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Hosts and Viruses

Abstract | Infectious bursal disease (IBD), caused by infectious bursal disease virus (IBDV), is one of the 
most devastating and immunosuppressive diseases of the poultry and has been a constraint on the sustainable 
food security around the globe including Pakistan. Poultry industry is the second biggest industry in Pakistan 
while IBD is an important disease seriously threatening poultry farming. Despite the use of mass and intense 
vaccination regimens, the disease continues to sustain in many countries around the globe including Pakistan. 
However, to some extent, the epidemic strains and epidemic patterns predominant strains of IBDV in Pakistan 
is unclear. This highlights the need to characterize field strains of IBDV to ascertain the evidence of vaccine 
failure and to establish foundations for the development of vaccine matching with the epidemic strains.
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Introduction

The causative agent of infectious bursal disease (IBD) 
is infectious bursal disease virus (IBDV), which is the 
caustivie agent of acute, highly contagious infection 
affecting commercial poultry worldwide (Müller et al., 
2003; Qin and Zheng, 2017). IBD was first identified 
in 1957 in Gumboro, which is located in the Delaware 
State of USA and was given the name ‘Gumboro’. 
IBD destroys bursa of Fabricius between 3rd to 6th 
week of age, hence the disease is known as “AIDS” 
of poultry (Lasher and Shane, 1994). The clinical 
picture of the disease includes a sudden onset with a 
short incubation period, anorexia, weakness, tremors, 
and intermittent diarrhea (Becht and Müller, 1991; 
Kibenge et al., 1988). Characteristic necropsy lesions 
include dehydration skeletal muscle hemorrhages. 

The disease causes severe immunosuppression along 
with high mortality which leads to a higher incidence 
of secondary infections (Quaroni and Calnek, 1999). 
In 1970, the disease was officially named as the 
infectious bursal disease by World Poultry Congress. 
IBD was controlled easily before 1980s, as classic 
strains of IBDV (cIBDV) used in vaccines produced 
good immune protection and low mortality. However, 
the situation of controlling IBD was totally changed 
at the end of the 20th century. Variant strains of 
IBDV (varIBDV) emerge ( Jackwood and Saif, 1987; 
Rosenberger and Cloud, 1986), which antigenically 
differ from cIBDV strains resulting in failure of 
immunization with older strains. After that, extremely 
virulent strains of IBDV named as vvIBDV were 
emerged due to the continuous evolution of virus 
which showed more than 60% mortality rate (Chettle 
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et al., 1989; Eterradossi et al., 1997) resulting in huge 
economic losses to farmers due to the increased 
cost of prevention. Now, vvIBDV has a worldwide 
prevalence, which constantly poses a great threat to the 
poultry industry. IBD is listed as “important disease of 
animals which greatly affect the social economy” by 
World Organisation for Animal Health (OIE).

Epidemiology of IBD
IBDV can infect turkeys and chickens but clinical 
signs and pathological lesions are only prominent in 
chickens (Eterradossi and Saif, 2013). IBDV have 
two serotypes: Serotype-I only infect chickens and is 
highly pathogenic while serotype-II infects turkeys 
and non-pathogenic. The disease has a sudden onset 
and rapid expansion with no effect of season on its 
endemicity. The disease can be transmitted to other 
flocks from sick birds through a direct or indirect 
route. Virus-infected bird sheds a large number of 
virions in their feces which can be transmitted within 
the flocks. The virus can withstand acid treatment (at 
pH=2 for 1 hour), heat resistant (56oC for 5 hours) 
favouring the pathogeneicity or infectivity in vivo and 
in vitro. The virus can directly infect feeding utensils, 
feed, and water for a longer duration while indirectly 
virus is transmitted by beetles or rodents which are 
reservoirs of disease transmission. Due to constant 
evolution of virus and variations in environmental 
circumstances, IBD has certain new features:
1. Disease course is prolonged with widened age of 

onset. Day old chicks, as well as late laying birds, 
can develop the disease. The disease can persist for 
more than 2 weeks.

2. Virus-host spectrum is widened. Geese, ducks, 
and sparrows have found naturally infected with 
IBDV particularly in ducks seroprevalence rate 
was 95.5% (Ruiz-Hernandez et al., 2016).

3. Natural mutation and recombination of IBDV 
constantly occurs while currently, vvIBDV is more 
popular in the poultry sector. Epidemiological 
studies reported segmental reassortment of IBDV 
and also indicated that the currently popular 
infectious bursal disease virus is a new threat (Lu 
et al., 2015).

4. Vaccine immunization failure have occurred. 
Continuous evolution of virus is a great challenge 
in the development of new effective vaccines.

5. Mixed IBDV epidemics are reported. Immunity 
of virus-infected chickens is decreased due to 
increased virus virulence, concurrent or secondary 
infections with Marek’s virus (MDV), Newcastle 

disease virus (NDV), Mycoplasma, and bacteria.

Infectious bursal disease virus (IBDV)
Classification and morphological structure: IBDV 
is placed in genus Avianbirnavirus, family Birnaviridae 
(Dobos, 1979; Müller et al., 2003). Mature virus 
particles have single layered capsid without envelope. 
Mature virus particles are icosahedral spheres having 
T=13 symmetry with 72 nm extended diameter of 
the fifth-order axis and 66 nm extended diameter of 
the cubic axis as shown by negatively stained electron 
microscopy. The viral proteins such as VP1, VP2, 
VP3, and VP4 shares 3%, 51%, 40%, and 6% of the 
total quality of IBDV (Dobos, 1995). VP2 have 780 
subunits, VP3 have 600 while VP4 have 60 subunits, 
respectively. There are 260 trimers formed by VP2 
monomers which formed the outer capsid of the virus 
while the inner surface of IBDV has several Y-shaped 
structures, VP4 might wrap fifth axis edge while VP2 
and VP1 both interact with RNA. Non-structural 
VP5 doesn’t participate in the composition of the 
mature virus.

Genomic structure
Segment A and segment B are two double-stranded 
segments of IBDV genome. Length of segment A 
is approximately 3.2 kb and contains two differently 
sized open reading frames (ORFs). Small open reading 
frame (ORF) encodes 17kDa non-structural protein 
named VP5 (Mundt et al., 1995) while large ORF 
encodes 110 kDa precursor polyprotein (NH3-Pvp2-
VP4-VP3-COOH) (Azad et al., 1985; Hudson et al., 
1986), which was converted to VP2 (41kDa), VP3 
(32 kDa) and VP4 (28 kDa) after post-translational 
modifications by proteolytic action (Tacken et al., 
2003). Segment B has single ORF and is about 2.8 
kb long which encodes 95 kDa VP1 protein having 
RNA dependent RNA polymerase activity (Spies et 
al., 1987; von Einem et al., 2004).

The 3’ and 5’ end of both segments A and B are 
untranslated regions (UTR) while VPg is covalently 
attached to 5’ end of both segments (Müller and 
Nitschke, 1987). Alignment of different sequences 
indicated that the presence of 32 bp long highly 
conserved region at 5’ UTR of both segments and 
studies have proved this to be a promoter sequence 
(Nagarajan and Kibenge, 1997). In 20 bp upstream 
of the start codon, there is polypyrimidine region in 
5’UTR which is complementary to 3’ end region of 
18S rRNA (Mundt and Müller, 1995) which may 
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have a role in the initiation of protein translation. 
There is a continuous 4 to 5 cytosine ends in 3’ UTR 
of both segments and studies have indicated a possible 
inhibitory role of this cytosine in replication of the 
virus (Boot et al., 1999). The untranslated region of 
IBDV can form a secondary stem-loop structure 
which has a role in UTR functioning (Boot and 
Pritz‐Verschuren, 2004).

Evolution of IBDV
IBD was first identified nearly six decades ago 
and still, it is considered havoc to commercial 
poultry (Eterradossi and Saif, 2013). IBDV has two 
antigenically distinct serotypes: serotype 1 is highly 
pathogenic to chickens while serotype 2 is non-
pathogenic (Ismail et al., 1988; Wang et al., 2007). 
Initially, after the first report of IBDV in 1957, 
virus strains were less virulent and easily controlled. 
However, virulent strains having the capability to 
cause disease despite immunization with classical 
strains were reported in 1985 in USA (Snyder et al., 
1988). Virus neutralization (VN) test indicated that 
these strains were different from older classical IBDV 
strains ( Jackwood and Saif, 1987). Very virulent 
strains of IBDV (vvIBDV) were identified in Europe 
in 1987 and rapidly spread throughout the world 
(Berg, 2000). Mortality rate was almost over twice 
as compared to classical virulent strains (cvIBDV) 
and cause disease even the presence of high titers 
of maternal antibodies (Eterradossi et al., 1992; Van 
den Berg et al., 1991). Based on antigenic, pathotypic, 
and genetic characteristics, IBDV strains of serotype 
1 are categorized into four groups named as classical 
virulent strains, antigenic variant strains, very virulent 
strains, attenuated strains.

Coding proteins

VP1
VP1 is the sole protein coded by segment B with 
approximately 878 long amino acid sequence. VP1 
has multifunctions and exist in two forms in virions 
i.e. VPg covalently linked to viral genome and free 
VP1 (Calvert et al., 1991; Müller and Nitschke, 
1987). Free VP1 protein is involved in replication and 
transcription of IBDV through its RNA-dependent 
RNA polymerase activity (von Einem et al., 2004). 
Covalent bonding of VP1 to the viral genome is 
mainly due to its self-guanylation activity which 
helps to bind itself with 1 or 2 guanine (G) bases. 
Resultant VP1-GG or VP1-G is complementary to 

cytosine present at 3’-end of viral RNA and acts as 
protein primer (Dobos, 1995), therefore, is involved 
in initiating new RNA strand synthesis which has the 
covalent binding of VP1 (Magyar et al., 1998; Xu et al., 
2004). Studies have confirmed that self-guanylation 
is not dependent on VP1 polymerase activity nor 
on RNA template (Pan et al., 2009). On the basis 
of structural morphology, there are three functional 
domains of VP1 protein: N-terminal domain (aa 1 
to 167), central polymerase active region (aa 168 to 
658), and C-terminal domain (aa 659 to 878) (Pan et 
al., 2007). Central polymerase active region is right-
handed shaped consisting of finger, thumb, and palm 
which have structural resemblance with active regions 
of other RNA polymerases. Two reasons make VP1 an 
important subgroup of RNA polymerases: Firstly, the 
palm of VP1 contains 5 catalytic motifs (their order 
CABDE is different from an order of classical strains 
i.e., ABCDE); secondly, there is a 401ADN403 
sequence in C-motif of VP1 protein of IBDV instead 
of classical X(G)DD sequence. Only two aspartic acid 
residues (D402 and D416) are present in IBDV RNA 
polymerase active site (Gorbalenya et al., 2002). It was 
verified that the amino acid triplet at positions 4 and 
145/146/147 of VP1 are important determinant of 
viral replication and pathogenicity (Gao et al., 2014; 
Yu et al., 2013). The substitution of these three amino 
acids could also affect the polymerase activity of 
IBDV RdRp (Qi et al., 2016).
 
VP2 
The nucleotides 131 to 1453 in segment A encoded 
441 amino acids of VP2 protein which is the 
main structural unit of viral capsid identified by 
neutralizing antibodies (Qi et al., 2015a, 2016). 
X-ray crystallographic studies have shown that VP2 
protein folding forms three distinct domains base 
domain (B), shell domain (S), and protuberance 
domains ( Projection domain, P), in which the B 
domain and the S domain are composed of the 
conserved N-terminal and C-terminal amino acids 
of VP2, and the prominent P domain consists of the 
amino acid of the VP2 hypervariable region (HVR, 
aa 206-350), which is located at the outermost side 
of the P domain. Two protruding rings PBC and PHI 
are composed of a first hydrophilic region (aa 212-
224) and a second hydrophilic region (aa 314-324), 
respectively (Coulibaly et al., 2005; Garriga et al., 
2006; Letzel et al., 2007). The terminus, wherein the 
amino acid of the first hydrophilic region, is primarily 
involved in stabilizing the spatial conformation of the 
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epitope, and the amino acid mutation in the second 
hydrophilic region is critical for immune escape of 
IBDV (Heine et al., 1991).

In addition, VP2 is also an important virulence 
protein of IBDV. There are two four loop structures, 
PBC, PHI, PDE and PFG, at the top of the P domain of 
VP2. Amino acids 253 and 284 are located at PDE 
and PFG, respectively. These two amino acid sites can 
determine cell-tropism of IBDV. It is well known 
that chicken bursa B lymphocytes are the main 
target cells of IBDV, and have obvious susceptibility 
to IBDV. Lymphocyte susceptibility in other organs 
(such as blood and spleen) is relatively low. This 
cellular tropism is not limited to the preference of 
the same strain for B lymphocytes of different tissues, 
but also for the tropism of virulent and attenuated 
strains to different types of cells. Studies have shown 
that IBDV wild-type strains or virulent strains can 
rapidly proliferate on bursal B lymphocytes in vivo, 
but cannot replicate on in vitro cell such as CEF and 
DF1; unlike IBDV wild strains, IBDV attenuated 
strains can not only adapt to bursal B lymphocytes 
but also adapt to CEF, DF1, Vero, and other cells for 
in vitro propagation. With the development of reverse 
genetic technology, the molecular determinant of the 
cell-tropism difference of virulent and attenuated 
IBDV has gradually been revealed.

At the beginning, VP2 has shown to be the single 
most important determinant of cell-tropism of IBDV 
(Boot et al., 2000; Brandt et al., 2001) and its amino 
acid residues 253, 279, 284 and 330 have been studied. 
While residue 330 has little influence on the ability of 
IBDV to infect tissue culture, the roles of the residues 
253, 279, 284 in cell-tropism are conflictive (Brandt et 
al., 2001; Lim et al., 1999; Mundt, 1999; Van Loon et 
al., 2002). In one blind-paasage experiment in Harbin 
Veterinary Research Institute, Prof. Wang Xiaomei’s 
team found that only two amino acid mutations 
difference (Q253H and A284T) in VP2 was found 
between vvIBDV Gx strain (not adapt to CEF cell) 
and one intermediate strain CEF-9 that was partially 
attenuated and adapted to the CEF culture (Wang 
et al., 2004). Subsequently, Qi et al. systematically 
verified the molecular basis of IBDV cell tropism by 
using the novel reverse genetics technology and finally 
confirmed the double mutation of of Q253H/A284T 
on VP2 can adapt to vvIBDV to cell lines while single 
mutation cannot (Qi et al., 2009). Meanwhile, it was 
also verified that the double mutation of of Q253H/

A284T can attenuated vvIBDV (Qi et al., 2009). 
Furthermore, the study also confirmed that 222, 249, 
256, and 279 amino acids on VP2 have been involved 
in the replication and virulence of IBDV (Brandt et 
al., 2001; Li et al., 2016; Lim et al., 1999; Qi et al., 
2013, 2014, 2015a).

VP3 
The nucleotides 2393-3169 form segment A encoded 
257 amino acids of VP3 protein which is located on 
the inner surface of virus particles. VP3 protein itself 
can’t initiate production of virus-specific neutralizing 
antibodies. Morphological studies of the VP3 gene 
showed that it is mainly composed of α-helices 
connected by rings of different sizes. VP3 protein 
has two distinct domains: N-terminus (first domain) 
and hydrophobic C-terminus (second domain) which 
has resemblance with its oligomerization. VP3 can 
exist in the form of dimmer and has high structural 
resemblance with the structure of transcriptional 
regulatory factor proteins which indicates that it has 
some roles in the regulation of transcription (Maraver 
et al., 2003). C-terminus is responsible for several 
ancillary functions performed by VP3 protein due to 
which it is also called “moonlight protein”. C-terminus 
of VP3 interacts with VP1 protein (Casañas et al., 
2008) and can alone activate VP1 protein RNA 
polymerase activity. This interaction with VP1 protein 
results in modulation of its spatial conformation 
which helps viral RNA to enter VP1 protein catalytic 
center (Ferrero et al., 2015; Garriga et al., 2007). This 
interaction also results in the production of mature 
virus particles. Studies have shown that in the absence 
of C-terminus of VP3, IBDV has a rod-like structure 
instead of globular icosahedral structure. This effect 
is attributed to the presence of the last glutamate 
(Glu257) at VP3 C-terminus (Chevalier et al., 2004; 
Maraver et al., 2003). C-terminus of VP3 have a role 
in antigenicity and virulence of IBDV. Studies have 
shown that C-terminus of IBDV serotype-I replaced 
by serotype-II results in different virus antigenicity 
and virulence (Boot et al., 2002). Virulence of IBDV 
is decreased if C-terminus at end of VP3 proteins 
is replaced by attenuated strain containing Val235 
(Wang et al., 2010). The C-terminus of VP3 can 
also has the ability to bind with single-stranded 
RNA (Maraver et al., 2003) while 99Lys-102Arg-
105Lys-106 Lys of VP3 protein can bind to double-
stranded RNA. This interaction with double-stranded 
RNA may inhibit the production of interferons (Ye 
et al., 2014) It was peported that a single amino acid 
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at 990 in the C-terminus of VP3 protein influences 
the replication of attenuated infectious bursal disease 
virus in vitro and in vivo (Wang et al., 2010).
 
VP4
VP4 protein consists of 242 amino acids encoded by 
nucleotides 1667-2392 of segment A, is present in 
small amounts in virions, is a non-structural protein, 
has eukaryotic serine protease hydrolyzing activity, 
and is capable of self-cleaving precursor polyprotein 
(NH2-Pvp2-VP4-VP3-COOH) plays an important 
role in the modification and processing of viral proteins. 
Studies have shown that the enzyme active sites of 
VP4 protein are Ser140 and Lys180 (corresponding 
to Ser652 and Lys692 on polyprotein, respectively), 
and the cleavage site corresponds to 511Leu-
512Ala^513Ala and 754Met-755Ala^756Ala on the 
polyprotein (Lejal et al., 2000). Recent studies have 
found that VP4 protein is also a phosphorylated 
protein, Ser26, Tyr99, Thr162 (corresponding to 
amino acids 538, 611, and 674 on the polyprotein, 
respectively) are the major phosphorylation sites. It 
plays a role in the protease activity of VP4 (Wang et 
al., 2015b). In addition, VP4 also has an impact on the 
self-assembly of IBDV (Lee et al., 2015).

VP5
VP5 protein consists of 145 amino acids encoded by 
the small segment A ORF (nucleotides 97-534). It is 
a non-structural protein and is not found in virions 
(Mundt et al., 1995). It has been reported that VP5 is a 
replication-non-essential protein (Mundt et al., 1997). 
However, based on reverse genetics, it was verified 
that VP5 played an important role in viral replication 
and pathogenesis both in vitro and in vivo (Qin et al., 
2009, 2010). Although VP5 protein has little effect on 
viral replication, there is increasing evidence that VP5 
protein is involved in the release of progeny virions. 
Lombardo et al. (2000) found that VP5 protein can 
accumulate around the cell membrane and induce 
cell lysis (Lombardo et al., 2000; Wu et al., 2009). The 
literature reported that VP5 is a phosphoinositide-
binding protein and demonstrated that VP5 protein 
is essential for the spread of the virus among 
cells (Méndez et al., 2015). Although topological 
prediction analysis revealed that VP5 protein may be 
a type II transmembrane protein, including potential 
transmembrane and intracellular N-terminal and 
C-terminal structures, the latest findings clearly 
indicate that VP5 is not a transmembrane protein 
(Carballeda et al., 2015). Therefore, the role of VP5 

protein in the release of virions remains to be further 
studied. In addition, another important role of VP5 
protein is to participate in apoptosis during IBDV 
infection (Li et al., 2012; Lin et al., 2015).

Reassortment of IBDV
It has been reported that co-evolution of genome 
segments is a major evolutionary feature in IBD (Le 
Nouen et al., 2006). However, recently, it has been 
reported a few strains exhibited markedly different 
genetic relatives for segments A and B.

vv-A/Att-B
The reassortment category of vv-A/Att-B means 
that segment A belongs to very virulent IBDV 
(vvIBDV) while segment B belongs to attenuated 
strain (attIBDV). SH95 is a vvIBDV isolated in 
Shanghai from flocks having a history of vaccination 
failure. A single step PCR successfully amplifies 2827 
base pairs (bp) long B segment and 3259 bp long 
segment A. Amplified product was cloned and then 
sent for genetic sequencing. 27 amino acid positions 
in the genome of segment A were substituted while 
VP1 protein has 9 to 38 substitutions. Four out of 38 
substitutions in VP1 while three out of 27 amino acid 
substitutions in segment A were unique. Alignment 
and subsequent comparison of sequences revealed the 
fact that they were most similar to routinely isolated 
Asiatic vvIBDVs clearly different from classical 
IBDV strains. The topology tree indicated the 
possible emergence of SH95 strain through a genetic 
reassortment with very virulent A and attenuated B 
(Sun et al., 2003b). 

In 2011, a novel vvIBDV strain named as GX-NN-L 
was isolated in the province of Guangxi from broiler 
birds. This strain caused severe immunosuppression, 
atrophy of bursa and high mortality in broiler flocks 
(Chen et al., 2012a). In a study, a full genome of 
natural reassortant strain named GX-NN-L was 
characterized by having segment A resembled with 
vvIBDV while segment B related to attenuated 
IBDV. Findings of this study helped to get important 
information about the exchange of genetic material 
between a very virulent strain of IBDV and attenuated 
IBDV strain which leads to monitor disease spread in 
commercial chickens (Chen et al., 2012a). In another 
study, virus strain was isolated from the outbreak of 
IBDV in 2004 in Lusaka (named as KZC-104) and 
the full genome sequence was determined. The coding 
region of segment A consisted of 3,074 nucleotides 
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while the coding region of segment B was 2,651 
nucleotides long. Deduced amino acid sequences were 
aligned and phylogenetic analysis was performed 
which showed that segment A of KZC-104 genome 
was derived from vvIBDV strain while segment B 
resembled with attenuated IBDV strain. Results of 
nucleotide blast showed 98% nucleotide sequence 
similarity with D6948 strain which was vvIBDV 
while 99.8% similarity with D78 (attenuated IBDV 
strain) (Kasanga et al., 2013). In 2015, a new natural 
reassortant strain of IBDV named as IBD13HeB01 
with vv-A/ Att-B was isolated from northern China. 
In 2017, coding regions of both segments of novel 
reassortant strain named as JBN2011 were sequenced. 
JBN2011 genome characterization indicated a rare 
recombinant virus whose segment A had vvIBDV 
portion and segment B was related to Bursine-2-like 
attenuated IBDV (Lee et al., 2017).

In a study, an Indian strain named MB11/ABT/
MVC/2016 was isolated from commercial broilers 
and full genome sequence was identified which was 
first complete genome sequence of IBDV from India 
(Senthilkumar et al., 2016).

Att-A/vv-B
Wei and co-workers characterized the full genome of 
a reassortant strain of IBDV named ZJ2000 isolated 
from virus outbreaks in commercial poultry flocks. 
Alignment of sequences showed ZJ2000 belongs to 
the category of natural reassortant whose segment 
A and B derived from attenuated (att) and vvIBDV, 
rwspectively (Wei et al., 2006). ZJ2000 showed delayed 
replication strategy when compared with attenuated 
IBDV strains. This strain proved to be pathogenic 
for SPF chickens when administered experimentally. 
Challenge of this strain results in 100% morbidity and 
26.7% mortality along with significant pathological 
lesions in bursa of Fabricius. Results also indicated 
that VP2 alone can’t determine the virulence of IBDV 
and RNA-dependent RNA VP1 protein also have a 
role in virulence determination (Wei et al., 2006). In 
another study, the complete genome sequence of an 
IBDV reassortant named TL2004 was characterized 
and it was revealed that segment A resembles with 
attenuated IBDV strains while segment B resembles 
with vvIBDV strains. This strain was also pathogenic 
to SPF chickens and embryonated eggs but not 
such virulent as vvIBDV (Wei et al., 2008). Besides, 
phylogenetic analysis showed HN strain isolated in 
centrol China is also one Att-A/vv-B type, of which 

segment A was similar with vvIBDV OKYM strain 
and segment B was similar with attenuated B87 strain 
(Cui et al., 2013).

vv-A/c-B
In this category (vv-A/c-B), segment A is derived 
from vvIBDV strains and segment B is derived 
from classical IBDV (cIBDV). In 2003, the first 
reassortment IBDV (Br/03/DR) was reported, of 
which segment A is derived from vvIBDV and 
segment B from cIBDV (Fernandes et al., 2012). 
Another vv-A / c-B strain (CA-S7610) was islotated 
in America (Gallardo et al., 2014).
 
vv-A/var-B
It is possible that the reassortant might occur between 
vvIBDV and variant IBDV (varIBDV), which was 
verified by one special reassortant IBDV (02015.2) 
isolated in Venezuela. The 02015.2 strain has vv-A / 
var-B. This strain induced significantly less mortality 
than typical vvIBDVs (Le Nouen et al., 2006).

vv-A/II-B
Natural reassortants were already reported between 
vvIBDV and various other strains of serotype-I, but 
between serotype I and II, no natural reassortant 
has been reported. The vv-A/II-B means segment 
A belongs to vvIBDV while segment B belongs 
to serotype II strain. The first case of vv-A / II-B 
reassortants (CA-D495 and CA-K785 strains) was 
reported in California in 2009. Segment A of these 
reassortants resembled with serotype I of vvIBDV 
but segment B was related to serotype-II. CA-K785 
reassortant resulted in 20% mortality but caused 
no clinical signs in turkeys ( Jackwood et al., 2011). 
Besides, another study described the first event of 
inter-serotypic reassortment in Europe. The isolated 
strain was named as 100056 and has segment A related 
to European vvIBDV strains and segment B related to 
serotype-II of European isolates. In animal experiment 
of SPF chickens, 00056 strain iduced notable bursal 
lesions and atrophy without any significant mortality 
which suggested the immunosuppressive potential of 
the isolate (Soubies et al., 2017).

vv-A/Uniq-B
In 1996, Harbin Veterinary Research Institute 
isolated a strain of vvIBDV from Guangxi province 
in China and named it Gx strain. Subsequently, 
under the support of the EU cooperation project 
(ERBIC18CT980330), the Gx strain was identified as 
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a reference strain of Chinese vvIBDV by international 
experts of International Epizootic Office (OIE) 
reference laboratory (Wang et al., 2003). Further 
genome sequencing and genetic evolution analysis 
revealed that the genomic segment A of Gx strain 
has higher homology with vvIBDV, but its segment 
B belongs to a unique branch that is different from 
vvIBDV and attenuated strain. Another early isolates, 
Harbin-1, also belongs to this type, and they may 
be derived from similar ancestors (Hon et al., 2008; 
Xia et al., 2008). Recently, another such a type strain 
HLJ-0504 was isolated and researched in detail (Yu 
et al., 2010). At present, the evolutionary source of 
this B segment is unknown, so the HLJ0504-like 
genotype is called vv-A/ uniq B type. The prevalence 
of HLJ0504-like strains in China is becoming more 
and more popular. Recently, similar strains have been 
continuously isolated in Northeast China (Yu et al., 
2010) and many provinces in the south (He et al., 
2014). The genome of these strains belongs to vv-
A/ uniq B type, but a few mutations have occurred. 
For example, the HLJ-0504 strain, which shares 
99.3% and 92.3% homology with the polyprotein 
(segment A coding) encoded by the Gx strain and 
the VP1 protein (segment B coding) (Qi et al., 2011). 
In addition, although the VP5 protein of HLJ-0504 
has high homology with vvIBDV, there is a deletion 
of MLSL peptide at the N-terminus, which is a 
characteristic of attenuated strains (Qi et al., 2011). 
The vv-A/uniq-B type of IBDV has also been isolated 
from other countries, such as Venezuela (Le Nouen et 
al., 2006), Nigeria (Nwagbo et al., 2016) and Algeria 
(Abed et al., 2018).

Conclusions and Recommendations

Poultry is the second largest industry of Pakistan while 
IBDV is an important disease threatening poultry 
farming in the country. While extensive vaccination 
programs are implemented in the country, the 
disease outbreaks are not uncommon. This highlights 
the need to characterize field strains of IBDV to 
ascertain the bases of vaccine failure and to establish 
foundations for indigenous virus utilization in the 
vaccine development. However, limited information 
about the spread of disease is available in Pakistan 
which can discover true status of IBDV. 

Novelty Statement

It is of paramount significance to characterize field 

strains of IBDV in order to determine the causes of 
vaccine failures and establish foundations for indig-
enous virus utilization in the vaccine development.  
With the scarcity of available literature in this regard, 
it is concluded that vaccine alone cannot provide 
complete protection, rather there is a need to adopt a 
holistic approach for protection involving vaccine an-
tigen matching, biosecurity, and feeding management. 
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