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The immune system protects the host from foreign pathogens while avoiding damage towards self–
antigens. T regulatory cells (Tregs), a subset of T cells, specialize in immune suppression. A host 
immune response is a result of interplay between different components of the immune system. 
Interplay between Tregs and other components of the immune system will determine whether the 
outcome will be a persistent infection or successful pathogen clearance. Avian Tregs are 
characterized by the presence of both CD4 and CD25. Avian CD4+ and CD25+ cells produce high 
amounts of IL–10 and lack IL–2 mRNA; and suppress T cell proliferation in vitro through both 
contact–dependent and independent pathways. Avian Treg properties and numbers are influenced 
by infections and inflammatory status of the bird. Compared to mammals, avian Treg research is 
still in early stages of reseearch and, thus, extensive characterization of avian Tregs is required. In 
mammals, Treg–targeted therapy is applied for numerous situations, e.g. infections, tumors, 
autoimmune diseases, sepsis, shock, and vaccine. Similar to mammals, avian diseases will benefit 
from Treg–targeted therapy.     
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INTRODUCTION 
The immune system protects the host from foreign pathogens 
while avoiding damage towards self–antigens. T regulatory cells 
(Tregs), a subset of T cells, specialize in immune suppression. 
An adaptive immune response involves recruitment of effector 
(T and B) cells and Tregs. Activated immune cells, although 
essential for pathogen elimination, produce inflammatory 
cytokines and reactive oxygen species and can cause 
undesirable host damage (Belkaid and Rouse, 2005). Tregs 
protect the host from an excessive immune response and 
maintain self tolerance and mucosal tolerance (Workman et al., 
2009). The balance between the effector cells and Tregs is 
important for optimal immune responses, the proper control of 
immune responses, and for establishing tolerance to self–
antigens. Disruption in function of Tregs is a primary cause of 
autoimmune and inflammatory diseases. On the other hand, 
hyperactive Tregs can impair T cell, B cell, and other immune 
cell functions and, therefore, are implicated in impaired 
microbial defenses, pathogen persistence (Li et al., 2008), and 
impaired vaccine responses (Stober et al., 2005). 
 
LACK OF UNIQUE MARKERS FOR TREGS 
Among the different species in which Tregs have been 
characterized, human and mice Tregs have been extensively 
studied. Tregs constitutively express surface proteins like 
CD25, CD45, CTLA–4, HLA–DR, or GITR (Jonuleit and 
Schmitt, 2003), but these markers are not present in Tregs of all 
species or exclusive to Tregs in any particular species. Among 
the markers that can be defined to be unique to Tregs, the most 
commonly used marker is FoxP3 (Hori et al., 2003). FoxP3, a 

transcription factor, is essential for development and function 
of mammalian Tregs (Belkaid and Rouse, 2005). FoxP3 
transcriptionally represses IL–2 and maintains suppressor 
functions of Tregs (Raimondi et al., 2007). Mutations in the 

FoxP3 gene cause autoimmune disease in scurfy mice (Brunkow 
et al., 2001) and such mice succumb to autoimmune pathology 
(Huter et al., 2008). Though absence or mutations in FoxP3 
gene results in impaired Treg functions, presence of FoxP3 
genes does not necessarily confer suppressive properties. 
Human T cells transiently express FoxP3, without expressing 
the suppressive properties or cytokines characteristics of Tregs 
(Gavin et al., 2006; Wang et al., 2007), though such T cells with 
transient FoxP3 expression with no suppressive properties are 
yet to be reported in other species. Our group reported that in 
chickens, CD4+CD25+ cells express suppressive properties even 
though in silico analysis failed to identify FoxP3 gene in the 
chicken genome  (Selvaraj, 2013).  
 
PROPERTIES OF TREGS  
There are several different categories of suppressive cells, 
namely T regulatory–1 cells (Tr1) (Roncarolo et al., 2006), T 
helper 3 cells (Th3) (Carrier et al., 2007), CD8+FoxP3+ (Lu and 
Cantor, 2008), γδ T cells (Wildner et al., 1997; Wildner et al., 
2004; Hoffmann et al., 2008), natural killer T cells (Smyth and 
Godfrey, 2000), and CD4–8–TCRαβ

+  (Zhang et al., 2000). The 
hall mark characteristics of CD4+25+ Tregs that differentiate 
CD4+25+ Tregs from the above mentioned suppressive 
populations are: 
  
1. CD4+25+ Tregs originate as a separate lineage of cells in the 

thymus (Apostolou et al., 2002). 
2. CD4+25+ Tregs are anergic (meaning they don’t proliferate) in 

vitro (Thornton and Shevach, 1998). 
3. CD4+25+ Tregs in vitro anergy and suppressive properties are 

reversed by exogenous IL–2 (Thornton and Shevach, 1998). 
4. CD4+25+ Tregs express CTLA–4, LAG–3 and PD–1 (Yi et al., 

2006). 
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5. CD4+25+ Tregs produce high amounts of IL–10 (Dieckmann 
et al., 2001) and low amounts of IL–2 (Jonuleit et al., 2001; 
Takahashi et al., 1998).  

 
TREGS DYSREGULATION DURING INFECTIONS  
Tregs are a central player in immune suppression. Tregs are the 
only cells that can directly suppress every other component of 
the immune system. Tregs can suppress T effector cells, 
dendritic cells (Sakaguchi et al., 2008), B cells (Lim et al., 2005), 
macrophages (Tiemessen et al., 2007), NK cell (Frimpong–
Boateng et al., 2010), mast cells (Gri et al., 2008), neutrophils 
and eosinophils (Thorburn and Hansbro, 2010). Given this 
“universal” action of Tregs, it is reasonable to assume that 
though Treg activity could be beneficial to the host, Tregs 
simultaneously inhibit host immunity and cause persistent 

infections. Treg dysregulation during persistent viral infections 
has been reviewed elegantly (Belkaid, 2007; Li et al., 2008). 
During viral infections, T cell response leads to viral clearance. 
However, many viruses induce persistent infections despite 
continuous measurable T cell responses (Rehermann et al., 
1996), a situation in which Tregs may be involved (Ward et al., 
2007). 

Tregs suppress the functions of CD4+ and CD8+ cells in the 
host and cause persistent infections of Friends virus (Robertson 
et al., 2006; Zelinskyy et al., 2006), Vaccinia virus (Haeryfar et 
al., 2005), Human Immunodeficiency virus (Epple et al., 2006; 
Nilsson et al., 2006), Hepatitis C virus (Boettler et al., 2005; 
Bolacchi et al., 2006), Hepatitis B virus (Stoop et al., 2007; Xu et 
al., 2006), Human T Lymphotropic virus (Yamano et al., 2005; 
Oh et al., 2006), Cytomegalovirus (Aandahl et al., 2004), and 
Feline Immunodeficiency virus (Mikkelsen et al., 2010). The 
influenza virus might have evolved to induce Tregs. Influenza–
specific–Tregs suppress cytotoxic T lymphocytes by blocking 
CD8+ cell expansion. Tregs, stimulated with hemagglutinin 
antigen, expand more rapidly than CD8+ T cells and are highly 
suppressive in mice (Chappert et al., 2010). In humans, Treg 
numbers increase while CD4+ cell numbers, B–lymphocytes 
numbers, and macrophage IFNγ and TNFα production decrease 
post H1N1 infection (Giamarellos–Bourboulis et al., 2009). 
Tregs inhibit proliferation and IFNγ production of influenza–
specific CD8 in the local environment (Lund et al., 2008; Khatri 
et al., 2010). Treg dysregulation is present during influenza A 
infection in mice (Haeryfar et al., 2005). In chickens, 
CD4+CD25+ (Tregs) numbers increased following H9N2 avian 
influenza virus infection, but the authors could not explain the 
upregulated roles of Tregs during viral infection (Teng et al., 
2006). The above studies strongly suggest the involvement of 
Tregs in augmenting the pathogenesis of avian influenza 
infections. Treg research with mammals suggests that the 
increase in Tregs percentage post–influenza infection might be 
a local effect rather than a systemic effect (Lund et al., 2008; 
Khatri et al., 2010). Tregs reduce accumulation of macrophages 
in the lungs of influenza A virus–infected mice (Antunes and 
Kassiotis, 2010).  

Tregs express several toll–like receptors (TLR), which 
recognize pathogen–associated molecular patterns (Caramalho 
et al., 2003). Tregs express TLR3, which recognizes double 
stranded RNA present during viral infections (Qian et al., 
2007). TLR3–mediated activation amplifies the suppressive 
properties of Tregs (Qian et al., 2007). In addition, the host 
damage that occurs during infection and inflammation activates 
Tregs (Belkaid and Rouse, 2005). Some pathogens have evolved 
to selectively induce Tregs (Wilson et al., 2005; Lysaght et al., 
2007) and thereby impede host immune responses. Treg–
mediated suppression of host immune cells prevents an 
effective immune response against pathogens. IL–10 and TGFβ 
produced by Tregs suppress CD8+ effector cells against viral 

pathogens (Kinter et al., 2004). Tregs suppress IFNγ 
production by the host during an anti–viral response and 
thereby effectively impair the host defense against viral 
infections (Bolacchi et al., 2006). The role of Tregs in depressing 
a host immune response during viral infections has been 
confirmed by experiments that selectively target or deplete 
Tregs during viral infections.  
 
ENHANCED ANTI–VIRAL IMMUNE RESPONSE 
FOLLOWING TREG DEPLETION/ABLATION 
Depletion of Tregs using anti–CD25 neutralizing antibody 
relieves the in vivo suppression of an antiviral immune response 
and contributes to faster oncolytic viral clearance (Kottke et al., 
2008). Depletion of Tregs enhances the activity of natural killer 
cells, activity of lymphokine–activated killer cells, and 
production of IFN (Kottke et al., 2008). Treg ablation enhances 
the virus–specific CD8+ T cell numbers and production of IFN 
in the spleen of infected animal (Zelinskyy et al., 2009). Treg 
depletion results in reactivation of virus–specific T cells in 
chronically infected mice (Dietze et al., 2011). In vitro, anti–IL–10 
antibodies, which are expected to abrogate Treg functions (Sun 
et al., 2010), increase viral antigen–specific T cell proliferation 
(Landay et al., 1996). 
 
Tregs OF AVIANS 
Tregs have been extensively characterized in several animals 
like baboons (Porter et al., 2007), cows (Seo et al., 2007; de 
Almeida et al., 2008), pigs (Kaser et al., 2008), cats (Lankford et 
al., 2008), and rabbits (Nesburn et al., 2007). We earlier 
identified and characterized chicken CD4+CD25+ cells as Tregs 
in chickens (Shanmugasundaram and Selvaraj, 2011b). Similar 
to the CD25 expression in mammals (Baecher–Allan et al., 
2001), CD25 expression in chicken thymic CD4+ cells was 
continuous in that cells express high, intermediate, or low 
levels of CD25, and the boundary between CD25high, 
CD25intermediate, and CD25low population is not clear 
(Shanmugasundaram and Selvaraj, 2011b). Chicken Tregs 
produce 29–fold higher IL–10 mRNA than non–Tregs. IL–10, an 
immunosuppressive cytokine, inhibits macrophages and 
dendritic cell functions (Fujio et al., 2010) and is a critical 
cytokine responsible for the suppressive properties of Tregs 
(Gangi et al., 2005). Similar to chicken Tregs, ducks 
(Shanmugasundaram and Selvaraj, 2012d) and turkey 
(Shanmugasundaram and Selvaraj, 2012e) CD4+CD25+ cells had 
higher IL–10, TGF–β, CTLA–4, and LAG–3 mRNA amounts 
than CD4+CD25– cells from the respective species.  

In chickens, Tregs initially appear at 16 d of embryonic 
development, and the first wave of Tregs preferentially migrates 
to the intestine (Shanmugasundaram and Selvaraj, 2012a). We 
identified that a single peritoneal injection of anti–chicken 
CD25 mAb decreases IL–10–producing Tregs in the intestine of 
chickens by approximately 80% (Shanmugasundaram and 
Selvaraj, 2012b). The depletion is temporary as Tregs return to 
their baseline levels at approximately 20 d post–CD25 injection. 
In ovo injection of 0.5 mg/egg of anti–chicken CD25 mAb at 16 
d of embryonic development almost completely depleted 
circulating Tregs at hatch and that the birds remained depleted 
of Tregs until 25 d post–hatch. Chicks hatched from anti–
chicken CD25–mAb–injected eggs had ~75% decrease in Tregs 
in the cecal tonsils at 16 d post–hatch (Shanmugasundaram and 
Selvaraj, 2013). Chicks hatched from anti–chicken CD25 mAb 
injected eggs also had no detectable amount of Tregs in cecal 
tonsils at 0, 3, and 5 d post–hatch (unpublished observations).  

We have also characterized chicken Tregs during 
Salmonella (a gut pathogen like coccidia) lipopolysaccharide–
induced inflammation (Shanmugasundaram and Selvaraj, 2011a; 
2012c). The LPS injection increases CD4+CD25+ cell percentage 
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approximately 2.5–fold in the spleen at 2 d post–LPS injection 
compared to the no–LPS–injected group, though the Treg 
numbers came back to normal levels at 5 d post–LPS injection 
(Shanmugasundaram and Selvaraj, 2012c). We evaluated the 
suppressive properties of chicken CD25+ cells from LPS injected 
or control groups. At a Treg: T responder cell ratio of 1:1, CD25+ 
cells only from 5 and 12d post–LPS injection were suppressive 
while CD25+ cells from 2 d post–LPs injection were not 
suppressive. Chicken non–Tregs appear, therefore, to up-
regulate CD25 transiently, with no suppressive properties, 
post–LPS treatment. The other possibility is Tregs undergoes 
extensive proliferation and lose suppressive properties post–
LPS treatment. Because chicken Treg specific markers are not 
available, we cannot exclude either of the above possibility. 

Compared to mammalian Tregs, research in avian Tregs 
are in earlier stages. Further characterization of avian Tregs will 
benefit poultry production. For example, avian Tregs, with 
anti–inflammatory potential, can be targeted to decrease 
inflammation and mortality during an immune response in 
commercial settings. In mammals, Treg–targeted therapy [anti–
CTLA–4 (Gabriel and Lattime, 2007), anti–IL–2 (Kottke et al., 
2008), anti–CD25 (Bielekova et al., 2004)] is applied for 
numerous situations, e.g. infections, tumors, autoimmune 
diseases, sepsis, shock, and vaccine. Similar to mammals, avian 
diseases will benefit from Treg–targeted therapy. A host 
immune response is a result of interplay between different 
components of the immune system. Interplay between Tregs 
and other components of the immune system will determine 
whether the outcome will be a persistent infection or successful 
pathogen clearance.  
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