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INTRODUCTION

The regulation of energy balance involves a complex 
network of interactions between numerous factors 

such as the circulating nutrients, hormones, peptides, and 
neuropeptides. Energy homeostasis assures a stable balance 
between energy consumed and expended. This balance is 
established via metabolic communications between several 
central and peripheral regulators (Lopez et al., 2007; 

Wren and Bloom, 2007). Among these, the hypothalamic, 
hepatic and renal cellular metabolism, metabolic signaling 
and effect on the overall body metabolism are prominent 
contributors to the net metabolic state. Noticeably, obesity 
has developed into an issue of considerable concern. 
Generally, overweight gives rise to the development of 
metabolic syndrome (MetS or syndrome X). Although the 
pathophysiology of the MetS is not completely understood, 
it has been found to be linked to an elevated incidence of 
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cardiovascular diseases, insulin resistance, diabetes mellitus 
and neurological complications (Catharina et al., 2018). 

Recently, some basic cellular metabolic pathways 
demonstrated a remarkable part in this physiological 
network. AMP‐activated protein kinase (AMPK) is the 
core energy sensor in any given cell. Activation of AMPK 
following cellular energy stores depletion is essential for 
proper energy homoeostasis. At a hypothalamic level, the 
AMPK pathway, including the acetyl‐CoA carboxylase 
(ACC) and fatty acid synthase (FAS), is believed to 
integrate the peripheral hormonal and several metabolic 
signals (López, 2018; Lopez et al., 2007). Hypothalamic 
AMPK is directly linked to changes in feeding behavior, 
brown adipose tissue (BAT) activity, browning of white 
adipose tissue (WAT), liver metabolic function and muscle 
metabolisms (López, 2018). Given their vital function 
in cellular metabolism, mitochondria are crucial for the 
pathophysiology of diabetes. The full implication of aerobic 
cellular respiration pathways including glycolysis, TCA) 
and oxidative phosphorylation containing the electron 
transport chain (ETC) and chemiosmosis (Anderson 
et al., 2018) as well as the transporters involved in such 
mechanisms remains understudied; both at central and 
peripheral levels. The TCA, a prime metabolic pathway for 
different aerobic processes in an animal tissue and ultimate 
pathway for the oxidation of carbohydrates, lipids and 
proteins, is essential for gluconeogenesis, transamination, 
deamination and lipogenesis (Melendez-Hevia et al., 1996).

Nowadays different treatments such as insulin therapy, 
pharmacotherapy, and diet therapy are followed to control 
diabetes. Numerous glucose-lowering medications exert 
anti-diabetic effects via several mechanisms (Bathaie et 
al., 2012; Hui et al., 2005). These therapeutics potentially 
give rise to various secondary complications including 
cardiovascular diseases, kidney failure, liver injury and 
mental disorders (Mohammed et al., 2013). Dapagliflozin, 
the sodium glucose co-transporter-2 (SGLT-2) inhibitor, 
reduces blood glucose level in diabetic individual 
regardless of insulin level. It acts via suppressing renal 
glucose reabsorption and increasing urinary glucose 
excretion ( Jabbour et al., 2018). Therefore, an appropriate 
management of T2DM should include a combination 
between pharmacotherapy and healthier lifestyle choice 
of a balanced dieting and exercise (Franz et al., 2010). 
Furthermore, natural products and its derived bioactive 
molecules may possibly represent proper alternatives for 
the drug treatment of T2DM without adverse effects. 
Tremendous amount of medicinal plants and its natural 
active principles have been reported to possess a certain 
degree of therapeutic nature against diabetes (Patel et al., 
2012). Several medicinal plants have been used in folk 
medicine to control diabetes and associated conditions 
(Arulselvan et al., 2014).

Gum Arabic (Acacia Senegal, GA) is a water-soluble 
dietary fiber with minimal digestibility in humans or 
animals. GA contains a mixture of polysaccharides, 
oligosaccharides and glycoproteins. It has the ability to 
delay the absorption and digestion of carbohydrates thus 
contributing a body weight reduction and glycemic control 
(Ahmed, 2018; Babiker et al., 2017; Babiker et al., 2018). 
The main objective of this study was to explore the potential 
molecular implication of the mitochondrial citrate carrier 
1 and 2 (CIC1 and CIC2), isocitrate dehydrogenase 1 
and 2 (IDH1 and IDH2), cytochrome c oxidase (Cyt-C 
or complex IV) and serine hydroxymethyl transferase 
(GlyA or SHMT) in the hypothalamic, hepatic and renal 
tissues of HFHS-induced MetS in male Sprague Dawley 
rats orally administered with gum arabic (GA) and/or a 
hypoglycemic drug (dapagliflozin).

MATERIAlS AND METhODS

ExpErimEntal animals
Fifty male Sprague Dawley rats (150±30 gm) were obtained 
from the central animal house of Faculty of Veterinary 
Medicine, Zagazig University. All animal experiments 
were conducted following the procedures approved by the 
Zagazig University Institutional Animal Care and Use 
Committee (IACUC) NO. (ZU-IACUC/2/F/94/2019).

Drugs anD DiEt prEparations
Gum Arabic powder was obtained from a trusted local 
market, purified and sieved from any impurities. The fine 
powder was dissolved in distilled water, prepared daily and 
the solution was given to rats at a dose of 500 mg/kg of 
body weight per day during the 4 weeks of the experiment 
(Georgiadis et al., 2014). Dapagliflozin tablets were crushed, 
dissolved in distilled water and orally administered to the 
rats at a dose of 1 mg/kg for 4 weeks (Han et al., 2008). 
Each 1 kg of diet composed of lard (350 g), fructose (170 
g) and 480g chow.

hfhs- inDucED mEtabolic synDromE rat moDEl
Induction of metabolic syndrome was made according 
to previously described protocol (King and Austin, 2017; 
Nakajima et al., 2015; Wong et al., 2016) by feeding the 
prepared diet and offering drinking water containing 10% 
sucrose. The rats were housed for 8 weeks. Body weight and 
fasting blood glucose were determined once per week. This 
animal model has been previously validated and reported 
by our study group (Alaa, 2019; El-naggar and El-Dawy, 
2019; Elkahky, 2019).

ExpErimEntal DEsign
Fifty rats were randomly divided into 5 groups with each 
of 10 rats as follow: a. control group: fed on standard 
rat diet and water for 12 weeks, b. HFHS-induced MS 
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group: fed on HFHS diet for the 12 weeks period of 
experiment, c. HFHS- induced MetS-supplemented 
with gum arabic (500mg/kg) during the last 4 weeks, d. 
HFHS- induced MetS-administered with dapagliflozin 
(1mg/kg) during the last 4 weeks and e. HFHS- induced 
MetS-co-administered with gum arabic (500mg/kg) and 
dapagliflozin (1 mg/kg) during the last 4 weeks.

sampling
At the end of experimental period, blood samples were 
collected from each rat via median eye can thus in sodium 
fluoride for measuring blood glucose level and without 
anticoagulant for serum hormonal assays. Serum glucose 
was determined by oxidase method using Spectrum 
Diagnostics glucose kit (Spectrum Diagnostics, Egypt) (El-
Gayar et al., 2012) and serum insulin level was estimated 
using ELISA rat insulin kits method (Ray Biotech) 
(Wang et al., 2013) following manufactures instructions. 
Immediately after sacrificial procedure, the hypothalamus, 
kidney and liver were excised, wrapped in aluminum foil 
and immediately snap-frozen in liquid nitrogen for RT-
PCR analysis for the gene expression.

rt-pcr
The used real time PCR assay has been previously reported 
(Arisha et al., 2019; Khamis et al., 2020). Briefly, total RNA 
was extracted from the hypothalamus, liver and kidney 
using Trizol (Invitrogen; Thermo Fisher Scientific, Inc.) 
(Arisha and Moustafa, 2019) and the cDNA synthesis 
was performed using the Hi Sen Script™ RH (-) cDNA 
Synthesis Kit (iNtRON Biotechnology Co., South Korea) 
in a Veriti 96-well thermal cycler (Applied Biosystems, 
Foster City, CA). For analysis of gene expression, using 
the specific primers (Table 1), the real-time RT-PCR was 
performed in a Mx3005P Real-Time PCR System (Agilent 
Stratagene, USA) using 5x HOT FIRE Pol Eva Green 
qPCR Mix Plus (Solis Bio Dyne, Tartu, Estonia) with 
initial denaturation at 95 °C for 12 minutes followed by 40 
cycles of denaturation at 95 °C for 15 seconds, annealing 
at 60 °C for 30 seconds, and extension at 72 °C for 30 
seconds. The expression level of the target genes listed in 
Table 1 was normalized using the mRNA expression of 
two known house-keeping genes (β-actin and GAPDH) 
as recommended by the MIQUE guidelines (Bustin et 
al., 2009). The ΔΔCT Cp-method with the geometric 
mean of the reference genes for normalization was 
performed (Hellemans et al., 2007). Results are expressed 
as fold-changes compared to the control group (Livak and 
Schmittgen, 2001).

statistical analysis
One-way analysis of variance (ANOVA), followed by 
Post hoc Tukey test was used. Analysis was done using 
GraphPad prism 7 (GraphPad Software Inc., San Diego, 

189 CA, USA). Results were reported in means ± SEM 
(Standard Error of Mean). The value of P < 0.05 was used 
to indicate statistical significance.

Table 1: Primers Sequences used for real time PCR.
Gene Primers
CIC1 F AGTCTTCACGTATTCGGTCTC

R CCGAATACGTGAAGACTCATT
CIC2 F CCGTGAAGGTGAAATTCATTT

R GCTACTGTACTGAAGCAGGTT
IDH1 F CTCTGTGGCCCAAGGGTATG

R GGATTGGTGGACGTCTCCTG
IDH2 F CCTGCTGTTCGCTCTCC

R GCTTCGCCACCTTGATCCT
Cyt-C F TCGCCGACCGTTGACTATTCTCT

R AAGATTATTATAAATGCATGGGC
GlyA F CAAAAGCAGTTATGGCAGCA

R ACATCAATTGCTTCTGTTCTC
AMPK F CTCGCCCAATTATGCTGCAC

R GGGAGAGTTCCACACAGCAA
ACC F AACAGTGTACAGCATCGCCA

R CATGCCGTAGTGGTTGAGGT
FAS F GAGTATACAGCCACCGACCG

R AGTTGCACACCACAAGGTCA
GAPDH F TCCCTCAAGATTGTCAGCAA

R AGATCCACAACGGATACATT
β-actin F CCACCATGTACCCAGGCATT

R CGGACTCATCGTACTCCTGC

RESUlTS

hypothalamic mrna ExprEssion:
A significant upregulation (P < 0.01) in the hypothalamic 
expression of AMPK and down-regulation (P<0.01) in the 
expression of ACC and FAS were noticed in the HFHS 
induced MetS group compared to control rats (Figure 1). 
Supplementation of diabetic rats with GA powder (500mg/
kg) showed a significant down-regulation (P<0.05) in 
AMPK and up-regulation (P<0.01) of ACC (Figure 1). 
Treatment of diabetic rats with dapagliflozin (1mg/kg) 
significantly down-regulated (P<0.001) the hypothalamic 
expression of AMPK and up-regulated (P < 0.01) ACC and 
FAS compared to the diet induced MS group (Figure 1). A 
more ameliorative effect was obtained by the combination 
between dapagliflozin with GA (Figure 1). 

The hypothalamic gene expression of CIC1, IDH1, and 
Cyt-C were down-regulated (P<0.001), whereas no 
significant alteration in the expression of CIC2, IDH2 and 
GlyA were noticed in the HFHS- induced MetS group 
(Figure 1). Supplementation of diabetic rats with GA 
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powder (500mg/kg) and/or treatment with dapagliflozin 
(1mg/kg) significantly up-regulated (P<0.01) the 
hypothalamic expression of CIC1, IDH1, and Cyt-C 
compared to the MetS group (Figure 1). The combination 
between dapagliflozin with GA significantly up-regulated 
(P < 0.001) the hypothalamic expression of CIC1, CIC2, 
IDH1, IDH2 and Cyt-C but not GlyA compared to the 
MetS group (Figure 1).

Figure 1: Hypothalamic changes in gene expression 
(A-I). A. Hypothalamic AMPK, B. Hypothalamic 
ACC, C. Hypothalamic FAS, D. Hypothalamic CIC1, 
E. Hypothalamic CIC2, F. Hypothalamic IDH1, G. 
Hypothalamic IDH2, H. Hypothalamic Cytc and I. 
Hypothalamic GlyA. Relative expression was calculated as 
a percentage of the control value. Data are presented as 
means ± SEM. Means bearing different superscripts were 
significantly different at P < 0.05.

hEpatic mrna ExprEssion
The hepatic gene expression of CIC1, IDH1, IDH2, 
Cyt-C and GlyA were significantly down-regulated (P 
< 0.01) in the HFHS induced MetS group compared to 
control rats (Figure 2). Supplementation of diabetic rats 
with GA powder significantly up-regulated (P<0.05) the 
hepatic expression of CIC1, IDH1, IDH2 and GlyA 
compared to the MetS (Figure 2). Treatment of diabetic 
rats with dapagliflozin (1mg/kg) as well as the combination 
between dapagliflozin with GA induced a more effective 
ameliorative effect as shown in Figure 2.

rEnal mrna ExprEssion
The renal gene expression of CIC1, CIC2, Cyt-C and 
GlyA was significantly down-regulated (P<0.01) in 
HFHS-induced MetS compared to control (Figure 

3). Supplementation of diabetic rats with GA powder 
(500mg/kg) significantly up-regulated (P<0.001) the 
renal expression of CIC1, Cyt-C and GlyA compared 
to MetS (Figure 3). Also, treatment of diabetic rats with 
dapagliflozin (1mg/kg) significantly up-regulated (P < 
0.001) the renal expression of CIC1, CIC2, IDH1 Cyt-C 
and GlyA compared to the MetS group (Figure 3). The 
combination between dapagliflozin with GA induced a 
more effective ameliorative effect as shown in Figure 3.

Figure 2: Hepatic changes in gene expression (A-F). A. 
Hepatic CIC1, B. Hepatic CIC2, C. Hepatic IDH1, D. 
Hepatic IDH2, E. Hepatic Cytc and F. Hepatic GlyA.
Relative expression was calculated as a percentage of the 
control value. Data are presented as means ± SEM. Means 
bearing different superscripts were significantly different 
at P < 0.05.

DISCUSSION  

Obesity is a result of a disturbance affecting the metabolic 
homeostasis where excessive food consumption is 
accompanied by an inadequate activity. It has been linked to 
metabolic changes in the hypothalamus, liver and kidney. It 
is concomitant to co-morbidities involving cardiovascular 
diseases, insulin resistance, type 2 diabetes mellitus 
(T2DM), and even cancer (van der Klaauw and Farooqi, 
2015). A common consequence of obesity is metabolic 
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syndrome (MetS), a condition that predispose individuals 
to the development of cardiovascular disease and T2DM 
(Ye, 2013). (Choudhury et al., 2017) It constitutes a leading 
public health problem of the modern era. Recently, herbal 
plants and their extracts have been widely investigated as an 
alternative or supportive agent over drugs in the treatment 
against different diseases including T2DM   (Choudhury 
et al., 2017). These herbal supplements have the advantage 
of being generally non-toxic. A standard supplementation 
with plant derivatives to induce hypoglycemia has 
been practiced in folk medicine from very ancient time. 
Nonetheless, the beneficial effects of medicinal plants on 
pancreatic dysfunction in diabetic patients have been widely 
reported (Assaei et al., 2016). The present study provides 
novel insights on the central and peripheral mechanisms 
involved in the development of HFHS-induced metabolic 
syndrome as well as investigating the effect of gum arabic 
alone or in combination with a hypoglycemic therapeutic 
agent (dapagliflozin) to treat diet induced MetS.

Figure 3: Renal changes in gene expression (A-F). A. Renal 
CIC1, B. Renal CIC2, C. Renal IDH1, D. Renal IDH2, 
E. Renal Cytc and F. Renal GlyA. Relative expression 
was calculated as a percentage of the control value. Data 
are presented as means±SEM. Means bearing different 
superscripts were significantly different at P<0.05.

Animal models are essential for proper understanding of 
the pathophysiology of type 2 diabetes mellitus (T2DM), 
MetS and its associated complications (Arndt et al., 2013). 
Manipulation of the dietary composition by feeding a high 
energy diet is a valid approach for inducing obesity and 
its associated complications in rodents. This model reflects 
the mechanism of obesity-induced diabetes in humans 
(Gilbert et al., 2011; King and Bowe, 2016). This animal 
model has been extensively studied and validated by our 
group as described in (Alaa, 2019; El-naggar and El-Dawy, 
2019; Elkahky, 2019). The hypothalamic inflammation has 
been reported as a vital step in the development of such 
complications, the exact molecular mechanisms underlying 
this response of hypothalamic neurons to HFD remains 
not fully understood. Remarkably, the hypothalamic 
inflammatory response was clear within days of the 
consumption of a HFD long before any significant weight 
change in rodents (Thaler and Schwartz, 2010). 

Hypothalamic AMPK and its associated pathway have 
emerged as a key regulator in energy metabolism and 
lipid homeostasis (Lopez, 2017). Both fasting and high-
fat dieting (HFD) were reported to increase the activity 
of AMPK in the hypothalamus (Cavaliere et al., 2018; 
Martin et al., 2006; McCrimmon et al., 2004). In contrast, 
feeding and hypothermia were reported to decrease 
AMPK activity in the hypothalamus (Cao et al., 2017; 
McCrimmon et al., 2004). Consequently, the change 
in AMPK activity modulates the activity of acetyl CoA 
carboxylase (ACC) (Choi et al., 2017; Li et al., 2014) as 
well as fatty acid synthase (FAS) (López, 2018; Lopez et al., 
2007). However, six weeks dietary consumption of HFD 
did not modify the hypothalamic expression of AMPK 
although an increase in the level of pAMPK was noticed 
in rats (Viggiano et al., 2016). Furthermore, this study 
has reported for the first time a potential protective effect 
of the dietary supplementation of GA powder at a dose 
of 500mg/kg/day alone or in combination 1mg/kg/day 
dapagliflozin for MetS rats. In this experiment, a significant 
up-regulation have been reported in the hypothalamic 
expression of AMPK, whereas down-regulation in the 
expression of ACC and FAS was observed in the HFHS-
induced metabolic syndrome group compared to control 
rats. Also, supplementation of diabetic rats with GA 
powder significantly down-regulated AMPK and up-
regulated ACC expression compared to the diet induced 
Mets group. Treatment of diabetic rats with dapagliflozin 
significantly down-regulated the hypothalamic expression 
of AMPK and up-regulated ACC and FAS compared to 
the diet induced Mets group. The combination between 
dapagliflozin with GA induced a more ameliorative effect.

The mitochondrial carriers (MCs), the membrane 
embedded proteins, are found in the inner membranes 
of mitochondria and catalyze a proper selective transport 
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process of certain metabolites to allow appropriate link 
between cytosol and mitochondria. This link is crucial for all 
the physiological processes involving the activities of both 
intra‐ and extra-mitochondrial enzyme (Palmieri, 2004). 
In animals, the citrate (or tricarboxylate) carrier (CIC) 
members essential to catalyze the electro-neutral passage 
of a tricarboxylate in exchange for another tricarboxylate 
across the inner mitochondrial membrane  are well‐
characterized (Bisaccia et al., 1989; Bisaccia et al., 1990; 
Zara et al., 1996). These carrier proteins export citrate from 
the mitochondria to the cytosol (Dolce et al., 2011). In 
general, the different CIC members are involved in fatty 
acid synthesis, gluconeogenesis, insulin secretion, and 
inflammation (Cappello et al., 2012; Joseph et al., 2006; 
Siculella et al., 2004). Although limited literature discusses 
the potential of CIC regulation in coordination with the 
metabolic pathways to which it either provides substrate 
or eliminates product. In diabetic rats, CIC activity has 
been reported to be influenced by hormonal status as well 
as nutritional factors (Capobianco et al., 1995; Iacobazzi 
et al., 1996; Persson, 2000). A decreased CIC transport 
activity was reported in type 1 diabetic rat liver compared 
with the non-diabetics (Capobianco et al., 1995). This 
decreased activity was restored via insulin administration 
(Persson, 2000). The results of this study demonstrated a 
significant down-regulation in the hypothalamic, hepatic 
and renal expression of CIC1 as well as the renal but 
not hypothalamic or hepatic expression of CIC2 in the 
HFHS induced MetS group. Overall, the combination 
between dapagliflozin with GA induced a more effective 
ameliorative effect regarding CIC expression.

Isocitrate dehydrogenases (IDHs) play vital roles in cellular 
metabolism. It catalyzes the oxidative decarboxylation 
of isocitrate in the TCA cycle (Gabriel et al., 1986). In 
mammalian tissues, although both IDH1 and IDH2 are 
moderately expressed, IDH1 is highly expressed in the 
liver andIDH2 is highly expressed in heart and muscle 
tissues ( Jennings et al., 1994). IDH1 is localized in the 
cytoplasm (Geisbrecht and Gould, 1999; Yoshihara et 
al., 2001) and IDH2 is mitochondrial (Nekrutenko et 
al., 1998). Both IDH1 and IDH2 contribute to the 
defense against oxidative stress. However, the activity of 
both enzymes is reduced with the accumulation of lipid 
peroxidation products (Kim et al., 2004) as well as elevated 
ROS (Lee et al., 2001) and nitric oxide (Yang et al., 2002). 
This process is likely mediated in diabetic human and rat 
tissue by non-enzymatic glycation due to hyperglycemia 
(Kil et al., 2004). Overexpression of IDH in transgenic 
mice was associated with hyperlipidemia, fatty liver and 
obesity (Koh et al., 2004). The results of this study reported 
a significant down-regulation in the hypothalamic, hepatic 
but not renal expression of IDH1, although only hepatic 
IDH2 was significantly down-regulated in the HFHS 
induced MetS group. Interestingly, the combination 

between dapagliflozin with GA significantly upregulating 
both IDH1 and IDH2 at all levels.

Cytochrome C oxidase (Cyt-C) or complex IV, a component 
of the respiratory chain, is located in the inner mitochondrial 
membrane. It catalyzes the transfer of electrons from 
cytochrome-C  to molecular oxygen. The activity of this 
complex is crucial for aerobic energy production; any defect 
in its activity induces the accumulation of lactic acid. It is 
highly expressed in the brain, muscle and heart (Lee et al., 
1996; Salo et al., 1992; Tulinius et al., 1991). In diabetic 
rats, the activities of the complex III and complex IV of the 
ETC were significantly decreased while that of complex 
I and complex II were increased (Elkahky, 2019; Raza et 
al., 2011). This observation was further confirmed in our 
present study. Also, supplementation of diabetic rats with 
GA powder significantly up-regulating the hypothalamic 
and renal but not hepatic Cyt-C expression compared to 
the diet induced Mets group. Treatment of diabetic rats 
with dapagliflozin as well as the combination between 
dapagliflozin with GA significantly up-regulating the 
central and peripheral Cyt-C expression compared to the 
diet induced MetS group.

Serine hydroxymethyl transferase (GlyA or SHMT) 
catalyzes glycine synthesis from serine. Serine is essential 
for the generation of the antioxidant glutathione (GSH) 
(Nguyen et al., 2013). Although GlyA is ubiquitously 
expressed, most of the GlyA-dependent glycine synthesis 
occurs within the liver. although, changes in the serine 
to glycine conversion rate have not been reported yet in 
obesity, metabolic syndrome and diabetes, a reduction 
in the plasma serine level has been reported in these 
metabolic disorders (Mardinoglu et al., 2014; Mardinoglu 
et al., 2017). This change remains controversial (Gaggini 
et al., 2018). In this study, no significant alterations in the 
hypothalamic expression of GlyA were noticed in any of 
the experimental groups. A significant down-regulation 
in both the hepatic and renal expression of GlyA in the 
HFHS induced MetS group. This effect was reversed via 
administration of dapagliflozin and/or supplementation 
with GA compared to the diet induced Mets group.

CONClUSIONS AND RECOMMENDATION

The ameliorative effect of dietary supplementation with gum 
arabic and/or treatment with dapagliflozin extended to the 
hypothalamic, hepatic and renal gene expression of several 
genes suggesting potential targets that could possibly lay 
basis for future therapeutics and therapeutic applications. 
These molecular targets could provide a valid therapeutic 
potential for the metabolic syndrome/diabetes dilemma.
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