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INTRODUCTION

One of the most pressing issues confronting humanity 
today is environmental pollution (Ali and Khan, 

2017). Numerous epidemiological studies have reported 
a strong relationship to human hepatic and renal damage 
and exposure to multiple environmental pollutants (Gao 
et al., 2015). Heavy metals enter the environment, pollute 

food supply and induce a variety of health issues because 
of their toxic effects. Prolonged exposure to such toxic 
metals puts living organisms in grave danger (Wieczorek-
Da˛browska et al., 2013).

Lead is a great source of threat for public health as 
one of the most toxic environmental pollutants stable 
(Andjelkovic et al., 2019). According to Soliman et al. 
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(2015), lead (Pb) has a high risk of causing hepatotoxicity 
as well as nephrotoxicity in most animal and human 
species. Because it is widely used in the production of 
materials like pigments, plastic batteries, fuel oil, cosmetics, 
tank connections, piping, poetry glassing, and dolls, it is 
regarded a significant toxic substance for the environment 
(ATSDR, 2007; WHO, 2010). The principal modes of 
exposure to lead in the ecosystem are through ingestion 
and inhalation of its particles, whereas in fewer cases it is 
through skin and prenatal exposure (Dapul and Laraque, 
2014; ATSDR, 2017). Lead builds up in animal tissues like 
the liver, the kidney and the bones and these organs are 
often examined in wildlife toxicology experiments (Plaza 
et al., 2018).

Oxidative stress is defined as the difference between both 
the reactive oxygen species (ROS) formation and the 
antioxidants for free radicals (Costa et al., 2015; Fenga et 
al., 2016). The main toxic effects of lead are elevated ROS 
levels (Flora et al., 2012). This could occur by 2 distinct 
methods. The first route is the δ-aminolevulinic acid 
dehydratase (δ-ALAD) pro-oxidant effect. The Second 
pathway is linked to lead’s direct effect on cell membranes’ 
lipid composition (Ahamed and Siddiqui, 2007; Lopes et 
al., 2016). Latest studies reveal that reactive oxygen species 
(ROS) play an integral part in the nephrotoxicity caused by 
lead (Xu et al., 2008; Mervat et al., 2012). If lead damages 
the kidneys, it is referred to as “lead-related nephrotoxicity” 
by physicians. Throughout the renal tubules, lead is taken 
up by proximal tubules, in which many of the associated 
proteins associated with lead. Intercellular inclusions of 
proximal tubular cells are generated by these lead-binding 
proteins (Kwon et al., 2015).

Lead poisoning causes the normal anatomical organisation 
of hepatic lobules to be disrupted, as well as the disruption 
of the characteristic cord-like liver cells structure, 
hepatocytes that are hyperchromatic with transverse 
vacuoles, and congestion caused by sinuses (Bukola et al., 
2015). According to Abdel Moneim (2016), Lead acetate 
caused primary hepatic cell death which was followed 
by the expansion of the sinuses in the blood and central 
veins congested, and acute inflammatory cells incursion, 
primarily throughout the core region, also the disorder 
sling liver cells with nuclei bloated nuclear, emptying 
liver cells, and change fatty (steatosis), that included fat 
accumulation within cells. Abdel Moneim (2016) and 
Shatha et al. (2016) found a notable rise in free radical 
production, liver transaminase activities (ALT and AST), 
as well as total bilirubin levels in male Wistar rats exposed 
to experimental lead-induced poisoning. Fluidity of the 
microsomal membrane in the liver, ROS formation, as 
well as hepatocytic histogram variation were all associated 
with increased serum ALT and AST action (Shatha et al., 

2016).

Plants including such Flavonoids, rutines, glycosides, 
terpenoids, tannins and alkaloids are present in various 
kind of bioactive compounds, which act as antioxidants in 
stressful situations and have important protective properties 
such as antitumor, anti-inflammative, anti-mutagenic and 
immunomodular anti-hepatic toxicity (Blumberg et al., 
2013). Cranberries are one of these plants, and they’ve 
long been prized for their medicinal properties. Native 
Americans used them to treat bladder and kidney problems. 
Cranberries contain a variety of bioactive compounds, 
including fructose, vitamin C, flavonoids, anthocyanidins, 
catechins, triterpenoids, and phenolic compounds, which 
are widely used for their health benefits and anti-cancer 
properties (Hisano et al., 2012).

Cranberry’s flavonoids scavenge free radicals, superoxide 
radicals, hydroxyl radicals, and lipid peroxidation, 
preventing mitochondrial destruction, degradation, and 
membrane integrity loss (Lapshina et al., 2015). Previous 
research has found that flavonoids in cranberry extract 
(CBE) have the ability to lower ALT and AST elevated 
concentrations and inhibit lipid membrane droplet buildup 
in rat liver models (Cheshchevik et al., 2012). Cranberry 
extract powder (CBE) is also used in food to boost the 
body’s antioxidant defenses.

The polyphenol compounds found in Vaccinium 
macrocarpon (American cranberry) possess tremendous 
and valuable properties against both infections, tumors, 
cancers and mutations. These polyphenols’ concentration 
in cranberries increases as the fruit ripens and the size 
of the fruit grows. Anthocyanins contain six aglycones. 
Phenolic acid, which includes hydroxybenzoic acid and 
hydroxycinnamic acid, is the second most prevalent 
compound in CBE. However, benzoic acid is found in 
significant quantities. Just three forms of hydroxybenzoic 
acid are found in smaller amounts: 2, 4-dihydroxybenzoic, 
p-hydroxybenzoic, and ohydroxybenzoic. Likewise, the 
hydroxycinnamic also includes different ingredients like 
pcoumar, ferulic acid, sinapic and caffeic. Terpenes are the 
third most plentiful bio-active compound but research 
on them has been limited compared to the polyphenolic 
composition. Flavonols can be found in cranberry fruit, but 
elderberry has a higher concentration (Hafez et al., 2014).

Cranberry extract’s protective function in lead acetate 
(LD)-induced hepato-nephrotoxicity has yet to be fully 
investigated. As a result, the objective of this work was to 
evaluate the protective and therapeutic potential effects of 
cranberry extract in rats with hepato-renal toxicity caused 
by lead poisoning.
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MATERIALS AND METHODS

CHemiCals and otHer reagents
Company of Sigma Chemical supplied the lead acetate (St. 
Louis, MO, USA). Prior to administration, the lead was 
diluted with distilled water. The other chemicals utilized 
in this investigation were all analytical quality, kept in a 
controlled environment, and obtained from well-known 
commercial sources.

Plant material
Virgin Extracts (TM), China, provided the cranberry 
water extract (CBE). Cranberry was supplied a period of 
six weeks to adult rats daily via oral gastric gavage tube at 
a dose of 75 mg/kg (1/150 LD50) and 150 mg/kg (1/75 
LD50).

Cbe analysis by gaseous CHromatograPHy/ mass 
sPeCtrometer (gC–ms)
At the Mycology and Biotechnology Regional Center, 
Al-Azhar University, in Nasr city, Cairo, Egypt, the 
cranberry extract chemical composition was determined 
using a detectable GC1310-ISQ mass spectrometer 
(Thermo Scientific, Austin, TX, United states). A direct 
capillary column TG–5MS (30 m x 0.25 mm x 0.25 m 
film thickness) was used in the GC–MS scheme. At first, 
the temperature of column oven was maintained at 50°C, 
after which increased at a rate of 5°C/min to 230°C, held 
for two minutes, and then boosted at a rate of 30°C/min 
to 290°C, held for two minutes. Temperatures for injection 
and MS transmission lines were maintained at 250 and 
260 degrees Celsius, respectively, and Helium was utilized 
as a carriage gas at a regular flow speed of 1 ml/min. The 
solvent time limit was three minutes and the Auto sampler 
AS1300 injected 1μL diluted samples automatically in the 
split mode together with GC. In full scan mode, EI mass 
spectrum was captured over the range of m/z 40–1000 at 70 
eV ionization voltages. The temperature of the ionization 
chamber was established to 200°C. By comparing the 
stability times and mass spectrometry of the components 
to those of the WILEY 09 and NIST 11 mass spectral 
databases, the elements were detected.

animal study
etHiCal issues
The present study has already been authorized by the 
Zagazig University’s institutional Animal Care and 
Use Committee with the authorization number (ZU- 
IACUC/2/F/169/2019).

animals
The experimental investigation of this study used a 
total number of 40 male adult albino rats weighing 
approximately 200 ± 20 gms, obtained from the Central 

Animal House, Faculty of Veterinary Medicine, Zagazig 
University. They were allowed to acclimatize for 2 weeks. 
They were kept at 22±2℃ and humidity of 60% for a 
12-hours light-dark period in stainless steel cages in a 
controlled environmentally-conditioned area. During the 
adaptation phase, each animal was fed an ad libitum diet 
(Dyets Inc., Bethlehem, PA) and had free access to water.

exPerimental design
After acclimatization, rats were divided into four groups 
(10 rats per group) and given an oral daily dose by gavage 
method of various treatments.

grouP i (normal Control grouP)
Each rat was given 1 ml of distilled water orally for 6 weeks 
(Abdel-Maksoud et al., 2015a).

grouP ii (Positive Control grouP)
Each rat was given lead acetate at a dose of 50 mg/kg orally 
for 6 weeks (Sri et al., 2017).

grouP iii
Each rat was given lead acetate at a dose of 50 mg/kg 
followed by cranberry extract suspended in distilled water 
at a dose of 75 mg/kg for 6 weeks (Abdel-Maksoud et al., 
2015a).

grouP iv
Each rat was given lead acetate at a dose of 50 mg/kg 
followed by cranberry extract suspended in distilled water 
at a dose of 150 mg/kg for 6 weeks (Abdel-Maksoud et al., 
2015a).

blood samPles
After the experiments ended, each group of rats was fasted 
nightly, weighted, then euthanized via cervical dislocation. 
Blood was drawn in glass test tube (without EDTA) and 
left at the room temperature to coagulate for 20 min until 
centrifugation on 3000 rpm for ten min. The serum has 
been carefully obtained and deposited at -20°C until 
biochemical tests have been further used (in 2 weeks). 
The serum that was collected was used to estimate serum 
alanine aminotransferase (ALT) (Reitman and Frankel, 
1957), aspartate aminotransferase (AST) (Reitman and 
Frankel, 1957), lactate dehydrogenases (LDH) (Buhl and 
Jackson, 1978), total and direct bilirubin (Mashige et al., 
1981), alkaline phosphatase (ALP) (Tietz, 1983), total 
soluble protein (Yatzidis, 1977), albumin (Doumas and 
Biggs, 1972), globulin, creatinine (Henry, 1974), urea 
(Batton and Crouch, 1977), total cholesterol (TC) (Allain 
et al., 1974), triglycerides (TG) (Fossati and Prencipe, 
1982), HDL-C (Shih et al., 2000), LDL-C (Friedewald 
et al., 1972), VLDL-C (Friedewald et al., 1972), glucose 
(Trinder, 1969), triiodothyronine (T3) (Tammas and 
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Daniel, 2009), total thyroxine (T4) (Berbel et al., 2010), 
and tumor necrosis factor-alpha (TNF-α) (Beyaert and 
Fiers, 1998) levels.

PreParation of liver and renal samPles
After collecting blood samples, the liver and kidneys were 
removed and rinsed in sodium chloride solution (0.9%) 
then subdivided into two sections.

•	 First parts were collected and washed in distilled water 
and then homogenised for 15 min at 3000 rpm at 4°C 
before analysis with ten-fold quantity of physiological 
saline. The fractions of supernatants have been isolated 
and deposited at -20°C to assess reduced glutathione 
(GSH) (Beutler et al., 1963), superoxide dismutase 
(SOD) (Nishikimi et al., 1972), catalase activity (CAT) 
(Aebi, 1984), malondialdehyde (MDA) (Ohkawa 
et al., 1979), and total antioxidant capacity (TAC) 
(Koracevic et al., 2001).

•	 The second part was fixed in a 10% neutral formalin 
solution at room temperature then processed for tissue 
analysis.

HistologiCal assessment
Specimens from the rats liver and kidney have been taken 
then preserved inside a 15% neutral-buffered formalin 
solution for 48 h, dried in progressively rising ethanol 
(from 70 to 100%), cleaned in xylene, then inserted in 
paraffin-wax. A microtome was used to cut down five μm 
thickness paraffin (Leica RM 2155, England). The last 
step, the slides had been obtained then normally dyed 
using hematoxylin and eosin (HE) stains (Suvarna et 
al., 2018). The images had been captured with a Leica® 
microscopy and an AmScope® digital microscope camera. 
Lesions Score system was created as follows: system (-= 
-No Alterations 0%, += Mild Alterations 10-35%, ++= 
Moderate Alterations 40-50%, +++= Severe and ++++= 
Intense Alterations up to 60%).

analytiCal statistiCs
SPSS version 25 was used to analyze all of the data (Armonk, 
NY: IBM Corp). The data have been shown as a mean ± 
SE. For certain parameters, a one-way ANOVA was used 
to see if there were any differences between groups. The 
post-hock test was done using Duncan’s multiple range 
test. It was statistically significant if P < 0.05.

RESULTS AND DISCUSSION

Cbe analysis by gaseous CHromatograPHy/mass 
sPeCtrometer (gC–ms)
The Gas chromatography-mass results for cranberry 
extract oil samples, displayed in (Table 1), which revealed 
qualitative and quantitative variation in the chemical 

composition. In cranberry extract compounds were 
identified which accounted for 29.33% of stearic acid, 
10.44% Palmitic acid, 3% Oleic acid, 7.59% Myristic acid, 
6.94% furfural, 4.84% marphinan, 5.05% tridemorph, 
3.81% oxirane, 1.68% docosane, 1.7% lycopene, 19.97% 
Methyl furfural, 2.56% D-glucital, 1.5% glycan, 2.5% 
Dimethyl propanol and 1.22% siloxane.

Table 1: Chemical composition of cranberry extract.
RT Compound Name %
5.28 Stearic acid 29.33
6.41 Palmitic acid 10.44
6.74 Furfural 6.94
10.73 Morphinan 4.84
13.92 Tridemorph 5.05
15.75 0xirane 3.81
15.94 Docosane 1.68
18.02 Lycopene 1.7
19.30 Methyl furfural 19.97
21.71 D-glucital 2.56
23.45 Glycan 1.5
27.17 Myristic acid 7.59
35.23 Dimethyl propanol 2.5
39.46 Oleic acid 3
57 Siloxane 1.22

effeCts on serum bioCHemiCal assays
The results displayed in (Table 2) revealed a significantly 
difference in serum alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), lactate dehydrogenase 
(LDH), alkaline phosphatase (ALP), total soluble protein, 
albumin and globulin levels (P< 0.001) and also in serum 
total and direct bilirubin levels (P< 0.0001) between the 
four groups treated. In comparison with normal control 
group, oral intake of lead acetate at a dose of 50 mg/kg 
led to a substantial rise in serum alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), lactate 
dehydrogenase (LDH), total bilirubin, direct bilirubin and 
alkaline phosphatase (ALP) levels, and also a substantial 
reduction in the levels of total soluble protein, albumin 
and globulin in serum. In comparison to the group that 
received lead acetate, addition of 75 and 150 mg/kg 
cranberry extract led to a marked decrease in serum alanine 
aminotransferase (ALT), aspartate aminotransferase 
(AST), lactate dehydrogenase (LDH), total bilirubin, 
direct bilirubin, alkaline phosphatase (ALP) levels as well 
as a marked rise in total soluble protein, albumin and 
globulin levels in serum.

The findings in (Table 3) indicated a significantly 
difference in serum creatinine (P< 0.001) as well as serum 
urea (P< 0.0001) levels among the four treated groups. 
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In comparison with normal control group, oral intake of 
lead acetate at a dose of 50 mg/kg led to a substantial rise 
in serum creatinine and urea levels. In comparison to the 
group that received lead acetate, addition of 75 and 150 
mg/kg cranberry extract led to a marked decrease in serum 
creatinine and urea levels.

The data of (Table 4) demonstrated there had been a 
highly significant variation in serum total cholesterol 
(TC), triglycrides (TG), HDL-C, LDL-C as well as 
VLDL-C levels among the four treated groups (P< 0.001). 

In comparison with normal control group, oral intake of 
lead acetate at a dose of 50 mg/kg led to a substantial 
rise in serum total cholesterol (TC), triglycrides (TG), 
LDL-C and VLDL-C levels. Also, the level of HDL-C 
in serum has decreased significantly. In comparison to the 
group that received lead acetate, addition of 75 and 150 
mg/kg cranberry extract led to a marked decrease in serum 
total cholesterol (TC), triglycrides (TG), LDL-C and 
VLDL-C. Also, the level of serum HDL-C has increased 
significantly.

Table 2: Effect of cranberry extract on serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), 
lactate dehydrogenases (LDH), total and direct bilirubin, alkaline phosphatase (ALP), total soluble protein, albumin and 
globulin levels in normal and experimental groups of rats.
Groups parameters Normal group Positive control (lead 

acetate 50 mg/kg.b.w.)
Lead acetate (50 mg/
kg.b.w.) + Cranberry 
extract (75 mg/kg)

Lead acetate (50 mg/
kg.b.w.) + Cranberry 
extract (150 mg/kg)

ALT (U/L)  16 ± 0.70d  63 ± 2.82a  44.60 ± 1.86b  27.40 ± 2.01c

AST (U/L)  21.40 ± 1.02d  71.60 ± 4.11a  60 ± 2.38b  38 ± 1.87c

LDH (U/L)  1120 ±9.88d  1530.6±31.05a  1378.2±10.24b  1241.8±18.30c

Total bilirubin (mg/dl)  2.61 ± 0.07d  4.98 ± 0.16a  4.01 ± 0.07b  3.26 ± 0.14c

Direct bilirubin (mg/dl)  0.41 ± 0.02d  2.02 ± 0.05a  1.34 ± 0.06b  0.87 ± 0.02c

ALP (IU/L)  68 ± 2.12d  111.80 ± 2.70a  95.40 ± 1.77b  80 ± 1.81c

T.proteins (g/dl)  7.49 ± 0.20a  4.18 ± 0.18d  5.89 ± 0.06c  6.78 ± 0.14b

Albumin (g/dl)  3.95 ± 0.076a  1.99 ± 0.025d  2.75 ± 0.036c  3.15 ± 0.038b

Globulins (g/dl)  3.53 ± 0.13ab  2.19 ± 0.18c  3.14 ± 0.07b  3.63 ± 0.17a

abcd Means with different superscript within same row are statistically different at level P<0.05 according to Duncan’s multiple range 
test.

Table 3: Effect of cranberry extract on serum creatinine and urea levels in normal and experimental groups of rats.
Groups parameters Normal group Positive control 

(lead acetate 50 mg/
kg.b.w.)

Lead acetate (50 mg/
kg.b.w.) + Cranberry 
extract (75 mg/kg)

Lead acetate (50 mg/
kg.b.w.) + Cranberry extract 
(150 mg/kg)

Creatinine (mg/dl) 0.77 ± 0.022d  1.93 ± 0.007a  1.31 ± 0.039b  0.98 ± 0.011c

Urea (mg/dl) 23.24 ± 0.80d  53.38 ± 0.99a  43.04 ± 1.06b  34.78 ± 0.83c

abcd Means with different superscript within same row are statistically different at level P<0.05 according to Duncan’s multiple range 
test.

Table 4: Effect of cranberry extract on serum total cholesterol (TC), triglycrides (TG), HDL-C, LDL-C and VLDL-C 
levels in normal and experimental groups of rats.
Groups parameters Normal group Positive control (lead 

acetate 50 mg/kg.b.w.)
Lead acetate (50 mg/
kg.b.w.) + Cranberry 
extract (75 mg/kg)

Lead acetate (50 mg/
kg.b.w.) + Cranberry 
extract (150 mg/kg)

TC (mg/dl) 91.6000 ± 2.01494d 141.80 ± 1.88149a 120.80 ± 1.24097b 103.00 ± 3.27109c

TG (mg/dl) 67.0 ± 2.93c 101 ± 2.46a 87.60 ± 2.15b 80.8 ± 1.35b

HDL-C (mg/dl) 54.80 ± 1.77a 27.40 ± 1.20d 39.60 ± 1.86c 49.60 ± 1.88b

LDL-C (mg/dl) 23.40 ± 1.76d 94.20 ± 2.92a 63.68 ± 2.71b 37.24 ± 4.76c

VLDL-C (mg/dl) 13.44 ± 0.60c 20.20 ± 0.49a 17.52 ± 0.43b 16.14 ± 0.26b

abcd Means with different superscript within same row are statistically different at level P<0.05 according to Duncan’s multiple range 
test.
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The results displayed in (Table 5) showed a significantly 
difference in serum glucose, triiodothyronine (T3), total 
thyroxine (T4) as well as tumor necrosis factor-alpha 
(TNF-α) levels among the four treated groups (P< 0.001). 
In comparison with normal control group, oral intake of 
lead acetate at a dose of 50 mg/kg led to a substantial 
rise in serum glucose and tumor necrosis factor-alpha 
(TNF-α) levels as well as a significant reduction in serum 
triiodothyronine (T3) and total thyroxine (T4) levels. In 
comparison to the group that received lead acetate, addition 
of 75 and 150 mg/kg cranberry extract led to a marked 
decrease in serum glucose and tumor necrosis factor-
alpha (TNF-α) levels as well as a marked rise in serum 
triiodothyronine (T3) and total thyroxine (T4) levels.

Effect on antioxidant parameters in hepatic and renal tissue
The findings in (Table 6) indicated a significantly difference 
in reduced glutathione (GSH) level, superoxide dismutase 

(SOD), catalase activity (CAT), malondialdehyde (MDA) 
and total antioxidant capacity (TAC) in hepatic and renal 
tissue of the four assessment groups where (P< 0.001). In 
comparison with normal control group, oral intake of lead 
acetate at a dose of 50 mg/kg led to a marked reduction 
in reduced glutathione (GSH) level, superoxide dismutase 
(SOD), catalase activity (CAT) and total antioxidant 
capacity (TAC) of hepatic and renal tissues. Also, the level 
of malondialdehyde (MDA) has increased significantly 
in hepatic and renal tissues. In comparison to the group 
that received lead acetate, addition of 75 and 150 mg/
kg cranberry extract led to a marked development in 
reduced glutathione (GSH) level, superoxide dismutase 
(SOD), catalase activity (CAT) as well as total antioxidant 
capacity (TAC) in hepatic and renal tissue. Also, the level 
of malondialdehyde (MDA) has decreased significantly in 
hepatic and renal tissues.

Table 5: Effect of cranberry extract on serum glucose, triiodothyronine (T3), total thyroxine (T4) and tumor necrosis 
factor-alpha (TNF-α) levels in normal and experimental groups of rats.
Groups parameters Normal group Positive control (lead 

acetate 50 mg/kg.b.w.)
Lead acetate (50 mg/
kg.b.w.) + Cranberry 
extract (75 mg/kg)

Lead acetate (50 mg/
kg.b.w.) + Cranberry 
extract (150 mg/kg)

Glucose (mg/dl)  86 ± 2.44d  162 ± 2.77a  132 ± 3.44b  107.8 ± 2.81c

T3 (ng/ml)  0.438 ± 0.04a  0.101 ± 0.01d  0.178 ± 0.01c  0.331 ± 0.01b

T4 (nmol/L)  11.52 ± 0.27a  2.42 ± 0.13d  5.34 ± 0.25c  8.86 ± 0.10b

TNF-α (pg/ml)  2.13 ± 0.080d  12.61 ± 0.43a  8.02 ± 0.11b  5.18 ± 0.06c

abcd Means with different superscript within same row are statistically different at level P<0.05 according to Duncan’s multiple range 
test.

Table 6: Effect of cranberry extract on reduced glutathione (GSH), superoxide dismutase (SOD), catalase activity 
(CAT), malondialdehyde (MDA) and total antioxidant capacity (TAC) levels in hepatic and renal tissue of normal and 
experimental groups of rats.
 Groups parameters Normal group Positive control 

(lead acetate 50 mg/
kg.b.w.)

Lead acetate (50 mg/
kg.b.w.) + Cranberry 
extract (75 mg/kg)

Lead acetate (50 mg/
kg.b.w.) + Cranberry 
extract (150 mg/kg)

(Hepatic tissue)
GSH (nmol/g. tissue) 2.80 ± 0.032a  0.78 ± 0.022d  1.28 ± 0.097c  1.94 ± 0.079b

SOD (U/g. tissue) 3.70 ± 0.06a  1.09 ± 0.078d  1.94 ± 0.025c  2.81 ± 0.047b

CAT (U/g. tissue) 1.82 ± 0.030a  0.77 ± 0.026d  1.13 ± 0.046c  1.45 ± 0.032b

MDA (mmol/g. tissue) 16.22 ± 0.27d  40.96 ± 0.51a  28.36 ± 0.73b  20.18 ± 0.32c

TAC (mM/g. tissue) 1.26 ± 0.030a  0.58 ± 0.026d  0.87 ± 0.015c  1.08 ± 0.024b

(Renal tissue)
GSH (nmol/g. tissue) 2.14 ± 0.067a  0.66 ± 0.019d  1.06 ± 0.083c  1.75 ± 0.055b

SOD (U/g. tissue) 3.07 ± 0.032a  1.94 ± 0.059c  2.39 ± 0.161b  2.89 ± 0.018a

CAT (U/g. tissue) 1.27 ± 0.067a  0.64 ± 0.022d  0.84 ± 0.016c  1.06 ± 0.049b

MDA (mmol/g. tissue) 12.02 ± 0.48d  32.80 ± 1.13a  21.26 ± 0.70b  16.42 ± 0.35c

TAC (mM/g. tissue) 1.10 ± 0.037a  0.66 ± 0.034c  0.75 ± 0.018c  0.89 ± 0.024b

abcd Means with different superscript within same row are statistically different at level P<0.05 according to Duncan’s multiple range 
test.
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Table 7: Histological lesion score among different experimental groups of rats.
 Groups lesion Normal 

group
Positive control 
(lead acetate 50 
mg/kg.b.w.)

Lead acetate (50 mg/
kg.b.w.) + Cranberry ex-
tract (75 mg/kg)

Lead acetate (50 mg/
kg.b.w.) + Cranberry ex-
tract (150 mg/kg)

(Liver)
Congested blood vessels and sinusoids - +++ ++ ++
Degenerated hepatocytes - ++++ +++ +
Inflammatory cells aggregations - ++++ - -
Portal fibrosis - ++ - -
Kupffer cells hyperplasia - - ++ +
Diplocytes (Regenerative attampts) - - + +++
(Kidney)
Necrotic glomeruli - ++ - -
Shrunken/lobulated glomeruli - +++ +++ -
Tubular casts - +++ + -
Hemorrhages - ++++ - -

Histological lesions Score system (-: No Alterations 0%; +: Mild Alterations 10-35%; ++: Moderate Alterations 40-50%; +++: Severe 
and ++++: Intense Alterations up to 60%.

HistoPatHologiCal findings of liver and kidney 
tissue in different grouPs of rats
Table 7 and Figure 1 Representative Photomicrograph of 
rats liver (H and E, X400) demonstrating: (A) Structures 
of normal hepatic tissue. (B) Inflammatory accumulations 
replace necrotic liver cells (star). (C) Interlobular fibrotic 
strands (star). (D) Portal fibrosis besides congested blood 
vessels and proliferated bile duct epithelium (star), (E) 
Restore normal hepatocytes and hyperplastic kupffer cells 
with a few hepatocytes appeared apoptosis (arrow). (F) 
Apparently normal hepatocytes with prominent diplocytes 
(arrow) with still slight congested blood vessels. A) 
Control, B, C and D) Lead toxicity, E) Lead + Cranberry 
(75mg), Lead + Cranberry (150mg) n=10.

Table 7 and Figure 2 representative photomicrograph of rats 
kidney (H and E, X400) demonstrating: (A) Structures of 
normal renal tissue. (B) Renal tubules with severe necrosis 
and glomeruli (arrow) besides edema infiltrated with 
inflammatory cells (star). (C) Degenerated renal tubules, 
interstitial inflammatory cells infiltrations, extravasated 
erythrocytes (star) and vasculitis characterized by 
endotheliosis and vacuolar media (arrow). (D) Prominent 
homogenous more eosinophilic cats in the convoluted 
renal tubules (arrow), (E) remodeling the majority renal 
structures with regenerated attapts (arrow). (F) Apparently 
normal renal glomeruli and proximal tubules. A) Control, 
B, C and D) Lead toxicity, E) Lead + Cranberry (75mg), 
Lead + Cranberry (150mg) n=10.

There is various type of heavy metals within the ecosystem 
(waters, soil and dust) and this cannot be degraded. The key 
sources of heavy metals are various forms of anthropogenic 
practices including mining, melting and various types of 

industrial trash (Wu et al., 2015). Earth ‘s crust usually 
contains heavy metals in trace quantities, however in 
several aspects of everyday lives are they used, for example, 
Putters, self-washing ovens, vehicles, disinfectants, plastics, 
phones, sunlight power plates, fuel cells, as well as several 
other things (Karthik et al., 2016).

Heavy metals that count lead constitute a significant 
health hazard to living creatures (Abou-Kassem et al., 
2016; Khafaga, 2017; Saad et al., 2018). Throughout most 
aspects of nature, lead as well as other heavy metals are 
noticeable in conjunction with many other elements at 
very small pollution levels; thus, the existence of lead in the 
ecosystem does not perform any function in physiological 
systems. It might result in permanent health problems 
with a high rate of morbidity, like hepatic, nervous, and 
renal system diseases (Murata et al., 2009; Ekanem et 
al., 2015). Extreme lead poisoning causes problems with 
body function, including neurological, cardiovascular, 
hematologic, and reproductive issues. Elevated blood lead 
concentrations trigger the central nervous system (CNS) 
to malfunction, resulting in encephalopathy and edoema, 
which directly targets the cerebellum (Rao et al., 2014; 
Pal et al., 2015). Pregnant women who have an elevated 
concentrations of lead in their bodies may have abortion. 
Males’ potency was reduced when they were exposed to 
lead for a long time (Vigeh et al., 2011; Amadi et al., 2017).

Use of phytonutrients in the last years to protect against 
the dangers of environmental toxic substances has been 
viewed as a promising pharmacological strategy to 
maintain health of the body without side effects (Kumar 
et al., 2009). According to Vinson et al. (2001), cranberries’ 
antioxidant properties are unique among fruits in terms 
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of quality and quantity of antioxidants because they 
contain a high concentration of flavonoids and phenolic 
acids. Therefore, the goal of this work aimed to investigate 
if cranberry extract could protect rats from hepato-renal 
toxicity caused by lead acetate.

Figure 1: Reprehensive photomicrograph of rats liver (H and 
E, X400) showing; (A) Normal hepatic micromorphological 
structures; (B) Necrosis hepatocytes replaced by 
inflammatory aggregations (star); (C) Interlobular fibrotic 
strands (star); (D) Portal fibrosis besides congested blood 
vessels and proliferated bile duct epithelium (star); (E) 
Restore normal hepatocytes and heperplastic Kupffer cells 
with a few hepatocytes appeared apoptosis (arrow); (F) 
Apparently normal hepatocytes with prominent diplocytes 
(arrow) with still slight congested blood vessels. (A) Control; 
(B, C and D) Lead toxicity; (E) Lead + Cranberry (75mg), 
Lead + Cranberry (150mg) n=10.

GC/MS results of cranberry extract revealed that major 
identified compounds were 29.33% of stearic acid and 
10.44% Palmitic acid; major constituents identified 
in extract were displayed in (Table 1). Our findings are 
consistent with some previous research, which identified 
stearic and palmitic acids as the major components of the 
cranberry extract’s chemical composition (Pappas and 
Schaich, 2009; Glisan et al., 2016).

When compared to the normal group, the lead acetate-
caused liver damage markedly raised serum liver enzymatic 
activity (ALT, AST, LDH, and ALP), also total soluble 
serum protein, albumin and globulin concentrations 
were reduced significantly, as well as a large rates of 

liver histologic alterations. Increased hepatic enzymes 
have been utilized as assays of hepatic injury. They enter 
bloodstream as a result of lipid oxidation caused by hepatic 
membrane stability loss induced by lead poisoning (Farida 
et al., 2012; Laamech et al., 2017). Since plasma proteins 
in the liver, particularly albumin, are mainly synthesized, a 
substantial decrease of total protein in serum indicated liver 
dysfunction (Abdel-Maksoud et al., 2015a). Furthermore, 
because lead binds to plasma proteins, it disrupts protein 
synthesis in hepatocytes, which leads to variations among 
large amount of enzymes of hepatocytes (Shalan et al., 
2005). It moreover disrupts the signal of Ca2+ inside the 
cells, leading to endoplasmic reticulum’s demolition 
and reducing free amino acids application to synthesize 
proteins (Moussa and Bashandy, 2008; BaSalamah et 
al., 2018). Comparable findings were observed in rats 
given sub-lethal doses of lead acetate (1/20, 1/40, 1/60) 
by Ibrahim et al. (2012). Similar results in lead acetate-
intoxicated rats have been observed by El-Tantawy (2016) 
as well as Gargouri et al. (2017).

Figure 2: Reprehensive photomicrograph of rats 
Kidney (H and E, X400) showing; (A) Normal renal 
histomorphological structures; (B) Massive necrotic renal 
tubules and glomeruli (arrow) besides edema infiltrated with 
inflammatory cells (star); (C) Degenerated renal tubules, 
interstitial inflammatory cells infiltrarions, extravasated 
erythrocytes (star) and vasculitis characterized by 
endotheliosis and vacuolar media (arrow); (D) Prominent 
homogenous more eosinophilic cats in the convoluted 
renal tubules (arrow); (E) Remodeling the majority renal 
structures with regenerated attapts (arrow); (F) Apparently 
normal renal glomeruli and proximal tubules. (A) Control; 
(B, C and D) Lead toxicity; (E) Lead + Cranberry (75mg), 
Lead + Cranberry (150mg) n=10.
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In comparison to the group that received lead acetate, 
addition of 75 and 150 mg/kg cranberry extract led to 
a marked reduction in serum alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), lactate 
dehydrogenase (LDH), total bilirubin, direct bilirubin, 
alkaline phosphatase (ALP) levels as well as a marked rise 
in serum total soluble protein, albumin and globulin levels.

The current investigation found increased serum ALT, 
AST, LDH, and ALP (a marker of hepatocyte damage) 
activities as a result of oxidative stress caused by Pb+2. 
These enhanced activities could be linked to the spilling 
of these enzymes into bloodstream from damaged 
hepatocytes due to altered membrane permeability of 
hepatocytes (Shohda et al., 2009). Increased serum ALP 
activities indicate cellular damage caused by a loss of cell 
membrane functional integrity. Hesperidin effectively 
reduced the blood accumulation of Pb+2 and showed that 
the polyphenols of cranberries chelate Pb+2. Furthermore, 
polyphenolic hydroxyl groups or their active metabolites 
could bind with Pb+2 and increase its excretion, lowering 
Pb+2 accumulation and reducing its toxicity. Hesperidin, 
a cranberry flavonoid, is well known for its antioxidant 
properties (Chanet et al., 2012), can remove excess Pb+2 
from biological systems. Lipid metabolism modifications 
were triggered by Pb+2 and also serum and tissue lipids 
levels alterations. It is possible because Pb+2 in the liver 
has accumulated, which is important for lipid homeostasis. 
Excess Pb+2 causes cellular damage and functional 
hepatocyte abnormalities through lipid peroxidation 
(Britton et al., 1987). Since the liver plays such an important 
role in maintaining lipid homeostasis, excess Pb+2 can alter 
serum lipid concentration, which can reduce or increase 
atherosclerosis risk.

In preclinical studies, serum creatinine and urea are 
proposed for assessing kidney injury because they are 
regarded the most specified and susceptible markers of 
renal failure. Serum creatinine and urea concentrations are 
often low in the bloodstream, however they rise once the 
renal become ill or injured. Most rises in serum creatinine 
and urea are due to renal injury (Moussa and Bashandy, 
2008). This study demonstrated that rats fed lead acetate 
had higher concentrations of creatinine and urea leading 
to renal failure as compared to the normal control group. 
Ghoniem et al. (2012) made a same result, reporting that 
the treatment with lead acetate resulted in a considerable 
rise in serum creatinine and urea levels. In comparison to 
the group receiving lead acetate, intake of cranberry extract 
at a dose of 75 and 150 mg/kg led to a marked reduction of 
serum levels of creatinine and urea, showing that it would 
have a protective action of the kidneys versus renal toxicity 
caused by lead acetate. It could be because of its effective 
activity on lead acetate reactive oxygen species, which 
safeguards the kidney from tissue destruction through 

preserving membrane safety.

The significantly higher concentrations of total cholesterol 
and triglyceride of the lead acetate group had been caused 
whether by accelerated formation or reduced clearance, 
since lead is believed to trigger a lipoprotein cell surface 
receptor malfunction or restricted the enzymatic action 
of hepatic lipoprotein lipase (Liu et al., 2011). Pb+2 also 
decreased the cytochrome P-450 action which is crucial to 
bile acid biosynthetic pathway, that is the primary pathway 
in the body in order to remove cholesterol (Newairy and 
Abdou, 2009; Dewanjee et al., 2013). Offor et al. (2017) 
have reported similar results.

Peroxidation of lipid might still destroy various cell 
membranes, causing changes in blood pressures as well as 
regulation of the heartbeat. Considering the fact that LDL 
cholesterol (LDL-C) levels are higher as well as HDL 
cholesterol levels are lower (HDL-C). Overloading iron 
caused an increase in total cholesterol as well as triglycerides, 
as previously reported by Dabbagh et al. (1994) and Brunet 
et al. (1999). The Fe+3 produced an increase in serum or 
tissue cholesterol was often caused by alterations of liver 
enzymes gene expression, primarily HMG-COA reductase. 
This HMG-COA enzyme genomic alteration induced by 
heavy metals were reported as well (Kojima et al., 2004). 
In Fe poisoned rats, increased plasma lipids (PLs) could 
be due to increased FFAs and cholesterol levels. Cranberry 
polyphenols reduced the unusual scattering of membrane 
lipids in circulatory system and the elevated production of 
further harmful peroxides, that induce severe alterations 
in tissues and cells, possibly due to their antioxidant 
properties. Howard and Kritchevsky (1997) clarified that 
decreased cardio-vascular risk is generally associated with 
phytochemicals that reduce the level of high cholesterol as 
well as triglycerides consumption.

In comparison with normal control group, oral intake of 
lead acetate at a dose of 50 mg/kg led to a substantial 
rise in serum glucose and tumor necrosis factor-alpha 
(TNF-α) levels as well as a significant reduction in serum 
triiodothyronine (T3) and total thyroxine (T4) levels.

The pro-inflammatory cytokines in the liver (TNF-α, 
IL-1β, and IL6) were significantly upregulated after LA 
administration. Both BaSalamah et al. (2018) and Liu 
et al. (2018) reported that lead exposure promotes NF-
κB activation and enhanced inhibiting phosphorylated 
adenosine monophosphate-activated protein kinase 
(AMPK), that subsequently increases reactive oxygen 
species and inflammatory cytokines in serum and tissues. 
These findings match those of El-Tantawy (2016), who 
found a substantial elevation in the values of tumor 
necrosis factor-alpha as well as caspase-3 in the liver of rats 
exposed to lead acetate poisoning at a dose of 100 mg/kg 
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each day up to four weeks. Likewise, Gargouri et al. (2017) 
and El-Boshy et al. (2019) observed that rats exposed to 
lead acetate toxicity had greater levels of IL-1β, TNF-α, 
and IL-6 in serum.

In comparison to the group that received lead acetate, 
addition of 75 and 150 mg/kg cranberry extract led to 
a marked decrease in serum glucose and tumor necrosis 
factor-alpha (TNF-α) levels as well as a marked rise in 
serum triiodothyronine (T3) and total thyroxine (T4) 
levels.

Following that, several genetic expressions such as 
cyclooxygenase-2 (COX-2) as well as inducible nitric 
oxide synthase (iNOS) were modulated, resulting in a 
reduction in tumor necrosis factor-alpha (TNF-α) as well 
as Interleukin 1 beta (IL-1β) production according to 
Hosseini and Hosseinzadeh (2018). These findings agree 
with those reported by Fu et al. (2008), and El-Sherbiny 
et al. (2010), as well as Ali et al. (2018), in which the pro-
inflammatory serum TNF-α was decreased by cranberry 
extract.

In comparison with normal group, oral intake of lead 
acetate at a dose of 50 mg/kg led to a marked reduction 
in reduced glutathione (GSH) level, superoxide dismutase 
(SOD), catalase activity (CAT) and total antioxidant 
capacity (TAC) of hepatic and renal tissues. Also, the level 
of malondialdehyde (MDA) has increased significantly in 
hepatic and renal tissues.

Lead poisoning has a mechanistic and major role in the 
occurrence of oxidative stress possibly through increasing 
reactive oxygen species production and even exhausting 
the anti-oxidative enzymes strategy, as previously reported 
by El-Tantawy (2016); Laamech et al. (2017) and El-
Boshy et al. (2019). Moreover, Pb+2 attaches permanently 
to the thiol group of GSH and is eliminated into the 
bile according to Ercal et al. (2001) and El-Tantawy 
(2016). Moreover, it attaches toward additional SH-
having proteins, such as superoxide dismutase and catalase 
activity, lowering its function leading to increased lipid 
peroxidation as well as degradation of DNA, as previously 
reported by Andjelkovic et al. (2019). During this present 
investigation, rats subjected to lead acetate had a large 
increase in MDA values in both homogenized liver and 
kidney, as well as a substantial decrease in superoxide 
dismutase and catalase activity, and also a substantial drop 
in glutathione values. These findings were in agreement 
with BaSalamah et al. (2018). He found a large elevation 
in the values of malondialdehyde of liver and kidney, as 
well as a substantial drop in Glutathione Peroxidase 
and catalase activity, whereas superoxide dismutase was 
unaffected. Hepatic MDA was markedly increased in this 
context, while the levels of reduced glutathione as well as 

superoxide dismutase in the rats exposed to lead acetate 
toxicity were statistically decreased according to Baxla et 
al. (2013). In addition, Laamech et al. (2017) demonstrated 
that lead-exposed mice showed a marked decrease in the 
anti-oxidative enzymes of the liver including CAT, SOD, 
GPx, and GSH as well as a rise in MDA levels. These 
results are in agreement with those reported by El-Sokkary 
et al. (2005); Mehana et al. (2012); Dewanjee et al. (2013) 
and Gargouri et al. (2017) as well.

In the present study, cranberry extract co-treatment at 
75 and 150 mg/kg led to a marked increase in the levels 
of reduced glutathione (GSH), superoxide dismutase 
(SOD), catalase activity (CAT), as well as total antioxidant 
capacity (TAC) in the tissues of liver and kidney, also a 
marked reduction in malondialdehyde (MDA) levels in 
comparison to lead-acetate group, which shows a large 
enhancement in blood profile changes according to El-
Maddawy and El-Sayed (2018). Moreover, liver injury was 
slightly lowered by CBE, which had been histologically 
indicated, as well as linked to limited improvement in liver 
enzymes, returned standard serum total protein, albumin, 
and globulin values, as well as decreased lipid peroxidation, 
as evidenced by lower MDA concentrations in the liver, as 
well as repaired superoxide dismutase and catalase activity. 
These findings possessed the capability of cranberry 
extract in maintaining cellular membranes as well as 
safeguarding tissues against destruction by free radicals, as 
well as enhancing the regeneration of damaged cells and 
hence decreasing transaminase and ALP release from the 
cytosol as previously reported by Abdel-Daim and Abdou 
(2015), El-Maddawy and El-Sayed (2018), Cheraghi and 
Roshanaei (2019) as well.

In comparison to control rats, the histopathological results 
demonstrated reversible degrading impacts affecting 
hepato-renal formation of rats subjected to lead-acetate 
toxicity, which could have been attributable to increased 
oxidative damage (Figure 1B-1D) and (Figure 2B-
2D). These degenerative changes have been observed on 
female albino rats following exposure to lead and because 
of oxidative damage as well as hepato-renal oxygen free 
radicals (Ghoniem et al., 2012). This investigation has 
demonstrated that lead acetate administration of lead-
acetate resulted in several hapatic histological changes, 
including PV obstruction, Kupffer cell hyperplasia, 
the inflammatory cell central region, blood sinusoidal 
contraction, and hepatocyte binucleation many histological 
changes in the liver, including PV congestion, Kupffer cell 
hyperplasia, focal area of inflammatory cells, contraction 
of blood sinusoids, as well as double nucleus formation of 
liver cells. Dehkordi et al. (2015); Omotoso et al. (2015) 
have reported similar results. The contact between Pb+2 
and enzymes as well as tissue proteins involved in the 
liver, that mostly interacts with the anti-oxidative system 
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and leads towards oxygen free radicals production, could 
cause hepatic inflammatory cells formation upon toxicity 
caused by lead-acetate. These could be used to simulate 
the reactions that cause inflammation according to Johar 
et al. (2004). Binucleation, as seen in this study, could 
be a response to cellular damage that typically shown 
through renewable cells (Gerlyng et al., 1993). Lead 
stimulates the phagocytic action of sinusoidal cells by 
increasing stellate sinusoidal macrophages in response to 
autophagy elevation often throughout liver tissue, which 
aids throughout eliminating removal of excessive Pb+2 as 
well as accompanying metabolites, according to findings 
of this study. The resulting hyperplasia of Kupffer cells 
is a detoxification defense technique (Ilić et al., 2014). 
Histopathological examinations of the liver reveal changes 
that indicate hepatic tissue destruction probably as a result 
of heavy metal cycling. Gajawat et al. (2005) clarified that 
toxic metal generate mercaptides containing cysteine’s 
sulfhydryl group as well as weaker steady compounds 
among several chains of amino acids, which indicate 
hepatic tissue destruction.

Throughout comparing with Pb+2 rats treated group, Figure 
1E revealed the big importance of using cranberry extract, 
which showed a significant improvement in histological 
structure of rats hepatic tissues as well as fewer pathogenic 
alterations. Cranberry extract has been shown to have 
identical improvements actions occurring in the rats 
hepatic tissues upon alterations caused by lead-acetate 
toxicity (Koriem, 2009).

Lead acetate administration resulted in glomerular 
changes, according to our histological examination of 
renal tissue. These changes included glomeruli atrophy and 
tubular epithelial cell degradation, which was consistent 
with previous research (Abdou and Hassan, 2014; Sharma 
and Singh, 2014). The cytoplasmic degradation noticed 
could be due to lysosomal hydrolytic enzyme leakage (Del 
Monte, 2005).

Cranberry extract has been shown to preserve histological 
integrity in destroyed liver and renal tissue with parenchyma 
necrosis, tubular expansion, and hyperemic conditions 
(Abdel-Maksoud et al., 2015b). The use of cranberry extract 
to lead-treated rats enhanced the structure and partially 
restored the investigated parameters to standard levels, 
as well as reducing the histopathological modifications 
rigidity (Figure 2E). Our observations appeared familiar 
to that by Abdel-Maksoud et al. (2015c) publications, 
showing similar interference impacts of excess iron in 
experimental rats.

Paracetamol-treated rats for hepatic tissues were found to 
have normal histoarchitecture after the use of cranberry 
extract, according to Abdel-Maksoud et al. (2015b). 

The existence of flavonoids was discovered during a 
phytochemical preliminary examination of cranberry 
extract. Flavonoids (or bioflavonoids) are natural 
components that can modulate the enzymatic activity 
of catalase and superoxide dismutase as well as influence 
multiple cellular systems’ behaviors. They also have anti-
inflammatory, antihepatotoxic, antitumor, anti-allergic, 
anti-osteoporosis and antioxidant properties (Ilić et al., 
2014; Abdel-Maksoud et al., 2015a).

CONCLUSIONS AND 
RECOMMENDATIONS

In conclusion, the present study demonstrates that 
cranberry supplementation has protective effects against 
hepato-renal toxicity caused by lead acetate in rats. This 
could result from its antioxidant action, which includes the 
power of chelating ROS as well as prevent peroxidation of 
lipids, that can often cause cellular injury in the hepato-
renal system. Furthermore, this could be a key toward the 
development of new free radical products that are both safe 
and effective.

NOVELTy STATEMENT

This study discovers the protective activity of cranberry 
extract that can be beneficial for the treatment of lead ac-
etate-induced liver and renal toxicity. This study will help 
the researcher to uncover the critical areas that focus on 
evaluating of cranberry extract as a promising new agent in 
the treatment of certain type of liver and renal inflamma-
tion that many researchers were not able to explore. Thus, 
a new theory to explain the correlation between protective 
activity of cranberry extract and the level of antioxidant 
enzymes in liver and renal tissue may be arrived at.
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