2012). Polysaccharides enriched immunomodulatory fractions from Tinospora Cordifolia (wild) miersax hook F & Thomus. Indian J. Exp. Biol. 50 (9): 612-617.
  • Shelton RM. (1991). Aloe Vera. Int. J. Dermatol. 30(10): 679-683. http://dx.doi.org/10.1111/j.1365-4362.1991.tb02607.x
  • Shen J, Niijima A, Tanida M, Horii Y, Maeda K, Nagai K (2005). Olfactory stimulation with scent of grapefruit oil affects autonomic nerves, lipolysis and appetite in rats. Neurosci. Letters. 380(3): 289-294. http://dx.doi.org/10.1016/j.neulet.2005.01.058
  • Sikkema J, De Bont J, Poolman B (1994). Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269(11): 8022-8028.
  • Silva J, Abebe W, Sousa S, Duarte V, Machado M, Matos F (2003). Analgesic and anti-inflammatory effects of essential oils of eucalyptus. J. Ethnopharmacol. 89(2): 277-283. http://dx.doi.org/10.1016/j.jep.2003.09.007
  • Sokmen A, Gulluce M, Akpulat HA, Daferera D, Tepe B, Polissiou M, Sokmen M, Sahin F (2004). The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic thymus spathulifolius. Food Control. 15(8): 627-634. http://dx.doi.org/10.1016/j.foodcont.2003.10.005
  • Sousa AC, Gattass CR, Alviano DS, Alviano CS, Blank AF, Alves PB (2004). Melissa Officinalis L. Essential oil: Antitumoral and antioxidant activities. J. Pharm. Pharmacol. 56(5): 677-681. http://dx.doi.org/10.1211/0022357023321
  • Sousa DPD, Júnior GA, Andrade LN, Calasans FR, Nunes XP, Barbosa-Filho JM, Batista JS (2008). Structure and spasmolytic activity relationships of monoterpene analogues found in many aromatic plants. Zeitschrift für Naturforschung C. 63(11-12): 808-812. http://dx.doi.org/10.1515/znc-2008-11-1205
  • Stefanello MÉA, Cervi AC, Ito IY, Salvador MJ, Wisniewski Jr A, Simionatto EL (2008). Chemical composition and antimicrobial activity of essential oils of eugenia Chlorophylla (Myrtaceae). J. Essential Oil Res. 20(1): 75-78. http://dx.doi.org/10.1080/10412905.2008.9699427
  • Sugawara Y, Hara C, Tamura K, Fujii T, Nakamura KI, Masujima T, Aoki T (1998). Sedative effect on humans of inhalation of essential oil of linalool: Sensory evaluation and physiological measurements using optically active linalools. Analytica Chimica Acta. 365(1): 293-299. http://dx.doi.org/10.1016/S0003-2670(97)00639-9
  • Suhr KI, Nielsen PV (2003). Antifungal activity of essential oils evaluated by two different application techniques against rye bread spoilage fungi. J. Appl. Microbiol. 94(4): 665-674. http://dx.doi.org/10.1046/j.1365-2672.2003.01896.x
  • Suresh C, Senthilkumar S, Vijayakumari K (2012). Phytochemical and GC-MS analysis of euphorbia hirta Linn. Leaf. Int. J. Inst. Pharm. Life Sci. 2(3): 135-139.
  • Svoboda K, Hampson J, Hunter T (1999). Secretory tissues: Storage and chemical variation of essential oils in secretory tissues of higher plants and their bioactivity. Int. J. Aromather. 9(3): 124-131. http://dx.doi.org/10.1016/S0962-4562(98)80007-6
  • Taha KF, Hetta MH, Ali ME, Yassin NZ, Guindi ODE (2011). The pericarp of Pisumsativum L. (Fabaceae) as a biologically active waste product. Planta. Med. 77: 22. http://dx.doi.org/10.1055/s-0031-1282629
  • Tahrouch S, Rapior S, Belahsen Y, BessiereJ, AndaryC (1998). Voltile constituents of Peganumharmala (Zygopyllaceae). Acta Bot. Gallica. 145(2): 121-124.
  • Tanaka A, Shibamoto T (2008). Antioxidant and antiinflammatory activities of licorice root (Glycyrrhiza Uralensis): aroma extract. Paper presented at the ACS symposium series. http://dx.doi.org/10.1021/bk-2008-0993.ch020
  • Tan QLP, Ai MV, Minh NTT (2011). Volatile constituents of essential oil from citrus sinensis grown in TienGiang Province, Vietnam. Asian J. Food Ag-Ind. 4(03): 183-186.
  • Tanveer H, Ali S, Asi MR (2012). Appraisal of an important flavonoid, quercetin in callus cultures of Citrulluscolocynthis. Int. J. Agric. Biol. 24(1): 528–532.
  • Tepe B, Donmez E, Unlu M, Candan F, Daferera D, Vardar-Unlu G, Polissiou M, Sokmen A (2004). Antimicrobial and antioxidative activities of the essential oils and methanol extracts of salvia cryptantha (Montbret Et Aucher Ex Benth.) and Salvia Multicaulis (Vahl). Food Chem. 84(4): 519-525. http://dx.doi.org/10.1016/S0308-8146(03)00267-X
  • Temelli F, Saldan ˜a M, Moquin P, Sun M (2007). Supercritical fluid extraction of specialty oils. In: Martı ´nez J (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton. Pp. 52–80.
  • Thangavelu D, Thangavelu T (2012). Pharmacognostic and phytochemical Studies on Gymnemasylvestre R. Br. Hairy Variant. Int. J. Pharm. Phytopharmacol. Res. 2(3): 143-147.
  • Tomaino A, Cimino F, Zimbalatti V, Venuti V, Sulfaro V, De Pasquale A, Saija A (2005). Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chem. 89(4): 549-554. http://dx.doi.org/10.1016/j.foodchem.2004.03.011
  • Tongnuanchan P, Benjakul S (2014). Essential oils: Extraction, bioactivities, and their uses for food preservation. J. Food Sci. 79(7): 1231-1249. http://dx.doi.org/10.1111/1750-3841.12492
  • Trichopoulou A, Lagiou P, Kuper H, Trichopoulos D (2000). Cancer and mediterranean dietary traditions. Cancer Epidemiol. Biomark. Prevent. 9(9): 869-873.
  • Tripathi P, Dubey N, Shukla A (2008). Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by botrytis cinerea. World J. Microbiol. Biotechnol. 24(1): 39-46. http://dx.doi.org/10.1007/s11274-007-9435-2
  • Tsai SY, Huang SJ, Chyau CC, Tsai CH, Weng CC, Mau JL (2011). Composition and antioxidant properties of essential oils from Curcuma rhizome. Asian J. Arts Sci. 2(1): 57-66.
  • Turina ADV, Nolan M, Zygadlo J, Perillo M (2006). Natural terpenes: self-assembly and membrane partitioning. Biophysic. Chem. 122(2): 101-113. http://dx.doi.org/10.1038/nature05214
  • Tzakou O, Loukis A, Said A (2007). Essential oil from the flowers and leaves of Cassia fistula L. J. Essential Oil Res. 19(4): 360-361. http://dx.doi.org/10.1080/10412905.2007.9699305
  • Uchida H, Ohyama K, Suzuki M, Yamashita H, Muranaka T, Ohyama K (2010). Triterpenoid levels are reduced during Euphorbia tirucalli L. callus formation. Plant Biotechnol. 27(1): 105-109. http://dx.doi.org/10.5511/plantbiotechnology.27.105
  • Uedo N, Tatsuta M, Iishi H, Baba M, Sakai N, Yano H, Otani T (1999). Inhibition by D-Limonene of gastric carcinogenesis induced by N-Methyl-N-Nitro-N-nitrosoguanidine in wistar rats. Cancer Letters. 137(2): 131-136. http://dx.doi.org/10.1016/S0304-3835(98)00340-1
  • Ultee A, Bennik M, Moezelaar R (2002). The Phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen bacillus cereus. Appl. Environ. Microbiol. 68(4): 1561-1568. http://dx.doi.org/10.1128/AEM.68.4.1561-1568.2002
  • Ultee A, Kets EP, Alberda M, Hoekstra FA, Smid EJ (2000). Adaptation of the food-borne pathogen bacillus cereus to carvacrol. Arch. Microbiol. 174(4): 233-238. http://dx.doi.org/10.1007/s002030000199
  • Usman LA, Hamid AA, Muhammad NO, Olawore NO, Edewor TI, Saliu BK (2010). Chemical constituents and anti-inflammatory activity of leaf essential oil of nigerian grown Chenopodium album L. EXCLI J. 9: 181-186
  • Vázquez AM, Demmel GI, Criado SG, Aimar ML, Cantero JJ, Rossi LI, Velasco MI (2011). Phytochemistry of Tagetesminuta L.(Asteraceae) from Córdoba, Argentina: Comparative study between essential oil and HS-SPME analyses. Bol. Latinoamer Caribe Plant Med. Aromat. 10(4): 351-362.
  • Vijayalakshmi K, Nadhiya K, Haripriya D, Ranjani R (2014). In silico docking analysis of secondary metabolites of Bauhinia variegata and Garciniacambogia with retinol binding protein as target for obesity. Int. J. Pharm. Phytochem. Res. 6(3): 636-642.
  • Vogler B, Ernst E (1999). Aloe vera: A systematic review of its clinical effectiveness. Br. J. Gen. Pract. 49(447): 823-828.
  • Wahab SMA, El-Fiki NM, Amin WMA, Mostafa SF (2007). Study of fixed oil of certain natural plants used as diuretic and volatile constituents in radish seeds and roots. Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street.
  • Wafaa A, Howaida I, Amer H, El-Safty MM (2007). Chemical composition and ‘in vitro’ antiviral activity of Azadirachtaindicaa. juss (Neem) leaves and fruits against newcastle disease virus and infectious bursal disease virus. Aust. J. Basic Appl. Sci. 1(4): 801-812.
  • Wang Y, Kays SJ (2000). Contribution of volatile compounds to the characteristic aroma of baked ‘jewel’ sweetpotatoes. J. Am. Soc. Hort. Sci. 125(5): 638–643.
  • Weber WJ, Morris JC (1963). Kinetics of adsorption on carbon from solution. J. Sanitary Engineer. Divis. 89(2): 31-60.
  • Wei A, Shibamoto T (2010). Antioxidant / Lipoxygenase inhibitory activities and chemical compositions of selected essential oils. J. Agric. Food Chem. 58(12): 7218-7225. http://dx.doi.org/10.1021/jf101077s
  • Yi-xia G, Xiang-jun Z (2009). Chemical constituents of essential oil from leaves of Capsella bursa-pastoris L. Resour. Dev. Mark. 25:1070–1071.
  • Yamaguchi K, Shinohara C, Kojima S, Sodeoka M, Tsuji T (1999). (2 E, 6 R)-8-Hydroxy-2, 6-Dimethyl-2-Octenoic acid, a novel anti-osteoporotic monoterpene, isolated from cistanche salsa. Biosci. Biotechnol. Biochem. 63(4): 731-735. http://dx.doi.org/10.1271/bbb.63.731
  • Yang Z, Wu N, Zu Y, Fu Y (2011). Comparative anti-infectious bronchitis virus (IBV) activity of (-)-Pinene: Effect on nucleocapsid (N) protein. Molecules. 16(2): 1044-1054. http://dx.doi.org/10.3390/molecules16021044
  • Yanishlieva-Maslarova N, Heinonen I (2001). Sources of natural antioxidants: Vegetables, fruits, herbs, spices and teas. antioxidants in food–eds. Pokorný J. Yanishlieva N., Gordon M., CRC Press, Boca Raton FL. Pp. 210-263. http://dx.doi.org/10.1201/9781439823057.ch10
  • Zab R, Kumar AP, Bhaskar A (2012). Phytochemical evaluation by GC-MS and in vitro antioxidant activity of Punicagranatum fruit rind extract. J. Chem. Pharm. Res. 4(6): 2869-2873.
  • Zellner BDA, Dugo P, Dugo G, Mondello L (2010). Analysis of essential oils. In: Handbook of essential oils: Science, technology and applications; Eds.; CRC Press, Taylor and Francis Group: London, UK.
  • Zhao H, Huang L, Qin L, Huang B (2011). Antioxidative and anti-inflammatory properties of Chushizi oil from Fructus Broussonetiae. J. Med. Plant Res. 5(28): 6407-6412.
  • Zeng WC, Zhang Z, Gao H, Jia LR, He Q (2012).Chemical composition, antioxidant, and antimicrobial activities of essential oil from pine needle (Cedrusdeodara). J. Food Sci. 77(7): 824-829. http://dx.doi.org/10.1111/j.1750-3841.2012.02767.x
  • Zheng S, Yang H, Zhang S, Wang X, Yu L, Lu J, Li J (1997). Initial study on naturally occurring products from traditional chinese herbs and vegetables for chemoprevention. J. Cell. Biochem. 67(S27): 106-112. http://dx.doi.org/10.1002/(SICI)1097-4644(1997)27+<106::AID-JCB17>3.0.CO;2-L
  •  

     

     

     

    Table 1: Essential Oil Profile of Ninety (90) Medicinal Plants

    S No

    Plant Name

    Compound 1

    (%)

    Compound 2

    (%)

    Compound 3 (%)

    Compound 4

    (%)

    Compound 5

    (%)

    References

    1

    Terminalia arjuna

    2-Fluro Propane (3.32)

    9-Octadecenoic acid (z),hexyl ester (4.23)

    Ethyl Benzene (5.63)

    P – Xylene (6.60)

    Norpseudoephedrine (8.42)

    (Ramesh et al., 2015)

    2

    Bauhinia variegate

    1,2,3 Propanetriol 2-Propanone Hydroperoxide Triacetin Glycerol 1,2 (21.4)

    Diacetate

    Bicycloheptane 1,19

    (2.24)

    Eicosadiene 3,7,11,15-Tetramethyl-(27.42)

    Ethyl ester

    (3.24)

    Phthalic acid (4.64)

    (Vijayalakshmi et al., 2014)

    3

    Cuminum cyminum

    α-pinene (29.2)

    Limonene (21.7)

    1,8-cineole (18.1)

    Linalool (10.5)

    α-terpineole (3.17)

    (Mohammad et al., 2012)

    4

    Viola odorata

    1-Phenyl butanone (22.43)

    Linalool

    (7.33)

    Benzyl alcohol (5.65)

    α-Cadinol

    (4.91)

    Globulol

    (4.32)

    (Hammami et al., 2011)

    5

    Capsella bursa pestoris

    l-Guanidino succinimide (21.28)

    Phytol

    (18)

    2-Penta decanone, 6, 10, 14-tri methyl- (9.6)

    Oleic Acid

    (4.71)

    7-Hexa decanoic acid (22.97)

    (Yi-xia et al., 2009)

    6

    Allium sativum

    Trisulfide, di-2-propenyl (46.52)

    Disulfide, di-2-propenyl (14.30)

    Trisulfide, methyl 2-propenyl (10.88)

    Diallyl disulfide (7.15)

    Octane, 4brom- (4.16)

    (Douiri et al., 2013)

    7

    Mintha spicata

    Carvone (59.40)

    Limonène (6.129)

    Germacrène-D (4.665)

    1,8 cinéole (3.800)

    β-caryo phyllène (2.969)

    (Boukhebti et al., 2011)

    8

    Trigonella foenum

    Palmidrol(28.72)

    Octanamide, n-(2-hydroxy ethyl) (24.47)

    Dioctyl phthalate (15.03)

    D-limonene (14.58)

    1-carvone (9.85)

    (Pande et al., 2011)

    9

    Euphorbia tirucalli

    Campesterol (1.06)

    Eupho (25.6)

    b-Amyrin (6.15)

    Glutinol (17.1)

    b-sitosteroln (14.4)

    (Uchida et al., 2010)

    10

    Cyperus rotundus

    5-oxo-isolongifolene (16.268)

    α-gurjunene (10.219)

    (z)-Valerenyl acetate (8.888)

    α-Salinene (4.480)

    Valerenic acid (3.669)

    (Bisht et al., 2011)

    11

    Saussureae lappa

    Dehydrocostus lactone (46.75)

    Costunolide (9.26)

    8-cedren-13-ol (5.06)

    α-curcumene (4.33)

    (Liu et al., 2011)

    12

    Solanum nigrum

    Germacrene D (14.8)

    Pentadecanal (11.4)

    β-Elemene (10.1)

    α-Bulnesene (7.9)

    δ-Cadinene (6.0)

    (Akintayo et al., 2013)

    13

    Zizyphus jujoba

    Eugenol (48.3)

    Isoeugenol (11.83)

    Caryophyllene (9.16)

    Eucalyptol (3.27)

    Caryophyllene oxide (3.14)

    (Al-Reza et al., 2010)

    14

    Eugenia aromatica

    Eugenol (71.56)

    Eugenyl acetate (8.99)

    Caryophyllene oxide (1.67)

    Nootkatin

    (1.05)

    Phenol-4- (2, 3-dihydro-7- methoxy- 3- methyl5- (1- propenyl)-2- benzofurane (0.98)

    (Nassar et al., 2007)

    15

    Glycyrrhiza glabra

    Ethylenimine (1.57)

    Methacrylo nitrile

    (9.69)

    2-Propene nitrile, 2-methyl (7.86)

    Linalool

    (2.25)

    Aspartic acid (1.44)

    (Chouitah et al., 2011)

    16

    Piper longum

    β-caryophyllene (33.44)

    3-carene (7.58)

    Eugenol (7.39)

    d-limonene (6.70)

    Zingiberene (6.68)

    (Liu et al., 2007)

    17

    Crocus sativus

    Catechol (5.19)

    Vanillin (8.24)

    Salicylic acid (7.98)

    Cinnamic acid (8.56)

    Gentisic acid (2.94)

    (Esmaeili et al., 2011)

    18

    Piper nigrum

    β-caryophyllene (23.49)

    3-carene

    (22.20)

    d-limonene (18.68)

    β-pinene

    (8.92)

    α-pinene

    (4.03 )

    (Liu et al., 2007)

    19

    Tagetes minuta

    Trans-tagetenone

    (32.3)

    Cis-tagetenone (20.9)

    Dihydrota getone

    (9.7)

    Trans-pino carvyl acetate (7.1)

    Carvone

    (4.3)

    (Vázquez et al., 2011)

    20

    Thymus linearis

    Thymol

    (36.5)

    Carvacrol

    (9.50)

    Thymyl acetate (7.30)

    β-caryophyllene (5.76)

    (Hussain et al., 2013)

    21

    Carum carvi

    Carvone

    (23.3)

    Limonene

    (18.2)

    Germacrene D (16.2)

    Trans-dihydro-

    carvone (14.0)

    Carvacrol

    (6.7)

    (Iacobellis et al., 2005)

    22

    Mentha piperata

    Linalool

    (51.0)

    Carvone

    (23.42)

    3-octanol (10.1)

    Terpin-4-o (8.00)

    Trans-caryophylline (2.31)

    (Sartoratto et al., 2004)

    23

    Nigella sativa

    Trans-Anethole (27.1)

    Thymoquinone (11.8)

    p-Cymene

    (9.0)

    Longifolene (5.7)

    Limonene (4.3)

    (Gerige et al., 2009)

    24

    Acacia nilotica

    Menthol (34.9)

    Limonene (15.3)

    -

    -

    -

    (Ogunbinu et al., 2010)

    25

    Adhatoda vasica

    Borneol

    (58.60 )

    Bicyclo[jundec-4-ene, 4, 11-trimethyl- 8 -Methylene (14.56)

    2, tert 1-butyl-1,4-dimethoxy benzene

    (6.50)

    1,1,4a trimethyl-5,6-dimethylenedecahydro

    naphthalene (5.28)

    Ethano naphthalene

    (2.82)

    (Sarker et al., 2011)

    26

    Psidiumg uajava

    3, 6-Dioxa-2, 4, 5, 7-tetraoctane, 2, 2, 4, 4, 5, 5, 7, 7-

    Octamethyl (11.67)

    Cyclononane (10.66)

    Pyridazin-3(2H)-one, 4-amino-5-chloro-2-phenyl (9.35)

    Pyridazin-3 (2H)-one, 4- diacetylamino-5- chloro-2-

    Phenyl (7.35)

    N-Methylrhodanine

    (5.01)

    (Aponjolosun et al., 2011)

    27

    Cassia fistula

    (E)-nerolidol (38.0)

    2-hexadecanone (17.0)

    -

    -

    -

    (Tzakou et al., 2007)

    28

    Cannabis sativa

    Beta-myrcene (myrcene) (67.11%)

    Limonene (cinene, nesol, cajeputene) (16.38)

    Linalool (beta-linalool, linalyl alcohol) (2.80%)

    Beta-caryophyllene

    (1.33)

    a-pinene (pinene, 2-1

    (1.11)

    (Ross et al., 1996)

    29

    Allium cepa

    Dimethyl-trisulfide

    (16.64)

    Methyl-propyl-trisulfide

    (14.21)

    Methyl-

    (1-pro penyl)-disulfide (13.14)

    Diallyl-disulfide (28.05)

    Diallyl-trisulfide (33.55)

    (Kocić‐Tanackov et al., 2012)

    30

    Phoenix dactylifera

    Oleic

    (49.8)

    Lauric

    (13.1)

    Myristic

    (11.5)

    Palmitic

    (11.3)

    Linoleic

    (8.9)

    (Al‐Shahib et al., 2003)

    31

    chenopodium album

    p- cymene (40.9 )

    Ascaridole

    (15.5 )

    Pinane-2-ol (9.9 )

    α-pinene

    (7.0 )

    β-pinene

    (6.2 )

    (Negi et al., 2013)

    32

    Abutilon indicum

    -

    9,12-Octa decadienoyl chloride, (Z,Z)- (11.7227)

    Linolenin, 1-mono-

    (13.6683)

    Vitamin E

    (11.8398)

    2,2,4- Trimethyl- 3- (3, 8 ,12 ,16 tetramethyl- hepta deca- 3, 7, 11, 15-tetra enyl) -cyclo hexanol (7.9571)

    (Ramasubramaniaraja et al., 2011)

    33

    Zanthoxylum armatum

    Bornyl

    acetate

    (16.61-22.66)

    Cymene

    (8.25-12.50)

    á-copaene

    (7.54-7.59)

    á-copaene

    (7.54-7.59)

    Camphene (4.32-4.66)

    (Usman et al., 2010)

    34

    Citrus limon

    Limonene (65.65 )

    b-pinene (11.00)

    g-terpinene (9.01)

    a-pinene (1.88)

    Sabinene (1.05)

    (de Rodríguez et al., 1998)

    35

    Sida cordifolia

    Ephedrine

    (68.27)

    Vasicinol

    (20.99)

    Hypaphorine (3.97)

    Vasicinone (3.97)

    (Joseph et al., 2011)

    36

    Corriandrum sativum

    2-decenoic acid

    (30.8)

    E-11-tetra decenoic acid (13.4)

    Capric acid (12.7)

    Undecyl alcohol

    (6.4)

    Tridecanoic acid (5.5)

    (Bhuiyan et al., 2009)

    37

    Ricinus communis

    alpa-thujone (31.71)

    1,8-cineole (30.98)

    alpa-pinene (16.88)

    Camphor

    (12.98)

    Camphene (7.48)

    (Kadri et al., 2011)

    38

    Lepidium sativum

    Behinic acid (36.617)

    Arachidonic (25.611 )

    Linoleic

    (14.651)

    Palmitic

    (11.249)

    Lauric

    (7.315)

    (Ottai et al., 2012)

    39

    Sesamum indicum

    Flavonol

    (13.16)

    Anthraquinone (9.86)

    Hexadecanolicacid, methyl ester (6.27)

    Ketopinic acid (8.9)

    Stigmasterol

    (4.82)

    (Sharma et al., 2012)

    40

    Curcuma longa

    ar-turmerone (49.04)

    Humulene oxide (16.59)

    Beta-selinene (10.18)

    Caryphyllene oxide (5.60)

    Alpa-Humulene

    (3.41)

    (Tsai et al., 2011)

    41

    Grewia asiatica

    1,2-epoxy- 184 (5.618)

    1-(2,cyano-2-ethyl butyl)3-isopropyl urea

    225 (5.935)

    Hexadecanoic acid 270 (6.260)

    -

    -

    (Rehman et al., 2013)

    42

    Valeriana wallichii

    Maaliol (36.8)

    Beta-gurjunene (21.3)

    Acoradiene (9.9)

    Guaiol

    (8.6)

    Alpha-santalene (5.5)

    (Sah et al., 2012)

    43

    Tribulus terrestris

    α-Amyrin

    (65.73%)

    1,2-Benzene dicarboxylic acid, diso octylester

    (9.27)

    n- hexadecane oicacid

    (8.83)

    Octadecanoic acid

    (2.95)

    Phytol

    (0.99)

    (Abirami et al.., 2011)

    44

    Origanum vulgare

    Carvacrol

    (18.06)

    Thymol

    (7.36)

    Gamma-terpinene

    (5.25)

    p-cymene

    (5.02)

    Limonene

    (4.68)

    (Derwich et al., 2010)

    45

    Datura stromium

    Oleic acid Methyl ester

    (22.760)

    Elaidic acid methyl ester

    (21.866)

    Alpha- Linolenicacid methyl ester (10.321)

    Palmitoleic acid methyl ester (8.559)

    Gondoic acid methyl ester

    (5.767)

    (Koria et al., 2012)

    46

    Swertia chirata

    Undecanoic acid (28.63)

    2-buten-2-one (20.42)

    Camphor

    (18.40)

    2-Hepta decanone (14.72)

    Cedrol

    (13.07)

    (Kyong-Su et al., 2006)

    47

    Punica granatum

    Nitroisobutyl glycerol

    (19.02)

    Ethyl, alpha-d-glucopyranoside (12.65)

    3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one (11.83)

    Maltol

    (9.46)

    4-deuterio-transs-3, 4-dihydroxy-cyclopentene

    (9.41)

    (Zab et al., 2012)

    48

    Cedrus deodara

    α-terpineol

    (30.2)

    Linalool

    (24.47)

    Limonene (17.01)

    Anethole (14.57)

    Caryophyllene (3.14)

    (Zeng et al., 2012)

    49

    Hippophaë rhamnoides

    (mg/100 g)

    Clerosterol

    (14.3)

    Lanosterol (tr) + sitosterol (787.4)

    b-Amyrin + sitostanol (122.5)

    A stigmastadienol + a-amyrin (81.4)

    Erythrodiol + citrostadienol (67.5)

    (Li et al., 2007)

    50

    Mentha longifolia

    α-Terpineol

    (1185.56 )

    Sabinene

    (968.27 )

    β-pinene

    (970.24)

    β-Myrcene

    (989.05 )

    3- octanol

    (994.09 )

    (Saeidi et al., 2012)

    51

    Juglans regia

    α-Thujene

    (0.50)

    p-Cymene (10.94)

    1,8-Cineol

    (0.67)

    Linalool

    (1.07)

    Carvacrol

    (1.59)

    (Abbasi et al., 2010)

    52

    Plantago ovata

    Hexanoic acid (0.11)

    2-Amylfuran (0.11)

    n-Decane (0.08)

    Nonanal

    (0.09)

    Cycloheptanemethanol (0.12)

    (Seifi et al., 2014)

    53

    Berberis lycium

    Oleic acid (39.67±0.61)

    Palmitoleic

    -

    -

    Oleic acid (39.67±0.61)

    (Asif et al., 2007)

    54

    Withania somnifera

    Undecanoic

    Acid

    (1.30)

    Dodecanoic

    Acid

    (0.47)

    Octanoic Acid (0.84)

    IH-Indole

    (23.64)

    Cyclopentane, 1-methyl-3- (2-methyl propyl) -(11.07)

    (Kumar et al., 2011)

    55

    Dalbergia sisso

    2-Propanamine

    (3.03)

    Pentanal

    (2.29)

    Guanosine

    (2.02)

    Acetaldehyde

    (1.47)

    Cyclobutanol

    (0.47)

    (Aly et al., 2013)

    56

    Pyrus pyrifolia

    1-Hexanol

    (1.5)

    Hexanal

    (35.8)

    Nonanal

    (0.3)

    Ethyl hexanoate

    (0.6)

    2-Octanone (0.3)

    (Li et al., 1991)

    57

    Vernonia amygdalina

    Caryophyllene pxide (2.31)

    Guaiol (1.75)

    n-Hexadeca dienoic acid (42.88)

    Squalene (11.31)

    Octadecanoic acid (4.41)

    (Abirami et al.., 2011)

    58

    Trachyspermum ammi

    Pinene (0.87)

    Camphene (0.10)

    Myrcene

    (0.48)

    Terpine-4-ol (0.32)

    Thymol (41.77)

    (Park et al., 2007)

    59

    Carica papaya

    Oleic acid

    (45.97)

    Stearic acid (8.52)

    Caprylic acid (0.06)

    Pelargic acid

    (0.11)

    Myristic acid

    (0.51)

    (Pérez- Gutiérrez et al., 2011)

    60

    Citrullus colocynthis

    Toluene

    (1.692)

    Nonane

    (1.184)

    Ethylbenzene (0.237)

    Undecane

    (15.348)

    Dodecane

    (0.120)

    (Tanveer et al., 2012)

    61

    Azadiracht a indica A. Juss

    Hexanal

    (1.15)

    a-Pinene

    (2.04)

    Limonene

    (3.34)

    Myrcene

    (0.59)

    n-Undecane

    (6.31)

    (Wafaa et al., 2007)

    62

    Raphanus sativus

    Palmitic acid (22.92)

    Lignoseric and myristic acids (8.55)

    Oleic acid

    (13.06)

    -

    -

    (Wahab et al., 2007)

    63

    Tamarindus indica

    1-Octanoate

    (0.3)

    Nonanoic acid (1.92`)

    n-Tridecanoic (1.2)

    n-Eicosenoate

    (0.91)

    n-Docosanoate (1.00)

    (Khanzada et al., 2008)

    64

    Pisum sativum L

    Palmitic acid

    (30)

    -

    -

    -

    -

    (Taha  et al., 2011)

    65

    Foeniculum vulgare

    α-Pinene

    (1.7)

    Limonene

    (2.7)

    p-Cymene

    (0.1)

    Fenchone

    (18.8)

    Methyl chavicol (3.3)

    (Radulović et al., 2010)

    66

    Morus alba

    Formic acid,1-methylethyl ester (25.46)

    n-Pentanal

    (2.76)

    Propene 3,3,3-D3 (9.81)

    Benzyl benzoate (23.94)

    Benzeneethanamine, 2-fluoro- beta (6.41)

    (Salem et al., 2013)

    67

    Moringa oleifera

    Hexadecanoic acid (9.90)

    Docosanoic acid (7.24)

    Eicosanoicacid(5.81)

    Pentadeconic acid (55.60)

    Tetracosanoic acid (3.78)

    (Gaikwad et al., 2011)

    68

    Ipomoea batatas

    Pyridine

    (10)

    Xylene

    (1)

    2-Furan carboxaldehyde (2)

    2,3-Pentanedione (10)

    Limonene

    (10)

    (Wang et al., 2000)

    69

    Taraxacum officinale

    Sesquiterpenes (55.6)

    Momoterpene (33.3)

    -

    -

    -

    (Otsuka et al., 2010)

    70

    Ocimum sanctum

    Eugenol

    (43.88)

    Caryophyllene (26.53)

    Cyclopentane, cyclopropylidene (1.02)

    Benzene methanamine (2.04)

    Octadecane, 1,1-dimethoxy

    (2.04)

    (Devendran et al., 2011)

    71

    Ocimum basillicum

    Broneol

    (0.20)

    Napthalene

    (0.53)

    α-Cubene

    (3.85)

    Eugenol

    (61.76)

    Vanillin

    (1.27)

    (Dev et al., 2011)

    72

    Acorus calamus

    B Asarone

    (71.51)

    9,12-Octadeca dienoicacid (16.00)

    n-Hexa decanoic acid (5.23)

    Shyobunone

    (2.11)

    A Asarone

    (1.83)

    (Kumar et al., 2010)

    73

    Mangifera indica

    Terpinolene (62.4)

    3-Carene (9.5)

    Limonene (6.8)

    Myrcene (5.1)

    p-Cymen-8-ol (4.3)

    (Andrade et al., 2000)

    74

    Gymnema sylvestre

    1,2,3,4,5-Cyclo phentanepentol (47.83)

    Oleic Acid

    (13.20)

    n-Hexa decanoic acid (12.81)

    Heptanediamide, N,N’-di-benzoyloxy (3.77)

    Benzene, (ethenyloxy) (3.11)

    (Thangavelu et al., 2012)

    75

    Eclipta prostrate

    Heptadecane (14.78)

    6,10,14-trimethyl-2-pentadecanone (12.80)

    n-hexa decanoic acid (8.98)

    Pentadecane (8.68)

    Octadec-9-enoic acid (3.35)

    (Tahrouch et al., 1998)

    76

    Peganum harmala

    3,Octanone (19.2)

    Propylic acid (11.5)

    N. Formyl aniline (9.1)

    B. Ionone (8.1)

    6-methyl-2-propylpyrimidone (5.1)

    (Huang et al., 2012)

    77

    Vites negundo

    Sabinene (19.04)

    Caryophyllene (18.27)

    Eremophilene (12.76)

    Caryophyllene oxide (11.33)

    β-Terpinyl acetate (8.99)

    (Kaur et al., 2010)

    78

    Zingiber officinale

    α Gingiberene (20.57)

    β-Seiquphell andrene (12.71)

    α Curcumen (11.27)

    Cyclo Hexane (10.61)

    α Fernesene (9.77)

    (Setty et al., 2011)

    79

    Woodfordia fruiticosa

    β-Caryophyllene (36.37)

    α-pinene (23.53)

    γ-curcumene (7.76)

    Caryophylleneoxide (6.95)

    2,6-Dimethyl-1,3,5,7- Octa tetraene (6.79)

    (Kaur et al., 2010)

    80

    Chenopodium ambrosoides

    α-Terpinene (51.3)

    p-Cymene (23.4)

    p-Mentha-1,8-diene (15.3)

    Isoascaridole (5.1)

    Limonene (0.9)

    (Chekem et al., 2010)

    81

    Cynodon dactylon

    Glycerin (38.49)

    9,12-Octadecadienoyl chloride, (Z,Z)- (15.61)

    Hexadecanoicacid, ethyl ester (9.50)

    Ethyl à-d-glucopyranoside (8.42)

    Linoleic acid ethyl ester (5.32)

    (Jananie et al., 2011)

    82

    Euphorbia hirta

    1,6,10,14-Hexadecatetraen-3ol, 3, 7, 11, 15-tetramethyl-, (E,E) (58.88)

    Phytol

    (13.61)

    Diazo progesterone (8.88)

    3,5-Dimethyl-5-hexen-3-ol (5.03)

    Vitamin-E (4.73)

    (Suresh et al., 2012)

    83

    Broussonetia papyrifera

    8,11-Octa decadienic acid (79.17)

    Palmitic acid (10.77)

    Oleic acid (5.51)

    Stearic acid (3.04)

    8-Octadecenoic acid (1.00)

    (Zhao et al., 2011)

    84

    Urtica dioica

    2,6,10-trimethyl,14-ethylene-14-pentadecne (19.96)

    2,6,10,15-tetramethylheptadecane (12.82)

    Heptadecyl ester (9.45)

    Hexyl octyl ester (6.31)

    2,7,10-trimethyldodecane (5.60)

    (Dar et al., 2012)

    85

    Mucuna prurians

    n-Hexadecanoic acid (48.21)

    Squalene (7.87)

    Oleic acid (7.62)

    9,12-Octadecadienoic acid (Z,Z)-(6.21)

    Hexanedioic acid, bis (2-ethylhexyl) ester (4.05)

    86

    Tinospora cordifolia

    Fructose (36.49)

    Arabinose (18.34)

    Glucose (13.22)

    Myo- inositol (5.4)

    Mannose (4.71)

    (Sharma et al., 2012)

    87

    Stevia rebaudiana

    Nerolidol (17.1)

    Benzyl alcohol (13.8)

    δ-cadinene (8.9)

    Caryophyllene (6.9)

    Caryophyllene oxide (6.5)

    (Moussa et al., 2005)

    88

    Ziziphus mauritiana

    Hexadecanoic acid (16.3)

    Octanoic acid (6.3)

    D-ribofuranose (6.3)

    Hexanoic acid (6.2)

    Heptanoic acid (4.6)

    (Memon et al., 2012)

    89

    Citrus sinensis

    Limonene (96.46)

    Beta – Myrcene (2.13)

    Alpha – Pinene (0.51)

    Decanal (0.12)

    Sabinene (0.09)

    (Tan et al., 2011)

    90

    Mimosa pudica

    1,3,5-Cycloheptatriene (1.2805)

    4-Pentenal, 2-methyl

    (0.4907)

    p-Xylene

    (2.2758)

    2-Cyclopentene-1,4-dione (0.2023)

    Heptanal (1.4223)

    (Ramesh et al., 2014)

    Advances in Animal and Veterinary Sciences

    November

    Vol. 12, Iss. 11, pp. 2062-2300

    Featuring

    Click here for more

    Subscribe Today

    Receive free updates on new articles, opportunities and benefits


    Subscribe Unsubscribe