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Poratrioza sinica (Hemiptera: Psyllidae) is a highly destructive pest that infests of wolfberry. To screen 
biodegradable and safe insecticides, 12 representative monoterpenoids in essential oils were evaluated 
for their acute toxicity, synergistic or antagonistic effects on adult P. sinica. The modified residual film 
method was used to test the toxicity of individual and binary mixture of these monoterpenoids against 
adult P. sinica. The effects of these monoterpenoids on acetylcholinesterase (AChE) and glutathione 
S-transferase (GST) activities in P. sinica were assessed in vitro. Correlation between numbers of 
synergistic or antagonistic binary mixtures and AChE or GST activities was analyzed. The results 
showed that 2-ethylimidazole had the strongest acute toxicity against P. sinica adult, with a median lethal 
concentration (LC50) value of 0.52 g/L. Among the 66 binary mixtures, 19 showed strong synergistic 
effects, while 21 showed antagonistic effects. The most profound synergistic effect was the mixture 
of l-carvone and dihydrocarvone, with an expected mortality of 35.2% and actual mortality of 98.4%. 
Estragole had the highest frequency of antagonistic effect (7 combinations), and the most significant 
antagonism was observed when combining β-pinene and estragole, with an expected mortality of 29.0% 
and actual mortality of 3.8%. Furthermore, AChE inhibition was observed with estragole, cuminaldehyde, 
and 1,8-cineole displayed high potency. L-carvone showed the highest GST inhibition activity, followed 
by cuminaldehyde. Pearson correlation analysis revealed a significant negative correlation between 
GST inhibition rate and number of antagonistic binary mixtures. In conclusion, our findings suggest 
that 2-ethylimidazole and cuminyl alcohol have high toxicity against P. sinica. L-carvone was the best 
synergist, and binary mixtures of l-carvone with dihydrocarvone, cuminaldehyde, cuminyl alcohol, 
d-carvone, and estragole showed potential as control agents against P. sinica. This study provides insights 
for identifying safe and biodegradable insecticides and potential solutions for controlling P. sinica.

INTRODUCTION

Poratrioza sinica Yang et Li (Hemiptera: Psyllidae) is a 
destructive pest that infests Chinese wolfberry (Lycium 

barbarum) in the northwest regions of China. This insect 
species feeds on the sap of young leaves, shoots, buds and 
fruits, causing premature leaf drop, diminish plant growth, 
and reduce fruit quality and yield when the population 
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density is too high. In addition, the honeydew secreted by 
P. sinica promotes the growth of sooty blotch on leaves 
and fruits. Currently, controlling P. sinica mainly relies 
on extensive use of synthetic insecticides. However, the 
use of synthetic insecticides has brought several serious 
problems, including negative impacts on environment 
and non-target organisms, such as humans (Hodgson and 
Levi, 1996; Singh et al., 2012), as well as development 
of resistant P. sinica populations. These issues have 
driven the search for environmentally safe alternative 
control measures. Amongst alternative strategies aimed at 
reducing insect populations, the use of essential oils is a 
promising strategy.

Essential oils are secondary metabolites of plants 
that possess significant biological activity and various 
pesticidal effects (Abdelfattah et al., 2018; Hennia et 
al., 2019), including insecticidal activity (Ebadollahi et 
al., 2021; Said-Al Ahl et al. 2017). Despite numerous 
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studies demonstrating their insecticidal effects, only a 
few essential oil insecticides are commercially produced 
(Isman and Grieneisen, 2014) due to limited production, 
quality and quantity issues, and high prices of some 
essential oils. These factors have hindered the production 
and wider expansion of essential oil insecticides. 

The insecticidal properties of essential oils are 
primarily attributed to their main active constituents. 
Thymol is the main insecticidal active ingredient in 
essential oils extracted from Trachyspermum ammi, and 
has been found to be effective against Aethina tumida 
(Bisrat and Jung, 2020). Moreover, dihydrocarvone, 
carvone and cuminaldehyde are active constituents 
of essential oils extracted from Anethum graveolens, 
Cuminum cyminum and Carum carvi that have shown 
efficacy against Sitophilus oryzae adults and Aedes 
albopictus larvae (Kim et al., 2013; Seo et al., 2015). 
Essential oils extracted from Erechtites hieraciifolius 
and E. valerianifolius have been shown to possess good 
mosquito larvicidal properties, attributed to the presence 
of limonene and α-pinene in the essential oil of E. 
hieraciifolius, as well as α-pinene, β-caryophyllene, and 
myrcene in essential oil of E. valerianifolius (Hung et al., 
2019). Recent research suggests that many of the active 
substances contained in essential oils can be produced 
synthetically with high quality and at a lower cost. 
However, the use of a single active substance with a single 
mechanism of action could contribute to the development 
of resistant insect populations, as observed with other 
synthetically produced insecticides (Ranson et al., 2009). 
In contrast, essential oils contain complex mixtures of 
active substances with different mechanisms of action, 
which may prevent the development of resistance in 
insects, thus providing a major advantage of essential oils 
as insecticides (Regnault-Roger et al., 2012; Sutthanont et 
al., 2010). Individual components contained in essential 
oils can exhibit diverse synergistic or antagonistic effects, 
which significantly influencing their biological efficacy 
(Hummelbrunner and Isman, 2001; Pavela, 2008, 2014). 
Therefore, a thorough understanding of this phenomenon 
is essential for developing essential oils insecticides 
with standardized mixtures and declared activity, while 
maintaining relatively lower costs. 

Acetylcholinesterase (AChE) is a crucial enzyme that 
helps break down acetylcholine into choline and acetate 
at the neuromuscular junction. The choline produced by 
AChE activity is recycled by being transported back to the 
presynaptic neuron for the synthesis of new acetycholine. 
Inhibition of AChE activity may hinder neurotransmission, 
ultimately leading to insect death (López and Pascual-
Villalobos, 2010). Several essential oils from aromatic 
plants and monoterpenes have been identified as inhibitors 

of AChE isolated from different insect species (Abdelgaleil 
et al., 2009; Kim et al., 2013). Glutathione-S-transferase 
(GST) functions in the detoxification of foreign substances 
by conjugating glutathione (GSH) with electrophilic 
molecules. It plays a crucial role in detoxifying harmful 
compounds and developing insecticide resistance (Cisse et 
al., 2017; Li et al., 2019; Piccoli et al., 2019).

In this study, to gain a better understanding of the 
mutual relationships between essential oil compounds, 
we selected 12 representative monoterpenoids found in 
essential oils. These compounds were tested individually 
and as binary mixtures for their acute toxicity against P. 
sinica. This will facilitate an improved understanding 
of the general principles of the mutual relationships of 
essential oil compounds and determine a suitable mixture 
of active substances for developing new essential oil 
insecticides against P. sinica. Furthermore, the effects of 
these 12 monoterpenoids on the activity of AChE and GST 
of P. sinica were assessed in vitro to explore the action 
mechanism of the monoterpenoids.

MATERIALS AND METHODS

Chemicals
Dihydrocarvone (98%) was obtained from Sigma-

Aldrich (Saint Louis, MO, USA); L-carvone (98%) and 
estragole (98%) was obtained from Alfa Aesar (Beijing, 
China); 2-ethylimidazole (2-MIM, 99%), β-caryophyllene 
(BCP, 80%), cuminaldehyde (97%), acetylthiocholine 
iodide (ATCI), and 5,5′-dithiobis-(2-nitrobenzoic acid) 
(DTNB) were purchased from RHAWN (Shanghai, 
China); cuminyl alcohol (97%) was procured from Xiya 
Reagent (Shandong) Co. Ltd. (Linyi, China); 1,8-cineole 
(99%) and d-carvone (98%) were obtained from Energy 
Chemical (Shanghai, China); limonene (97%) were 
obtained from Macklin Biochemical Co., Ltd. (Shanghai, 
China); α-pinene (95%) and β-pinene (95%) were 
procured from Shanghai Yuanye Biotechnology Co., 
Ltd. (Shanghai, China); acetone, alcohol, NaH2PO4, and 
Na2HPO4 were purchased from the Tianjin Chemical 
Reagent Factory (Tianjin, China); Coomassie brilliant 
blue G-250 and bovine serum albumin were procured from 
Amresco (Solon, OH, USA); the glutathione S-transferase 
(GST) assay kits were purchased from Beijing Solarbio 
Science and Technology Co., Ltd. (Beijing, China).

Plants and insects
The first generation of Poratrioza sinica adult 

was initially sourced from the Science and Technology 
Garden of Inner Mongolia Agricultural University 
(Hohhot, China), and subsequently raised in a laboratory 
environment without exposure to any insecticides. Chinese 
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wolfberry (Lycium barbarum) seedlings were used as their 
food source during this process.

Chinese wolfberry seedlings were cultivated in plastic 
pots with dimensions of 15 cm height and 10 cm diameter. 
The pots were filled with a mixture of peat soil, perlite, and 
vermiculite in a 60:20:20 ratio, with a pH range of 6–7. The 
pots were then placed inside cages covered with an insect-
proof netting of 80 mesh size (270 × 170 × 240 cm). The 
growth conditions were maintained at room temperature 
(21–26°C) under a photoperiod of 16:8 h (L:D), regulated 
using a timing socket. Seedlings that grew to be 25–30 cm 
tall were utilized for subsequent experiments.

To breed P. sinica, two pots (containing one seedling 
for each pot) were transferred into a small insect-proof and 
net-covered cage measuring 35 cm × 35 cm × 45 cm with 
a 120 mesh size. Subsequently, 20 pairs of three-day-old P. 
sinica adults were introduced into this cage and removed 
two days later to ensure hatching of eggs at approximately 
the same time. The cage was incubated under the same 
laboratory temperature and photoperiod conditions as 
described above.

 
Acute toxicity assessment

To evaluate the acute toxicity of 12 monoterpenoids 
to P. sinica, the modified residual film method was 
employed as previously described (Shotkoski et al., 1990; 
Shufran et al., 1997). The 12 monoterpenoids examined 
were 2-ethylimidazole, estragole, cuminyl alcohol, 
d-carvone, l-carvone, cuminaldehyde, dihydrocarvone, 
β-caryophyllene, β-pinene, 1,8-cineole, α-pinene, and 
limonene. Serial dilutions of each monoterpenoid were 
prepared in acetone to generate at least ten concentrations 
(0.06, 0.12, 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0 and 10.0 
mL/L), except for 2-ethylimidazole (solid, with the unit of 
measurement being g/L). Then, 500 μL of each dilution was 
added into a glass tube (10 cm length, 1.5 cm diameter), 
and slowly rolled on a table to ensure the formation of 
a residual film on the inner surface of the tube until the 
acetone had completely evaporated. Simultaneously, 
a piece of wolfberry leaf was immersed in the same 
solution for 5 s, and then dried on filter paper. The leaf 
was subsequently transferred into the tube containing the 
residual film formed by the same tested solution.

Then, 20 P. sinica adults (newly emerged about 3 
days) were released into each prepared test tube, and the 
mortality was recorded after 24 h of exposure. The tube was 
sealed with Parafilm (PM-996, Bemis, Neenah, WI, USA) 
to prevent their escape, three replicates were conducted, 
with n=20 P. sinica adults for each concentration, a total 
n= 60. The assays were performed in a growth chamber 
with a photoperiod of 16:8 h (L:D) at 26°C.

The values of median lethal concentration (LC25, 

LC50, LC90), confidence interval of 95% (CI95), slope, and 
χ2/df were estimated using probit analysis (SPSS Statistics 
22, IBM, New York, NY, USA). Differences among LC25, 
LC50 or LC90 values were considered significant when their 
95% CI did not overlap (Ebling et al., 2004).

Assessment of AChE activity
The inhibitory effect of 12 monoterpenoids on AChE 

activity in P. sinica was evaluated in vitro using the 
modified Ellman’s method (Ellman et al., 1961). Another 
30 healthy P. sinica adults were homogenized in an ice 
bath using a glass tissue grinder with pre-cooled 0.2 M 
phosphate buffer (PB, pH 7.0). The homogenate was then 
centrifuged at 10,000 g for 20 min at 4°C, and the collected 
supernatant was used as the enzyme solution for assessing 
AChE activity. 

To determine the AChE activity, the tested 
monoterpenoids were diluted in acetone to a concentration 
of 20 mL/L. Next, 0.02 mL of the diluted monoterpenoid 
solution, 0.15 mL of the enzyme supernatant, and 0.53 
mL of PB (pH 7.0, 0.2 mol/L) were mixed in a tube. After 
5 min, 0.2 mL of 0.03 mol/L ATCI was added, and the 
mixture was incubated at 30ºC for 15 min. Then 2.1 mL 
of 0.125 mmol/L DTNB was added, and after 2 min, the 
absorbance (OD at 412 nm) was measured using a TU-1810 
UV-visible spectrophotometer (Beijing Purkinje General 
Instrument Co., Ltd., Beijing, China). Three biological 
replicates were performed for each monoterpenoid, with 
acetone being used as the control and the dead enzyme 
(inactivated in boiling water) as a blank. The inhibition 
rate was calculated as follows: 

Inhibition rate (%) = 100 − (Treatment OD − Blank 
OD)/(Control OD − Blank OD) × 100

Assessment of GST activity
To assess the inhibitory effect of 12 monoterpenoids 

on the GST activity of P. sinica, another 30 healthy adults 
of P. sinica were homogenized using a glass tissue grinder 
in an ice bath with pre-cooled PB (pH 7.0, 0.2 mol/L). 
The resulting homogenate was centrifuged at 8000 g for 
10 min at 4°C, and the supernatant was collected as the 
crude enzyme solution for analysis of GST activity. The 
GST activity was calculated following the instruction of 
the GST assay kits.

 
Acute toxicity of binary mixtures

To ascertain the antagonistic or synergistic effects 
of the 12 monoterpenoids, the mortalities of P. sinica 
caused by these monoterpenoids, both individually and in 
binary mixtures, using the modified residual film method 
illustrated above. The two monoterpenoids were combined 
in a 1:1 ratio volume (concentration in LC25, values listed 
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in Table I). Each binary mixture was replicated 4 times 
and 20 adults of P. sinica for each replication. Expected 
mortalities of binary mixtures were calculated using the 
following equation (Hummelbrunner and Isman, 2001; 
Pavela, 2014, 2015): 

E = Oa + Ob (1 − Oa)
where, E represents the expected mortality of binary 
mixtures; Oa and Ob are the observed mortalities of the 
pure monoterpenoid A or B in the binary mixtures of A and 
B at the given concentration.

The χ2 comparisons analysis was utilized to designate 
the effects of binary mixtures as either antagonistic, 
additive, or synergistic, using the equation described 
below: 

χ2 = (Om − E)2/E
where, Om is the observed mortality of binary mixtures; E 
is the expected mortality; χ2 = 3.84 with df = 1 at p = 0.05. 
If χ2 >3.84 and Om > E, it was perceived as synergistic; if χ2 
>3.84 and Om < E, it was perceived as antagonistic; if χ2 ≤ 
3.84, it represented additive effects.

 
Statistical analysis

Data are presented as mean ± standard deviation 
(SD). To compare the inhibitory rates of different 
monoterpenoids on AChE and GST activity, we used one-
way analysis of variance (ANOVA) (Duncan’s test) at p 
<0.05. Pearson’s correlation coefficient was used to analyze 

the relationship between the synergistic or antagonistic 
effects of monoterpenoids binary mixtures and AChE or 
GST inhibition rates using SPSS software.

RESULTS

Acute toxicity of 12 monoterpenoids
The variability in the toxicities of 12 monoterpenoids 

against P. sinica adults were shown in Table I. At the 
highest concentration tested (10 mL/L), 2-ethylimidazole, 
estragole, cuminyl alcohol, d-carvone, l-carvone, 
cuminaldehyde and dihydrocarvone caused 100% 
mortality, whereas β-caryophyllene resulted in 88.3% 
mortality. In contrast, 1,8-cineole, β-pinene, and α-pinene 
led to less than 50% mortality, with limonene resulting 
in only 5% mortality. Among these monoterpenoids, 
2-ethylimidazole demonstrated the highest toxicity to 
P. sinica adults, with the lowest LC25, LC50 and LC90 
values. The LC50 values of estragole, cuminyl alcohol and 
d-carvone were 2.11, 2.17, and 2.28 mL/L, respectively, 
with no significant differences in their lethal activities. 
Similarly, l-carvone, cuminaldehyde, dihydrocarvone and 
β-caryophyllene exhibited LC50 values of 3.06, 3.17, 3.19, 
and 3.31 mL/L, respectively, with no significant variations 
in their lethal activities. As for β-pinene, 1,8-cineole, 
α-pinene and limonene, their LC50 values were estimated 
to be higher than 10 mL/L, as their mortality was less than 
50% at the highest concentration tested (10 mL/L). 

Table I. Toxicities of 12 monoterpenoids against P. sinica adults.

Monoterpenoid Mortalities (%)
at 10 mL/L

LC25 (CI95) 
(mL/L)

LC50 (CI95) 
(mL/L)

LC90 (CI95) 
(mL/L)

Slope χ2/df

2-ethylimidazole 100.0 ± 0.0 0.24 (0.17–0.31)a 0.52 (0.41–0.66)a 2.31 (1.63–3.84)a 3.57 34.4/20
Estragole 100.0 ± 0.0 1.36 (1.16–1.55)b 2.11 (1.88–2.36)b 4.82 (4.05–6.15)bc 5.03 12.9/13
Cuminyl alcohol 100.0 ± 0.0 1.74 (1.56–1.89)c 2.17 (2.01–2.35)b 3.29 (2.94–3.95)a 7.08 18.3/13
D-carvone 100.0 ± 0.0 1.62 (1.39–1.82)c 2.28 (2.04–2.54)b 4.34 (3.73–5.40)b 3.66 43.3/22
L-carvone 100.0 ± 0.0 2.25 (2.01–2.46)d 3.06 (2.83–3.28)c 5.47 (4.97–6.21)c 5.07 19.6/18
Cuminaldehyde 100.0 ± 0.0 2.08 (1.63–2.45)d 3.17 (2.71–3.67)c 7.10 (5.79–9.73)e 4.57 19.9/13
Dihydrocarvone 100.0 ± 0.0 2.34 (2.11–2.55)d 3.19 (2.95–3.44)c 5.77 (5.15–6.61)c 2.46 9.6/16
β-caryophyllene 88.3 ± 2.9 1.76 (1.45–2.06)c 3.31 (2.89–3.79)c 11.00 (9.00–14.28)f 1.98 7.9/19
β-pinene 36.7 ± 5.8 8 >10 >10 - -
1,8-cineole 16.7 ± 2.9 8 >10 >10 - -
α-pinene 16.7 ± 7.6 8 >10 >10 - -
Limonene 5.0 ± 5.0 8 >10 >10 - -

Notes: Serial dilutions of each monoterpenoid were prepared in acetone to generate at least six concentrations (0.06, 0.12, 0.25, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0 
and 10.0 mL/L), except for 2-ethylimidazole (solid, with the unit of measurement being g/L). LC25, LC50, and LC90 represent the dose necessary to kill 
25, 50 and 90% of P. sinica adults, respectively; CI95: 95% confidence interval. Differences among LC values were considered significant when their 95% 
CI did not overlap by 50%. The lowercase letters in the same column represent significant differences.
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The slope value indicated the difference of individual 
sensitivities of P. sinica population to the tested solutions. 
The larger the slope value, the lesser difference in 
individual sensitivities of the population (Hughes et al., 
1984). The difference of individual sensitivities of P. 
sinica population to cuminyl alcohol were lesser than 
that to other monoterpenoids. The results indicated that 
2-ethylimidazole was the most acutely toxic monoterpene 
to P. sinica.

In vitro inhibitory effects of 12 monoterpenoids on the 
activities of AChE and GST in P. sinica

In vitro experiments were conducted to examine the 
effects of 12 monoterpenoids on the activities of AChE 
and GST of P. sinica. The inhibition rates for AChE 
varied among the tested monoterpenoids, with estragole 
displaying the highest inhibition rate of 95.0%, followed 
by cuminaldehyde (91.4%) and 1,8-cineole (88.0%). The 
remaining monoterpenoids such as α-pinene (74.2%), 
d-carvone (66.9%), l-carvone (42.0%), and dihydrocarvone 
(35.2%) showed lower inhibition rates. Conversely, 
β-caryophyllene, cuminyl alcohol, 2-ethylimidazole, 
limonene and β-pinene demonstrated rates under 15% 
(Fig. 1). It can be inferred that the activity of AChE was 
significantly inhibited by estragole, cuminaldehyde, and 
1,8-cineole.

Fig. 1. Inhibition rates of 12 monoterpenoids to AChE 
activity of P. sinica in vitro. 
Notes: The concentration of all 12 monoterpenoids tested 
was 20 mL/L. Data are presented as number or mean ± SD. 
Columns with the same letters on top are not significantly 
different based on One-way ANOVA at p < 0.05, Duncan’s 
test.

Regarding the GST activities of P. sinica, 12 
monoterpenoids also showed varied inhibition rates (Fig. 

2). L-carvone exhibited the highest inhibition rate of 
65.4%, followed by cuminaldehyde (58.8%), β-pinene 
(51.0%), dihydrocarvone (47.2%), 1,8-cineole (46.7%), 
cuminyl alcohol (41.7%), β-caryophyllene (41.6%), 
d-carvone (39.0%), α-pinene (35.9%), estragole (28.5%) 
2-ethylimidazole (27.6%) and Limonene (22.6%). 
L-carvone and cuminaldehyde showed the highest GST 
inhibition activity.

Fig. 2. Inhibition rates of 12 monoterpenoids to GST 
activity of P. sinica in vitro at the concentration of 20 
mL/L. 
Notes: Data are presented as number or mean ± SD. 
Columns with the same letters on top are not significantly 
different based on One-way ANOVA at p < 0.05, Duncan’s 
test.

Toxicity of binary mixtures against P. sinica adults
A total of 66 binary mixtures were tested for their 

acute toxicity against P. sinica adults (Table II), of which 
19 combinations exhibited strong synergistic effects, 21 
showed significant antagonistic effects, and 26 displayed 
additive effects. A higher χ2 value indicated a stronger 
synergistic or antagonistic effects. The most profound 
synergistic effects were observed with the following binary 
mixtures: dihydrocarvone and l-carvone (χ2 = 113.6), 
l-carvone and cuminaldehyde (χ2 = 108.3), l-carvone and 
cuminyl alcohol (χ2 = 109.4), estragole and l-carvone (χ2 
= 112.3). While, limonene and dihydrocarvone (χ2 = 16.8), 
α-pinene and dihydrocarvone (χ2 = 15.4), α-pinene and 
estragole (χ2= 19.5), β-pinene and cuminaldehyde (χ2 = 
18.1) exhibited the most profound antagonistic effects. The 
highest mortalities were achieved for the combinations: 
dihydrocarvone and l-carvone (98.4%), l-carvone and 
cuminaldehyde (96.5%), l-carvone and cuminyl alcohol 
(96.4%), estragole and l-carvone (93.3%), d-carvone and 
l-carvone (98.5%).
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Table II. Effect of binary mixtures of 12 monoterpenoids prepared as LC25 combinations on mortality against P. 
sinica.

Monoterpenoid A Monoterpenoid B Mortality (%) χ2 Effects
Pure monoterpenoids Binary mixtures

Observed A Observed B Expected Observed
1,8-cineole Limonene 3.6 1.8 5.4 9.2 2.7 Additive
1,8-cineole α-pinene 3.6 5.5 9.0 26.3 33.6 Synergistic
1,8-cineole β-pinene 3.6 13.7 16.9 9.2 3.5 Additive
1,8-cineole Dihydrocarvone 3.6 20.8 23.7 17.7 1.5 Additive
1,8-cineole Estragole 3.6 17.8 20.8 6.1 10.4 Antagonistic
1,8-cineole D-carvone 3.6 33.6 36.0 28.2 1.7 Additive
1,8-cineole L-carvone 3.6 18.2 21.1 23.3 0.2 Additive
1,8-cineole Cuminaldehyde 3.6 20.5 23.4 15.5 2.7 Additive
1,8-cineole Cuminyl alcohol 3.6 21.1 24.0 5.7 13.9 Antagonistic
1,8-cineole 2-ethylimidazole 3.6 18.4 21.4 5.7 11.6 Antagonistic
1,8-cineole β-caryophyllene 3.6 17.2 20.2 12.5 3 Additivet
Limonene α-pinene 1.8 5.5 7.2 13.3 5.2 Synergistic
Limonene β-pinene 1.8 13.7 15.2 17.9 0.5 Additive
Limonene Dihydrocarvone 1.8 20.8 22.2 2.9 16.8 Antagonistic
Limonene Estragole 1.8 17.8 19.2 4.2 11.8 Antagonistic
Limonene D-carvone 1.8 33.6 34.8 25 2.7 Additive
Limonene L-carvone 1.8 18.2 19.6 23.3 0.7 Additive
Limonene Cuminaldehyde 1.8 20.5 22.0 11.8 4.7 Antagonistic
Limonene Cuminyl alcohol 1.8 21.1 22.5 6.5 11.5 Antagonistic
Limonene 2-ethylimidazole 1.8 18.4 19.9 13.3 2.2 Additive
Limonene β-Caryophyllene 1.8 17.2 18.7 15.8 0.5 Additive
α-pinene β-pinene 5.5 13.7 18.5 13.2 1.5 Additive
α-pinene Dihydrocarvone 5.5 20.8 25.2 5.5 15.4 Antagonistic
α-pinene Estragole 5.5 17.8 22.3 1.5 19.5 Antagonistic
α-pinene D-carvone 5.5 33.6 37.3 27.9 2.3 Additive
α-pinene L-carvone 5.5 18.2 22.7 23.1 0 Additive
α-pinene Cuminaldehyde 5.5 20.5 24.9 15.4 3.6 Additive
α-pinene Cuminyl alcohol 5.5 21.1 25.5 15 4.3 Antagonistic
α-pinene 2-ethylimidazole 5.5 18.4 22.9 30.3 2.4 Additive
α-pinene β-caryophyllene 5.5 17.2 21.8 5.2 12.6 Antagonistic
β-pinene Dihydrocarvone 13.7 20.8 31.7 25.1 1.4 Additive
β-pinene Estragole 13.7 17.8 29 3.8 22 Antagonistic
β-pinene D-carvone 13.7 33.6 42.7 45.1 0.1 Additive
β-pinene L-carvone 13.7 18.2 29.4 47.5 11.2 Synergistic
β-pinene Cuminaldehyde 13.7 20.5 31.4 7.6 18.1 Antagonistic
β-pinene Cuminyl alcohol 13.7 21.1 31.9 40.1 2.1 Additive
β-pinene 2-ethylimidazole 13.7 18.4 29.6 11.9 10.6 Antagonistic

Table continued on next page...................
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Monoterpenoid A Monoterpenoid B Mortality (%) χ2 Effects
Pure monoterpenoids Binary mixtures

Observed A Observed B Expected Observed
β-pinene β-caryophyllene 13.7 17.2 28.6 30 0.1 Additive
Dihydrocarvone Estragole 20.8 17.8 34.9 12.6 14.3 Antagonistic
Dihydrocarvone D-carvone 20.8 33.6 47.4 84.6 29.1 Synergistic
Dihydrocarvone L-carvone 20.8 18.2 35.2 98.4 113.6 Synergistic
Dihydrocarvone Cuminaldehyde 20.8 20.5 37.1 80.4 50.5 Synergistic
Dihydrocarvone Cuminyl alcohol 20.8 21.1 37.5 62.8 17 Synergistic
Dihydrocarvone 2-ethylimidazole 20.8 18.4 35.4 22.3 4.8 Antagonistic
Dihydrocarvone β-caryophyllene 20.8 17.2 34.5 32.3 0.1 Additive
Estragole D-carvone 17.8 33.6 45.4 71.8 15.4 Synergistic
Estragole L-carvone 17.8 18.2 32.7 93.3 112.3 Synergistic
Estragole Cuminaldehyde 17.8 20.5 34.7 79.0 56.6 Synergistic
Estragole Cuminyl alcohol 17.8 21.1 35.1 52.9 9.0 Synergistic
Estragole 2-ethylimidazole 17.8 18.4 32.9 18.8 6.1 Antagonistic
Estragole β-caryophyllene 17.8 17.2 31.9 12.0 12.4 Antagonistic
D-carvone L-carvone 33.6 18.2 45.7 98.6 61.4 Synergistic
D-carvone Cuminaldehyde 33.6 20.5 47.2 87.8 34.8 Synergistic
D-carvone Cuminyl alcohol 33.6 21.1 47.6 70.0 10.5 Synergistic
D-carvone 2-ethylimidazole 33.6 18.4 45.8 33.2 3.5 Additive
D-carvone β-caryophyllene 33.6 17.2 45.0 42.3 0.2 Additive
L-carvone Cuminaldehyde 18.2 20.5 35.0 96.5 108.3 Synergistic
L-carvone Cuminyl alcohol 18.2 21.1 35.4 96.4 104.9 Synergistic
L-carvone 2-ethylimidazole 18.2 18.4 33.2 55.7 15.1 Synergistic
L-carvone β-caryophyllene 18.2 17.2 32.2 18 6.3 Antagonistic
Cuminaldehyde Cuminyl alcohol 20.5 21.1 37.3 65.8 21.8 Synergistic
Cuminaldehyde 2-ethylimidazole 20.5 18.4 35.2 28.5 1.3 Additive
Cuminaldehyde β-caryophyllene 20.5 17.2 34.2 31.9 0.2 Additive
Cuminyl alcohol 2-ethylimidazole 21.1 18.4 35.7 75.2 43.9 Synergistic
Cuminyl alcohol β-caryophyllene 21.1 17.2 34.7 15.1 11.1 Antagonistic
2-ethylimidazole β-caryophyllene 18.4 17.2 32.5 20.1 4.7 Antagonistic

L-carvone displayed a synergistic effect with 7 
monoterpenoids, while cuminyl alcohol exhibited this effect 
with 6 monoterpenoids. Cuminaldehyde and d-carvone 
displayed synergistic effects with 5 monoterpenoids each, 
and dihydrocarvone and estragole with 4 monoterpenoids 
each. In contrast, α-pinene, 2-ethylimidazole, limonene, 
1,8-cineole, and β-pinene exhibited limited synergistic 
effects. Estragole, on the other hand, demonstrated 
antagonistic effects in 7 combinations. The maximal 
synergic binary mixtures were dihydrocarvone and 
l-carvone, l-carvone and cuminaldehyde, l-carvone and 
cuminyl alcohol, d-carvone and l-carvone, and estragole 
and l-carvone, suggesting that L-carvone could be 

considered as the most effective synergist (Table III).

Correlation between the number of synergistic or 
antagonistic binary mixtures and AChE or GST activities

The five compounds, namely l-carvone, 
cuminaldehyde, β-pinene, 1,8-cineole, and cuminaldehyde, 
demonstrated a relatively high degree of inhibition against 
GST activity of P. sinica in vitro, and resulted in fewer 
antagonistic binary mixtures against P. sinica mortality. 
This indicates that there may be a correlation between 
the number of antagonistic binary mixtures and the GST 
inhibition ability. Pearson correlation analysis revealed a 
negative correlation trend between the GST inhibition rate 
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Table III. The number of monoterpenoids reaching the 
level of being a synergist or antagonist.

Monoterpenoid Syner-
gista

Antago-
nista

Addi-
tivea

Maximal syner-
gic effectb

L-carvone 7 1 3 Dihydrocarvone
Cuminyl alcohol 6 4 1 L-carvone
D-carvone 5 0 6 L-carvone
Cuminaldehyde 5 2 4 L-carvone
Dihydrocarvone 4 4 3 L-carvone
Estragole 4 7 0 L-carvone
α-pinene 2 4 5 1,8-cineole
2-ethylimidazole 2 5 4 Cuminyl alcohol
1,8-cineole 1 3 7 α-pinene
β-pinene 1 3 7 L-carvone
Limonene 1 4 6 α-pinene
β-caryophyllene 0 5 6 -

a The number of the monoterpenoid creating the synergistic, antagonistic, 
or additive effect on mortality of P. sinica; b Monoterpenoid with which 
was achieved most significant synergism.

 

    

    

Fig. 3. Correlation analysis between AChE or GST 
inhibition rates and the number of synergistic or 
antagonistic combinations
Data analyzed using Pearson correlation coefficient 
at a significance level of p < 0.05. Z, L-carvone; C, 
Cuminyl alcohol; Y, D-carvone; Q, Cuminaldehyde; 
D, Dihydrocarvone; J, Estragole; A, α-pinene; E, 
2-ethylimidazole; I, 1,8-cineole; B, β-pinene; N, 
Limonene; S, β-caryophyllene.

and the number of antagonistic binary mixtures (Pearson 
coefficient= -0.608, R2= 0.369, p= 0.036, Fig. 3A). 

However, no significant relationship was found between 
the GST inhibition rates and the number of synergistic 
binary mixtures (Pearson coefficient = 0.453, R2 = 0.205, 
p = 0.140, Fig. 3B). Similarly, no significant correlation 
was observed between the AChE inhibition rates and the 
number of synergistic or antagonistic binary mixtures 
(Pearson coefficient = −0.136, R2 = 0.018, p =0.412, Fig. 
3C; Pearson coefficient = 0.261, R2 = 0.068, p = 0.674, 
Fig. 3D).

In brief, the inhibition of GST activity in P. sinica by 
certain compounds was found to be negatively correlated 
with the number of antagonistic binary mixtures, while 
no significant correlation was observed between AChE 
inhibition and the number of synergistic or antagonistic 
binary mixtures.

DISCUSSION

In this study, the toxicity of 12 monoterpenoids was 
tested against P. sinica adults, and the results showed that 
2-ethylimidazole had the highest toxicity with the lowest 
LC25, LC50 and LC90 values. However, there was limited 
reports on its insecticidal activity, and further research is 
needed to determine its pesticide effects and mechanisms. 
Cuminyl alcohol, estragole, and d-carvone also 
demonstrated better toxicity against P. sinica with low LC50 
and LC90 values. Other monoterpenoids, such l-carvone, 
cuminaldehyde, dihydrocarvone and β-caryophyllene 
were also efficient at eliminating P. sinica. In contrast, 
Limonene, α-pinene, β-pinene, and 1,8-cineole showed 
low mortality, even at the highest tested concentration of 
10 mL/L. 

It was noted that d-carvone and cuminyl alcohol 
were more virulent than l-carvone and cuminaldehyde, 
respectively. This suggests that the molecular structure of 
these substances may influence their toxicity. However, 
the relationship between the efficacy of individual 
substances and their molecular structures was difficulty 
to define (Pavela, 2015). Previous studies have shown 
that lipophilicity influenced the insecticidal activity of 
lipophilic compounds through enzyme inhibition (Ryan 
and Byrne, 1988; Santos et al., 2010). For example, thymol 
and carvacrol, which have lipophilic CH chains outside a 
phenyl ring, displayed higher larvicidal activity against 
than Aedes aegypti larvae than phenol alone (Santos et al., 
2010). Exocyclic double bonds have also been found to 
influence the toxicity of α-pinene and β-pinene to larvae of 
A. aegypti (Lucia et al., 2007; Perumalsamy et al., 2010; 
Simas et al., 2007). 

The insecticidal activities of essential oils and their 
constituents also depends on the type of insects. Previous 
study has shown that cuminaldehyde, cuminyl alcohol, 



9                                                                                        

Onlin
e F

irs
t A

rtic
le

Acute Toxicity Effects of Monoterpenoids Against Poratrioza sinica 9

1,8-cineole, limonene, and β-caryophyllene were toxic to 
Stomoxys calcitrans, with cuminaldehyde being the most 
effective (Hieu et al., 2012). However, neither 1,8-cineole 
nor β-caryophyllene showed insecticidal activity against P. 
sinica in our study. Similarly, the toxicities of essential oils 
and their constituents against different insects varied. For 
instance, Yeom et al. (2015) found that estragole was more 
effective than β-caryophyllene against German cockroach 
(Blattella germanica), and our work also revealed that 
estragole outperformed β-caryophyllene in controlling 
P. sinica. In contrast, l-carvone demonstrated significant 
toxicity against S. oryzae, Rhyzopertha dominica adults 
and Tribolium castaneum adults in a previous study 
(Tripathi et al., 2003), but it was not effective against P. 
sinica in our work. 

Previous research has shown that mixing essential 
oil components or chemical pesticides may result in 
synergistic, antagonistic, or additive effects (Wu et al., 
2017). Synergistic effects of complex mixtures was 
important to standardize the formulations of insecticides 
(Akram et al., 2023; Jabbar et al., 2022), especially to 
essential oil insecticides. In our study, 66 binary mixtures 
were tested, of which 19 resulted in a synergistic effect, 
and 21 had an antagonistic effect on P. sinica mortality. 
Notably, despite using concentrations that matched the 
estimated LC25 in the tests, pure monoterpenoids often 
caused significantly lower mortality than expected (25%), 
but when combined, some mixtures created up to 95% 
mortality. This phenomenon was observed in 5 binary 
mixtures: l-carvone and cuminaldehyde, l-carvone and 
cuminyl alcohol, dihydrocarvone and l-carvone, estragole 
and l-carvone, d-carvone and l-carvone. Previous studies 
have also explored the potential for synergistic effects 
of essential oil components. Pavela (2015) assessed the 
acute toxicity of 30 aromatic compounds and their binary 
combinations against Culex quinquefasciatus larvae, and 
found 249 combinations showing significant synergistic 
effect. The mixture of limonene and transanethole caused 
the highest mortality, and l-carvone had a synergistic 
effect with 24 out of the 30 tested compounds. In addition, 
a study testing binary combinations of 6 monoterpenoids 
against Musca domestica found that p-cymene mixed 
with γ-terpinene, carvacrol and 1,8-cineole resulted in 
the most significant synergistic effect (Pavela, 2008). 
Our study confirmed that l-carvone, with low toxicity, 
created a synergistic effect with 7 monoterpenoids and an 
antagonistic effect with 1 monoterpenoid. Comparatively, 
2-ethylimidazole, with high toxicity, was found to be 
antagonized with 5 monoterpenoids and synergized with 
2 monoterpenoids. 

Inhibition of AChE activity may be a mechanism for 
causing insect death. Previous studies have shown that 

the oil extract of Acalypha wilkesiana inhibited AChE 
activity in adult Callosobruchus maculatus (Oni et al., 
2019), estragole inhibited AChE activity in Tribolium 
castaneum (Olmedo et al., 2015), and cuminaldehyde, 
limonene and 1,8-cineole inhibited AChE activity in S. 
oryzae (Abdelgaleil et al., 2009). Our study confirmed that 
estragole, cuminaldehyde, and 1,8-cineole inhibited AChE 
activity in P. sinica, although their insecticidal activities 
against P. sinica was weak. This is similar to the research 
reported by Kim et al. (2013), in which α-pinene showed 
the highest inhibition rate (97.36%) of AChE activity in S. 
oryzae but had low toxicity. We found that 2-ethylimidazole 
and cuminyl alcohol had the best toxicity to P. sinica, but 
had almost no effect on AChE activity in vitro, implying 
that AChE was not the target for 2-ethylimidazole or 
cuminyl alcohol. Furthermore, some essential oils also 
have inhibitory effects on insect GST activity. For instance, 
the essential oils of Acalypha wilkesiana significantly 
reduced GST activity in Callosobrunchus maculatus (Oni 
et al., 2019). The geranoil, linalool, citral, and 3-carene 
cause a significant reduction of GST activity in Sitophilus 
zeamais and Callosobrunchus maculatus (Oyedeji et al., 
2020). Our results showed that 12 monoterpenoids tested 
had inhibitory effects on GST activity in P. sinica. 

The synergistic effect of synergists is typically 
attributed to the inhibition of detoxification enzymes 
(Churcher et al., 2016; Shen et al., 2016). One substance’s 
ability to inhibit GST activity may protect other toxins 
from degradation by GST (Metcalf, 1967). Degradation 
of toxins through multiple detoxification pathways in 
insects may decrease the antagonism of binary mixtures 
(Bernard and Philogene, 1993; Ishaaya, 1993). Piperonyl 
butoxide, a well-known inhibitor of cytochrome P450 
monooxygenases and esterases, has a synergistic effect on 
chlorpyrifos, methomyl, acetamiprid, and spirotetramat by 
inhibiting the activity of cytochrome P450 monooxygenase 
(Ullah et al., 2017). In this study, it seemed that the higher 
the GST inhibitory activity of the monoterpenoid, the 
fewer antagonistic binary mixtures it created. However, 
the synergistic or antagonistic mechanisms of these 
monoterpenoids still require further study.

CONCLUSION

Two monoterpenoids, 2-ethylimidazole and 
cuminyl alcohol, showed high toxicity against P. sinica. 
L-carvone was identified as the best synergist, and the 
maximal synergic binary mixtures were: l-carvone and 
dihydrocarvone, l-carvone and cuminaldehyde, l-carvone 
and cuminyl alcohol, l-carvone and d-carvone, l-carvone 
and estragole. These binary mixtures may have the 
potential to be used as effective control agents against P. 
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sinica. The findings of this study provide valuable insights 
into potential control strategies for prevention and control 
of P. sinica.
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