Comparative In-silio Analysis of HIV-1 Pol Gene in Some West African Countries in Relation to its Antiviral Drugs Susceptibility
Comparative In-silio Analysis of HIV-1 Pol Gene in Some West African Countries in Relation to its Antiviral Drugs Susceptibility
Olotu Titilayo Mabel*, Adeosun Idowu Jesulayomi, Kaka Mary Oluwatosin and Oladipo Elijah Kolawole
ABSTRACT
The evolution of human immunodeficiency virus type 1 (HIV-1) has been shown to be relevant to HIV-1 pathogenesis and disease. HIV-1 genome has nine genes; gag, pol, and env genes are common in all replication-competent retroviruses, and the pol gene is very unique encoding the enzymes for replication. Our objective is to describe the relatedness of these HIV-1 pol genes with each other and its antiviral drug susceptibility which will provide more information on its sensitivity and resistivity to each antiviral drug. Seventeen partial genome sequences of HIV-1 Pol gene from some West African countries were retrieved from NCBI database. Evolutionary relationship was determined by Multiple sequence alignment using Clusta W and the sequences were further analyzed using MEGA 6 for phylogenetic tree. The sensitivity to antiviral drugs was analyzed using the Stanford University HIV Drug Resistance Database. Our results revealed that Kenyan strain (SN-042062), Ugandan strain (DR138-13), Sudanese strain (G-01035) and Nigerian strain (NGA-INF-2016-618) have similar branch length. The susceptibility percentage for each antiviral drug ranged from 82.35% (Tenofovir) to 64.70% (Rilpivirine) while and resistance percentage ranged from 35.29% (Rilpivirine) to 23.52% (Nevirapine). In conclusions, HIV isolates from Nigeria and Sudan have the highest and closest homology. Likewise, it has shown that Tenofovir is the most effective antiviral drug which might be because its nucleoside reverse transcriptase inhibitors.
To share on other social networks, click on any share button. What are these?