Research Article

Phenotypic, Genotypic Resistance and Virulotyping of *Staphylococcus aureus* Isolated from Ready-to-Eat Food in Egypt

ALAA ELDIN M.A. MORSHDY¹, MOHAMED A. HUSSEIN¹, ABDALLAH M.A. MERWAD^{2*}, HANAN, M. EL. LAWENDY³, AFAF H. MOHAMED³

¹Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Egypt; ²Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Egypt; ³Department of Food Hygiene, Animal Health Research Institute, Zagazig, Provential Laboratory, Egypt.

Abstract | The present study aimed to determine phenotypic and genotypic characterization of antimicrobial resistance and some virulent genes in Staphylococcus aureus (S. aureus) isolated from ready- to- eat (RTE) food purchased from commercial restaurants at Sharkia, Egypt. One hundred RTE food including kofta, shawarma, sausage and fried shrimp were streaked on Baired-Parker agar plates followed by biochemical identification of isolates. Twenty seven S. aureus isolates were screened for antibiotic resistance by disk diffusion test. Uniplex PCR was used to detect the antimicrobial resistance genes for methicillin (mecA), beta-lactamase (blaZ), aminoglycoside [aac (6') aph(2")] and macrolides (mph C) and virulence genes (spa and clfA) in four phenotypically multidrug resistant (MDR) S. aureus isolates. Furthermore, enterotoxin genes were screened in the four isolates of S. aureus using multiplex PCR. In this study, S. aureus strains showed highest resistance to methicillin and cefotaxime (100%) followed by amoxicillin (85.18%) and gentamicin (81.48%). The multiple antibiotic resistance (MAR) index of S. aureushad a range of 0.36 to 0.9 with an average 0.58. Three (25%) isolates from kofta were multi-resistant to 10 antibiotics and one strain (9.09%) of S. aureus from shawarma was resistant to 10 antimicrobials. The four isolates of phenotypically resistant S. aureus to methicillin, amoxicillin and gentamicin were positive (100%) for each of mecA, blaZ and aac (6') aph (2") resistance genes; while, two isolates showed resistance to macrolides were positive for mphC gene. The four multidrug resistant (MDR) S. aureus were negative for any enterotoxin genes. Additionally, all examined MDR isolates of S. aureus from RTE food harboring spa and clfA genes (100%). The higher contamination of different RTE food with MDR S. aureus indicates improper hygienic measures. Also, the higher MAR index of *S. aureus* isolates has high risk potential for consumers.

Keywords | Phenotypic resistance, *Staphylococcus aureus*, Ready-to-Eat Food, Virulence genes, Antimicrobial resistance genes

Received | September 19, 2019; Accepted | October 26, 2019; Published | December 12, 2019

*Correspondence | Abdallah M.A. Merwad, Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Egypt; Email: merwad.abdallah@ yahoo.com

Citation | Morshdy AEMA, Hussein MA, Merwad AMA, Hanan, El Lawendy M, Mohamed AH (2019). Phenotypic, genotypic resistance and virulotyping of staphylococcus aureus isolated from ready-to-eat food in Egypt. Adv. Anim. Vet. Sci. 7(s2): 63-70.

DOI | http://dx.doi.org/10.17582/journal.aavs/2019/7.s2.63.70

ISSN (Online) | 2307-8316; ISSN (Print) | 2309-3331

Copyright © 2019 Morshdy *et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Staphylococcus aureus (S. aureus) is considered as one of the major food borne bacterial pathogens recovered from RTE meat and causing several food poising outbreaks (Diep et al., 2006). This pathogen have the ability to grow within temperature range of 15-45 °C but requires higher concentration (10%) of NaCl (Behling et al., 2010). S. aureus could multiply quickly at the room temperature and

release toxins that induce illness. It has been estimated that *S. aureus* responsible for 241,000 cases of foodborne illness each year in United States of America (Wu et al., 2018). This bacterium could be detected in meat (Jackson et al., 2013) and fish (Saito et al., 2011). The contamination of food with *S. aureus* could be resulted from inadequate handling, improper conditions of storage, inadequate hygienic measures and post-production microbial contaminations (Ray, 2001). The presence of *S. aureus* as one of microbial

OPEN OACCESS

contaminants in RTE meathas created public health hazard and food safety concerns (Mehndiratta and Bhalla, 2014), due to their pathogenicity and zoonotic importance (Razmyar et al., 2017). The antimicrobial susceptibility testing of *S. aureus* isolates recovered from RTE meat and retail chicken were studied in Egypt (Morshdy et al., 2018b) and India (Laxminarayan and Chaudhury, 2016).

Methicillin-resistant S. aureus (MRSA) occurs in humans and food of animal origin due to acquirement of genes that encode penicillin-bindingprotein-PBP2' or PBP2a (Chen et al., 2009). Besides, a divergent homologue of the mecA gene (mec C) verified 70% homology to the methicillin resistance (mec A) gene (Garcia-Alvarez et al., 2011). Also, frequent contamination of retail meat and poultry occur with MDRS. aureus; and 96% of S. aureus strains showed resistance to at least oneantibiotic and 32% of susceptibility profiles were found in S. aureus isolates with several resistance to multiple antibiotic classes (Waters et al., 2011). Some studies highlighted the role of meat and poultry products in inducing human infection and colonization (de Jonge et al., 2010). The majority of virulence factors of S. aureus are cell surface protein including matrix adhesion molecules which mediates bacterial binding to the host tissue and extracellular matrix including collagen and fibrinogen (Foster et al., 2014). The components of S. aureus surface include an elastin binding protein and clumping factors A andB (clfA, clfB) (Atshan et al., 2012). S. aureus surface proteins are critical for success of the bacteria as a commensal organism and also as a pathogen (Foster et al., 2014). Staphylococcal protein A (SPA), another important virulence factor, is a multifunctional surface protein located on FC fragment of IgG of mammalian species inducing immune evasion and could act as super antigen of B-cell (Foster et al., 2014; Sutra and Poutrel, 1994). Staphylococcal food poisoning is associated with presence of staphylococcal enterotoxins (SEs) (Le Loir et al., 2003). These enterotoxins are produced in the exponential phase of S. aureus growth. They causes food poisoning in human when the count of S. aureus reaches at least $10^5 - 10^8 \text{ CFU/g}$ in food (Seo and Bohach, 2003). Therefore, the aim of current study was to determine the phenotypic resistance and genotypic characterization of antimicrobial resistance genes, some virulence genes (*clf* A and *spa*) and enterotoxin genesin S. aureus strains recovered from some RTE food (kofta, shawarma, sausage and fried shrimp) purchased from restaurants in SharkiaGovernorate, Egypt.

MATERIALS AND METHODS

COLLECTION OF FOOD SAMPLES

One hundred RTE food samples comprising of kofta, shawrma, sausage and fried shrimp (25, each) were purchased from commercial restaurants and supermarkets at Sharkia Governorate, Egypt during the period from

Advances in Animal and Veterinary Sciences

October, 2017 to April, 2018. The collected samples were packed into sterile lunch boxes. The samples of RTE food were directly placed in a cooler box; and then directly transferred to the Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, and stored at 4 °C till analysis. All samples were microbiologically analyzed within 4 hrs of purchase.

PROCESSING OF RTE FOOD SAMPLES

The food samples were prepared according to the previously described method (APHA, 1992). Twenty five gram of each RTE food samples were added to a volume of 225 ml sterile buffered peptone water (Oxoid, CM509, UK). The mixture was homogenized by a stomacher for 1 min, and then the homogenate was transferred in a sterile test tube. Afterwards, the homogenate (1 ml) was placed in sterile test tube containing0.1% peptone water (9 ml), and then subjected to 10-fold serial dilution up to 10⁷.

ISOLATION AND IDENTIFICATION

The isolation procedure of *S. aureus* was carried out according to the previously described method (Thapaliya et al., 2017). The prepared serial dilution (0.1 ml) was streaked on Baired–Parker agar plate (Oxoid, CM0275, UK) and incubated at 37 °C for 24 hrs. The suspected colonies are black-colord surrounded by a wide clear area with opacity. The presumptive coloniesshowing positive egg yolk reaction were subjected to biochemical identification. The motility test (ICMSF, 1996), catalase activity test (Macfaddin, 2000) and coagulase activity test (APHA, 1992) were carried out as described before. The colonies revealing coagulase positive, Gram positive cocci, catalase positive were biochemically distinguished as *S. aureus*.

ANTIMICROBIAL SUSCEPTIBILITY TESTING

The biochemically identified isolates of S. aureus were tested for their antimicrobial susceptibility against eleven antibiotics on Mueller-Hinton agar plates (Oxoid, England) using the Kirby Bauer disk diffusion test (Bauer et al., 1966). The antimicrobial panels and their disc concentrations including methicillin (ME; 10 µg), cefotaxime (CTX, 30µg); Amoxicillin-clavulanic acid (AMC, 30µg), gentamicin (CN, 10µg), erythromycin (E, 15µg), clindamycin (DA, 2µg), doxycycline (DO, 5µg), ciprofloxacin (CIP, 5μg), sulfamethoxazole-trimethoprim (SXT, 25µg), chloramphenicol (C, 30µg) and vancomycin (VA, 30µg) were obtained from Thermo scientific, Oxoid, USA. Interpretation of the results was carried out according to the standards of Clinical Laboratory Standard Institute guidelines (CLSI, 2016). The multiple antibiotic resistance index of S.aureus isolate was calculated according to the formula stipulated by (Singh et al., 2010) as the following equation:

MAR index = Number of antibiotics with resistance profile / the number of used antibiotics

<u>OPENOACCESS</u>

MOLECULAR DETECTION OF ANTIMICROBIAL Resistance And Virulence Genes

The genomic DNA was extracted from four biochemically identified *S. aureus* isolates with phenotypic resistance and isolated from sharwma, sausage, fried shrimp and kofta using QIAamp DNA mini kit (Takara Kit, Catalogue no.51304, Japan). The selected primer sequences and cycling conditions were carried out to amplify the resistance genes to methicillin (*mecA*) (McClure et al., 2006), beta-lactamase (*bla* Z) and aminoglycoside [aac(6')aph(2")] (Duran *et al.*, 2012) and macrolide (*mph* C) (Schlegelova et al., 2008) in *S. aureus* isolates using uniplex PCR (Table 1).

The two virulence factors including staphylococcal protein A (*spa* gene) (Wada et al., 2010) and clumping factor A (*clf* A gene) (Mason et al., 2001) were molecularly detected in *S. aureus* isolates using uniplex PCR. Also, the oligonucletides sequences and PCR cycling conditions to identify enterotoxin genes (*sea, seb, sec, sed* and *see*) in *S. aureus* were performed by multiplex PCR according to (Mehrotra et al., 2000) (Table 1). The electrophoresis of PCR products was performed on 1.5% agarose gel having ethidium bromide (0.5 μ g/ml) with gel pilot 100 bp ladder (QIAGEN, USA). Positive control isolate of *S. aureus* was included in each reaction, while *Escherichia coli* isolate was used as negative one.

RESULTS AND DISCUSSION

S. aureus is one of the most important food borne pathogens in RTE food products and is incriminated in different infections all over the world (Diep et al., 2006). Additionally, this bacterium is responsible for 12.5% of food borne bacterial outbreaks in China and is considered the third most frequently pathogen after Vibrio parahaemolyticus outbreaks (27.8%) and Salmonella food poisoning (23.1%) (Wei-Wei et al., 2018). S. aureus could adapt to different environmental conditions and quickly acquire resistance to virtually all antimicrobials (McCallum et al., 2010). Recently, MDR S. aureus were recorded in outbreaks of food poisoning that were related with consumption of food products (Papadopoulos et al., 2018). Our study showed that the incidence of S. aureus in RTE food was 27%. However, S. aureuswas recoverd with lower percentage (17.9%) from RTE food in Taiwan (Fang et al., 2003). In the present study, the highest isolation percentage of S. aureus (48%, 12/25) was detected in kofta sandwiches, followed by shwarma sandwiches (36%, 9/25); while the lowest incidence (12%, 3/25) was recovered from sandwiches of sausage and fried shrimp. On the contrary, lower isolation percentages of S. aureus was recovered in minced meat (10%), sausage (8%) and beef burger (10%) in Egypt (Morshdy et al., 2018a). In Egypt, higher incidence of S. aureus was detected in examined

Advances in Animal and Veterinary Sciences

kofta (90%), luncheon (50%), burger (75%), shawarma (80%), hawawshi (65%), and sausage sandwiches (60%) (Morshdy et al., 2018b). These variations could be attributed to difference in the system of cooking (frying, roasting and grilling), the microbiological quality of raw ingredients, size and shape of meat pieces, cooking utensils (oven, grill, stew pot) and type of seasoning ingredients (sauces, spices, vegetables) (Daelman et al., 2013).

In the current study, the phenotypic resistance of 27 isolates of S. aureus from RTE food comprising kofta (12 isolates), shawrma (9), sausage (3) and fried shrimp (3) were investigated against 11 antimicrobials using the disc diffusion method (Table 2). In our study, isolates of S. aureus clarified the peak resistance to methicillin and cefotaxime (100%) followed by amoxicillin (85.18%) and gentamicin (81.48%). Similarly, the resistance percentages of S. aureus from RTE meat products to methicillin and amoxicillin were 100% and 57.1%, respectively in Egypt (Morshdy et al., 2018a). The moderate resistance of S. aureus isolates was detected forerythromycin and clindamycin (62.96%), doxycycline (59.25%) and ciprofloxacin (48.14%); while the lower resistance of S. aureus isolates was found tosulfamethoxazole-trimethoprim (29.62%) and chloramphenicol (25.92%). Another study in Egypt investigating MDRS. aureus isolates derived from RTE meat sandwitches, and the results demonstrated that 84% of S. aureus isolates were resistant to erythromycin and 64% for oxytetracycline and sulphamethoxazol (Morshdy et al., 2018b). However, erythromycin showed moderate resistance (52.7%) for S. aureus isolates recovered from retail meat and meat products in China followed by clindamycin (29.6%), gentammicin (19.4%), ciprofloxacin (16.9%) and amoxicillin/clavulanic acid (11%) (Wu et al., 2018). Our finding showed that 27S. aureusisolatesfrom RTE food were sensitive (100%) to vancomycin as listed in Table 2. However, resistance of S. aureus to vancomycin was found in 27.6% of camel meat and 54.5% of human hand swabs in Egypt (Al-Amery et al., 2019). In the current study, maximum resistance (100 %) of S. aureus isolates derived from RTE food were found to methicillin as MRSAcould be transmitted to cooked food products owing to temperature abuse during the storage and thus resulting in multiplication of MRSA strains. Moreover, the higher MRSA contamination of different RTE meat and chicken products may be possible associated with utilization of antibiotics in animal husbandry (de Boer et al., 2009). Also, the major reason for high resistant S. aureus strains could be related with supplements and growth promoters for animal feed and for human treatments. The difference in resistance percentage of S. aureus strains to antimicrobials could be accounted for size of sample, geographic area and period of sample collection (Ge et al., 2017).

<u>OPENÔACCESS</u>

Table 1: Primer sequences and PCR conditions for antimicrobial resistance genes, enterotoxin genes and virulence determinants in *S. aureus* strains derived from ready to eat food.

Reference	PCR cycling conditions	Length of ampli- fied product (bp)	Primer sequence (5'-3')	Gene	
(McClure et al.,	94°C-5min;35cycles (94°C-30s, 50°C- 30s, 72°C-30s);72°C-7 min	310	GTA GAA ATG ACT GAA CGT CCG ATA A		
2006)			CCA ATT CCA CAT TGT TTC GGT CTA A		
(Duran <i>et al.</i> , 2012)	94°C-5min; 35cycles (94°C-30s, 54°C- 30 s,72°C-30s); 72°C-7 min	173	ACTTCAACACCTGCTGCTTTC	blaZ	
			TGACCACTTTTATCAGCAACC		
	94°C-5min;35cycles (94°C-30s, 50°C- 40 s, 72°C-45s); 72°C-10 min	491	GAAGTACGCAGAAGAGA	aac(6')aph(2")	
			ACATGGCAAGCTCTAGGA		
		102	GGTTATCAATGTGCGGGTGG	sea	
			CGGCACTTTTTTTCTCTTCGG		
		164	GTATGGTGGTGTAACTGAGC	seb	
(Mehrotra <i>et al.</i>	, 94°C-5min;35cycles		CCAAATAGTGACGAGTTAGG		
2000)	(94°C-30s,50°C- 40 s,72°C-45s);72°C-10 min	451	AGATGAAGTAGTTGATGTGTATGG	sec	
			CACACTTTTAGAATCAACCG		
		278	CCAATAATAGGAGAAAATAAAAG	sed	
			ATTGGTATTTTTTTTTTCGTTC		
		209	AGGTTTTTTCACAGGTCATCC	see	
			CTTTTTTTTTTCTTCGGTCAATC		
(Schlegelova <i>et al.</i> , 2008)	94°C-5min;35cy- cles(94°C-30s,55°C- 40 s,72°C-45s); 72°C-10 min	722	GAGACTACCAAGAAGACCTGACG	mphC	
			CATACGCCGATTCTCCTGAT		
(Wada <i>et al</i> ., 2010)	94°C-5min; 35cycles (94°C-30s, 55 °C- 30 s, 72°C-30s); 72 °C-7 min	226	TCA AGCA AAG AAC AAC AAA ATG C	spa	
			GCT TTC GGT GCT TGA GAT TC		
(Mason <i>et al.</i> , 2001)	94°C-5min; 35cycles (94°C-30s, 55°C- 40 s, 72°C-45s); 72°C-10 min	638	GCAAAATCCAGCACAACAGGAAACGA	clfA	
			CTTGATCTCCAGCCATAATTGGTGG		

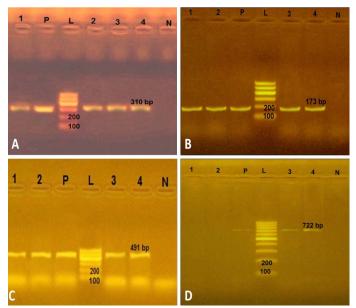
Table 2: Antimicrobial susceptibility of 27 *S. aureus* isolatesderived from ready to eat food by disc diffusion method.

Antimicrobials (disc	R	S	Ι
concentration/µg)			
ME (10)	27 (100)	0 (0.00)	0 (0.00)
CTX (30)	27 (100)	0 (0.00)	0 (0.00)
AMC (30)	(85.18)	4(14.81)	0 (0.00)
CN (10)	22 (81.48)	2 (7.40)	3(11.11)
E (15)	17 (62.96)	5 (18.51)	5(18.51)
DA (2)	17(62.96)	9 (33.33)	1(3.70)
DO (5)	16(59.25)	10(37.03)	1(3.70)
CIP (5)	13(48.14)	10 (37.03)	4(14.81)
SXT (25)	8(29.62)	9 (33.33)	10 (37.03)
C (30)	7(25.92)	10(37.03)	10(37.03)
VA (30)	0 (0.00)	27(100)	0 (0.00)

R: resistant; I: intermediate; S: sensitive; Data were represented by No (%); ME: methicillin; CTX: cefotaxime; AMC: Amoxicillin- clavulanic acid; CN: gentamicin; E: erythromycin; DA: clindamycin; DO: doxycycline; CIP: ciprofloxacin; SXT: sulfamethoxazole-trimethoprim; C: chloramphenicol; VA: vancomycin.

2019 | Volume 7 | Special Issue 2 | Page 66

In this study, the range of MAR index for S. aureus was 0.36 to 0.9 with an average 0.58 as listed in Table 3. Moreover, 3 (25%) isolates of kofta origin were multi-resistant to 10 antibiotics, while one isolate (9.09) derived from shawrma was multi drug resistant to 10 antimicrobials and other two S. aureus strains (22.2%) originated from sharwma were resistant to 9 antibiotics (Table 3). Similarly, the average MAR index of S. aureus isolates was 0.59 from RTE sandwiches in Egypt (Morshdy et al., 2018b). In another study, 95.65% of S. aureus from pork meat in India have MAR index above 0.3 (Savariraj et al., 2019). The difference in the MAR index could be attributed to variations in the sources of food samples and geographic distributions, which had differential selective pressures for levels of antibiotic resistance and the methodologies of test (Robert-Pillot et al., 2014). In the current study, S. aureus strains with higher value of MAR index (>0.2) reflected high risk sources and poses high risk hazard for consumers; where they eat those RTE foods contaminated with such strains as previously supported (Robert-Pillot et al., 2014). The highest MAR index


OPEN	B ACCESS	Adv	Advances in Animal and Veterinary Sciences				
Table 3: Antimicrobial resistance profiles and MAR index of <i>S. aureus</i> isolates derived from ready to eat food.							
MAR	Resistance profile	No. of iso- lates (%)	No. of resistant antibiotcs	Resistance Pattern	Ready to eat food		
0.9	ME, CTX,AMC, CN,E,DA,DO,CIP,SXT,C	3(25)	10	R1			
0.54	ME,CTX,AMC,CN,E,DA	6 (50)	6	R2	Kofta (12 isolates)		
0.45	ME,CTX,CN,DA,DO	2(16.7)	5	R3			
0.36	ME, CTX,AMC, DO	1(8.3)	4	R4			
0.9	ME,CTX,AMC,CN,E,DA,DO,CIP,SXT,C	1 (9.09)	10	R5			
0.81	ME, CTX,AMC,E,DA,DO,CIP,SXT,C	2(22.2)	9	R6	C1		
0.72	ME,CTX,AMC,DA,DO,CIP,SXT,C	1(9.09)	8	R7	Shawrma		
0.63	ME,CTX,CN,DA,CIP,SXT,DO	1(9.09)	7	R8	(9 isolates)		
0.54	ME,CTX,CN,E,DO,AMC	1(9.09)	6	R9	() 1301a(03)		
0.36	ME, CTX,AMC,CN	3(33.3)	4	R10			
0.54	ME,CTX,AMC,CN,DO,CIP	2(66.7)	6	R11	Sausage		
0.45	ME,CTX,AMC,CN,E	1(33.3)	5	R12	(3 isolates)		
0.63	ME,CTX,AMC,CN,E,DA,CIP	1(33.3)	7	R13	Fried shrimp		
0.54	ME,CTX,AMC,E,DO,CIP	2(66.7)	6	R14	(3 isolates)		
0.58					Average		

MAR: Multiple antibiotic resistance; ME: methicillin; CTX: cefotaxime; AMC: Amoxicillin-clavulanic acid, CN: gentamicin; E: erythromycin; DA: clindamycin; DO: doxycycline; CIP: ciprofloxacin; SXT: sulfamethoxazole-trimethoprim; C: chloramphenicol; VA: vancomycin.

in our study could be accounted for frequent exposure of human and farm animals to antibiotics in animals raised for food and for various purposes such as growth promotion and therapeutics and these resistant pathogens could be transmitted to humans through food (Nygard et al., 2008). This study indicated that MDR *S. aureus* should be included in the list of antimicrobial resistant pathogens which cause contamination of the food supply. Therefore, monitoring of antimicrobial resistance is necessary to determine the effectiveness of new generations of antibiotics and *S. aureus* isolates revealed resistance to antimicrobials owing to their capability to produce an exoplysaccharide barrier (Gündoğan et al., 2006) and carrying broad variety of MDR genes on plasmids which could be exchanged and spread to other species of *Staphylococci* (Neihart et al., 1988).

In the present study, the four strains of phenotypically resistant *S. aureus* to methicillin, amoxicillin and gentamicin were positive (100%) for *mec* A, *bla* Z and *aac* (6') *aph* (2") genes with PCR products of 310, 173 and 491 bp, respectively (Figure 1). However, 2 out of 4 phenotypically resistant isolates to macrolide antibiotics (erythromycin) were positive for *mph*C gene with a PCR product of 722 bp (Figure 1). This finding agreed with previous reports of multidrug resistant *S. aureus* bearing *mec* A, *bla* Z *and aac*(6') *aph* (2") from retailed meat products (Morshdy et al., 2018a), chicken meat and giblets (Darwish et al., 2018) in Egypt and RTE meat products (Xing et al., 2014) in China. Our study indicated that RTE meat, chicken and shrimp could be considered as important transmission route for antibiotic resistant *S. aureus* bearing multiple antibiotic resistance genes.

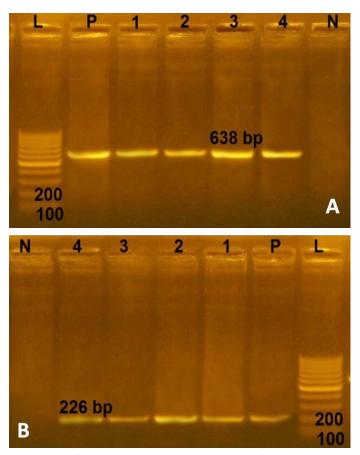

2019 | Volume 7 | Special Issue 2 | Page 67

Figure 1: Uniplex PCR to amplify some antimicrobial resistance genes in 4 *S. aureus* strains from ready to eat food. A) PCR products of *mec* A gene. P: positive control isolate; N: negative control isolate of *Escherichia coli*; L: Ladder 100 bp; Lanes 1, 2, 3 and 4: positive strains for *mec* A gene (310 bp) isolated from kofta, shawrma, sausage and fried shrimp, respectively; B) PCR products of *bla* Z gene. The four *S. aureus* isolates (lanes1-4) were positive PCR product of 173 bp; C) PCR products of *aac(6')aph (2")* gene. The lanes1-4 were with amplicon of 491 bp; D) PCR products of *mph* C gene. The two *S. aureus* isolates from kofta and shawarma (Lanes 1 and 2) were negative, while other two *S. aureus* strains from sausage and fried shrimp (lanes 3 and 4) were positive with PCR product of 722 bp.

<u>OPENÔACCESS</u>

In the current study, the 4 multidrug resistant *S. aureus* were negative for any enterotoxin genes. However, more than 74% of *S. aureus* strains derived from RTE food, processed meat and fish products in Bangladesh harbored enterotoxin genes with a distribution percentage of 26% for *sea*, 11% for *seb*, 49% for *sec* and 13% for *sed* genes (Islam et al., 2019). Furthermore all 4 multidrug resistant *S. aureus* from RTE food harboring the two virulence genes (*spa* and *clf* A genes) with PCR products of 226 and 638 bp, respectively (Figure 2). Conversely, lower distribution (76.92%) of *clf* A gene in *S. aureus* strains recovered from chicken meat in Iran (Momtaz et al., 2013). This study revealed that multidrug resistant *S. aureus* isolated from RTE food were MRSA isolates, possessed two virulence genes (*clf* A and *spa* genes), represent public health hazard for consumers.

Figure 2: Agarose gel electrophoresies of two virulence genes (*clf* A and spa) in 4 strains of S. aureus isolated from ready to eat food. A) PCR products of *clf* A gene. P: positive control isolate; N: negative control; L: Ladder 100 bp; Lanes 1- 4: positive strains for *clfA* gene (638 bp) isolated from kofta, shawarma, sausage and fried shrimp, respectively; B) PCR products of *spa* gene. The four S. aureus isolates (lanes1-4) were positive with amplicons of 226 bp.

CONCLUSION

The higher contamination of different kofta, sharwma, sausage and fried shrimp as RTE food with multidrug resistant *S. aureus* indicates improper hygienic measures.

2019 | Volume 7 | Special Issue 2 | Page 68

Advances in Animal and Veterinary Sciences

Also, higher MRSA contamination of such RTE food could be associated with the wide use of antimicrobials in animal husbandry. Moreover, higher MAR index of *S. aureus* isolates poses high risk potential for consumers to eat such contaminated RTE food. Therefore, RTE food could be considered as important transmission route for phenotypic resistant *S. aureus* that carry resistance genes to methicillin, beta-lactamase, macrolide and aminoglycosides. Strict hygienic measures should be taken during the preparation of RTE food, besides strong legislations should be followed to produce food of high keeping quality.

AUTHORS CONTRIBUTION

All authors had contributed equally.

CONFLICT OF INTEREST

None of the authors have any conflict of interest to declare.

REFERENCES

- Al-Amery K, Elhariri M, Elsayed A, El-Moghazy G, Elhelw R, El-Mahallawy H, El Hariri M, Hamza D. (2019). Vancomycin-resistant Staphylococcus aureus isolated from camel meat and slaughterhouse workers in Egypt. Antimicrob. Resist. Infect. Control. 8: 129. https://doi. org/10.1186/s13756-019-0585-4
- APHA. (1992). APHA American Public Health Association (1992). Compendium methods for the microbiological examination of food. 3rd ed. apha, technical committee on microbiological methods for foods, Washington, D. C. USA.
- Atshan SS, Nor Shamsudin M, Sekawi Z, Lung LT, Hamat RA, Karunanidhi A, Mateg Ali A, Ghaznavi-Rad E, Ghasemzadeh-Moghaddam H, Chong Seng JS, Nathan JJ, Pei CP (2012). Prevalence of adhesion and regulation of biofilm-related genes in different clones of Staphylococcus aureus. J. Biomed. Biotechnol. 976972. https://doi. org/10.1155/2012/976972
- Bauer AW, Kirby WM, Sherris JC, Turck M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(4): 493-496. https://doi.org/10.1093/ ajcp/45.4_ts.493
- Behling RG, Eifert J, Erickson MC, Gurtler JB, Kornacki JL, Line E, Radcliff R, Ryser ET, Stawich B, Van Z (2010). Selected pathogens of concern to industrial food processors: infectious, toxigenic, toxico-infectious, selected emerging pathogenic bacteria, in Principles of Microbiological Troubleshooting in the Industrial Food Processing Environment, ed J.L. Kornacki (New York, NY: Springer), 5–61. https://doi.org/10.1007/978-1-4419-5518-0_2
- Chen L, Mediavilla JR, Oliveira DC, Willey BM, de Lencastre H, Kreiswirth BN (2009). Multiplex real-time PCR for rapid Staphylococcal cassette chromosome mec typing. J. Clin. Microbiol. 47(11): 3692-3706. https://doi.org/10.1128/ JCM.00766-09
- •CLSI (2016). Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptability testing; approved guideline (M 100 S);

NEXUS

Advances in Animal and Veterinary Sciences

OPEN OACCESS

26edition, Wayne, PA: Clin. Lab. Stand. Inst.

- Daelman J, Jacxsens L, Lahou E, Devlieghere F, Uyttendaele M (2013). Assessment of the microbial safety and quality of cooked chilled foods and their production process. Int. J. Food Microbiol. 160: 193-200. https://doi.org/10.1016/j. ijfoodmicro.2012.10.010
- Darwish WS, Atia AS, Reda LM, Elhelaly AE, Thompson LA, Saad Eldin WF (2018). Chicken giblets and wastewater samples as possible sources of methicillin-resistant Staphylococcus aureusPrevalence, enterotoxin production, and antibiotic susceptibility. J. Food Safe. 38(4): e12478. https://doi.org/10.1111/jfs.12478
- de Boer E, Zwartkruis-Nahuis JT, Wit B, Huijsdens XW, de Neeling AJ, Bosch T, van Oosterom RA, Vila A, Heuvelink AE (2009).Prevalenceof methicillin-resistant Staphylococcus aureus in meat. Int. J. Food Microbiol. 134(1-2): 52-56. https://doi.org/10.1016/j.ijfoodmicro.2008.12.007
- de Jonge R, Verdier JE, Havelaar AH (2010). Prevalence of meticillin-resistant Staphylococcus aureus amongst professional meat handlers in the Netherlands, March-July 2008. Eur. Surveill, 15(46). https://doi.org/10.2807/ ese.15.46.19712-en
- Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F (2006). Complete genome sequence of USA300, an epidemic clone of communityacquired meticillin-resistant Staphylococcus aureus. Lancet, 367(9512): 731-739. https://doi.org/10.1016/S0140-6736(06)68231-7
- •Duran N, Ozer B, Duran GG, Onlen Y, Demir C (2012). Antibiotic resistancegenes and susceptibility patterns in staphylococci. Indian J. Med. Res. 135: 389-396.
- Fang TJ, Wei QK, Liao CW, Hung MJ, Wang TH (2003). Microbiological quality of 18 degrees C ready-to-eat food products sold in Taiwan. Int. J. Food Microbiol. 80(3): 241-250. https://doi.org/10.1016/S0168-1605(02)00172-1
- Foster TJ, Geoghegan JA, Ganesh VK, Hook M (2014). Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol. 12(1): 49-62. https://doi.org/10.1038/ nrmicro3161
- Garcia-Alvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RL, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA (2011). Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 11(8): 595-603. https://doi.org/10.1016/S1473-3099(11)70126-8
- Ge B, Mukherjee S, Hsu CH, Davis JA, Tran TTT, Yang Q, Abbott JW, Ayers SL, Young SR, Crarey ET, Womack NA, Zhao S, McDermott PF (2017). MRSA and multidrugresistant Staphylococcus aureus in U.S. retail meats, 2010-2011. Food Microbiol. 62: 289-297. https://doi. org/10.1016/j.fm.2016.10.029
- Gündoğan N, Citak S, Turan E (2006). Slime production, DNase activity and antibiotic resistance of Staphylococcus aureus isolated from raw milk, pasteurised milk and ice cream samples. Food Control. 17(5): 389-392. https:// doi.org/10.1016/j.foodcont.2005.01.006
- ICMSF 1996. International Commission of Microbiological Specification for Foods (1996). Microorganisms in Food.

Their Significance and methods of enumeration. 3rd Ed. Univ. of Toronto, Canada.

- Islam MA, Parveen S, Rahman M, Huq M, Nabi A, Khan ZUM, AhmedN, Wagenaar JA (2019). Occurrence and characterization of methicillin resistant staphylococcus aureus in processed raw foods and ready-to-eat foods in an urban setting of a developing country. Front. 10: 503-503. https://doi.org/10.3389/fmicb.2019.00503
- Jackson CR, Davis JA, Barrett JB. (2013). Prevalence and characterization of methicillin-resistant Staphylococcus aureus isolates from retail meat and humans in Georgia. J. Clin. Microbiol. 51(4): 1199-1207. https://doi.org/10.1128/ JCM.03166-12
- LaxminarayanR, Chaudhury RR. (2016). Antibiotic Resistance in India: Drivers and Opportunities for Action. *PLoS* Med. 13(3): e1001974. https://doi.org/10.1371/journal. pmed.1001974
- •Le Loir Y, Baron F, Gautier M (2003). Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2(1): 63-76.
- •Macfaddin JF (2000). Biochemical tests for identification medical bacteria. Warery press, INC. Baltimore, Md. 21202 USA.
- Mason WJ, Blevins JS, Beenken K, Wibowo N, Ojha N, Smeltzer MS (2001). Multiplex PCR protocol for the diagnosis of staphylococcal infection. J. Clin. Microbiol. 39(9): 3332-3338. https://doi.org/10.1128/JCM.39.9.3332-3338.2001
- McCallum N, Berger-Bachi B, Senn MM (2010). Regulation of antibiotic resistance in Staphylococcus aureus. Int. J. Med. Microbiol. 300(2-3): 118-129. https://doi.org/10.1016/j. ijmm.2009.08.015
- McClure JA, Conly JM, Lau V, Elsayed S, Louie T, Hutchins W, Zhang K (2006). Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from -resistant staphylococci. J. Clin. Microbiol. 44(3): 1141-1144. https://doi.org/10.1128/ JCM.44.3.1141-1144.2006
- Mehndiratta PL, Bhalla P (2014). Use of antibiotics in animal agriculture and emergence of methicillin-resistant Staphylococcus aureus (MRSA) clones: need to assess the impact on public health. Ind. J. Med. Res. 140(3): 339-344.
- Mehrotra M, Wang G, Johnson WM (2000). Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J. Clin. Microbiol. 38(3): 1032-1035. https://doi.org/10.1128/JCM.38.3.1032-1035.2000
- Momtaz H, Dehkordi FS, Rahimi E, Asgarifar A, Momeni M (2013). Virulence genes and antimicrobial resistance profiles of Staphylococcus aureus isolated from chicken meat in Isfahan province, Iran. J. Appl. Poult. Res. 22(4): 913-921. https://doi.org/10.3382/japr.2012-00673
- Morshdy AMA, Darwish WS, El-Dien WMS, Khalifa SM (2018a). Prevalence of multidrug-resistant Staphylococcus aureus and Salmonella Enteritidis in meat products retailed in Zagazig city, Egypt. Slov. Vet. Res. 55(Suppl 20): 295-300.
- Morshdy AMA, Hussein MA, Tharwat AE, Fakhry BA (2018b). Prevalence of enterotoxigenic and multi-drug resistant Staphylococcus aureus in ready to eat meat sandwiches. Slov. Vet. Res. 55(Suppl 20): 367-374.
- Neihart RE, Fried JS, Hodges GR (1988). Coagulase-Positive Staphylococci. South Med. J. 81: 491-500. https://doi. org/10.1097/00007611-198804000-00021
- •Nygard K, Lassen J, Vold L, Andersson Y, Fisher I, Lofdahl

Advances in Animal and Veterinary Sciences

OPEN OACCESS

S, Threlfall J, Luzzi I, Peters T, Hampton M, Torpdahl M, Kapperud G, Aavitsland P (2008). Outbreak of Salmonella Thompson infections linked to imported rucola lettuce. Foodborne Pathog. Dis. 5(2): 165-173. https://doi.org/10.1089/fpd.2007.0053

- Papadopoulos P, Papadopoulos T, Angelidis AS, Boukouvala E, Zdragas A, Papa A, Hadjichristodoulou C, Sergelidis D (2018). Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece. Food Microbiol. 69: 43-50. https://doi.org/10.1016/j. fm.2017.07.016
- Ray B (2001). Fundamental food microbiology. 3rd ed., CRCPress, Florida.
- Razmyar J, Jamshidi A, Khanzadi S, Kalidari G (2017). Toxigenic Clostridium difficile in retail packed chicken meat and broiler flocks in northeastern Iran. Iran. J. Vet. Res. 18(4): 271-274.
- Robert-Pillot A, Copin S, Himber C, Gay M, Quilici ML (2014). Occurrence of the three major Vibrio speciespathogenic for human in seafood products consumed in France using realtime PCR. Int. J. Food Microbiol. 189: 75-81. https://doi. org/10.1016/j.ijfoodmicro.2014.07.014
- Saito E, Yoshida N, Kawano J, Shimizu A, Igimi S (2011). Isolation of Staphylococcus aureus from raw fish in relation to culture methods. J. Vet. Med. Sci. 73(3): 287-292. https:// doi.org/10.1292/jvms.10-0198
- Savariraj WR, Ravindran NB, Kannan P, Paramasivam R, Senthilkumar TMA, Kumarasamy P, Rao VA. (2019). Prevalence, antimicrobial susceptibility and virulence genes ofStaphylococcus aureusisolated from pork meat in retail outlets in India. J. Food Safe. 39(1): e12589. https://doi. org/10.1111/jfs.12589
- Schlegelova J, Vlkova H, B, V., Holasova M, Jaglic Z, Stosova T, Sauer P (2008). Resistance to erythromycin of Staphylococcus spp. isolates from the food chain. Vet. Med., 53(6): 307–314. https://doi.org/10.17221/1856-VETMED
- Seo KS, Bohach GA (2003). Staphylococcus aureus. Ch 22 In: Doyle MP, Beuchat LR (eds) Food microbiology :Fundamentals and frontiers. 3rd ed, ASM Press, Washington D.C. 493-518. https://doi.org/10.1128/9781555815912.

 Singh A, Yadav S, Singh S, Bharti P (2010). Prevalence of Salmonella in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Res. Intern. 43: 2027–2030. https://doi.org/10.1016/j. foodres.2010.06.001

ch22

- Sutra L and Poutrel B (1994). Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J. Med. Microbiol. 40(2): 79-89. https://doi.org/10.1099/00222615-40-2-79
- Thapaliya D, Forshey BM, Kadariya J, Quick MK, Farina S, Nair R, Nworie A, Hanson B, Kates A, Wardyn S, Smith TC (2017). Prevalence and molecular characterization of Staphylococcus aureus in commercially available meat over a one-year period in Iowa, USA. Food Microbiol. 65: 122-129. https://doi.org/10.1016/j.fm.2017.01.015
- Wada M, Lkhagvadorj E, Bian L, Wang C, Chiba Y, Nagata S, Shimizu T, Yamashiro Y, Asahara T, Nomoto K (2010). Quantitative reverse transcription-PCR assay for the rapid detection of methicillin-resistant Staphylococcus aureus. J. Appl. Microbiol. 108: 779-788. https://doi.org/10.1111/j.1365-2672.2009.04476.x
- Waters AE, Contente-Cuomo T, Buchhagen J, Liu CM, Watson L, Pearce K, Foster JT, Bowers J, Driebe EM, Engelthaler DM, Keim PS, Price LB (2011). Multidrug-Resistant Staphylococcus aureus in US Meat and Poultry. Clin. Infect. Dis. 52(10): 1227-1230. https://doi.org/10.1093/cid/cir181
- •Wei-Wei LI, Zhu JH, Zhen SQ, Liang XC, Jiang YY, Ning LI (2018). Analysis of foodborne disease outbreaks in China mainland in 2011. Chinese J. Food Hyg. 30: 283-288.
- Wu S, Huang J, Wu Q, Zhang J, Zhang F, Yang X, Wu H, Zeng H, Chen M, Ding Y, Wang J, Lei T, Zhang S, Xue L (2018). Staphylococcus aureus Isolated From Retail Meat and MeatProducts in China: Incidence, Antibiotic Resistance and Genetic Diversity. Front. Microbiol. 9: 2767. https:// doi.org/10.3389/fmicb.2018.02767
- Xing X, Li G, Zhang W, Wang X, Xia X, Yang B, Meng J (2014). Prevalence, antimicrobial susceptibility, and enterotoxin gene detection of Staphylococcus aureus isolates in readyto-eat foods in Shaanxi, People's Republic of China. J. Food Prot. 77(2): 33-334. https://doi.org/10.4315/0362-028X. JFP-13-301