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Abstract | The literature regarding the ICP0 protein from herpes simplex virus is complex and fre-
quently contradictory, meaning that although this protein has been implicated in a wide variety of 
diverse functions, the mechanisms through which it produces these effects continue to be elusive. Re-
cent investigations into the ability of ICP0 to block the activation of antiviral signaling have revealed 
a potential explanation for some of this confusion – namely, that ICP0 has important functions in 
the cytoplasm that have been generally disregarded, due to the fact that many frequently used experi-
mental manipulations restrict this protein to the nucleus. This commentary discusses the significance 
of these findings to the ICP0 field.
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Herpes simplex virus (HSV) is a tremendous-
ly successful human pathogen, with worldwide 

seroprevalence rates reaching 60%-90% (Smith and 
Robinson, 2002). The global conquest of this virus is 
due, at least in part, to its ability not only to produce 
a lytic infection of epithelial cells, but also to subse-
quently establish a latent reservoir in neurons, allow-
ing it to escape immune surveillance while permitting 
it to persist and infect new individuals throughout 
the lifetime of the original host (reviewed in (Grinde, 
2013)). As a large, complex double-stranded DNA 
virus, HSV encodes at least 84 proteins. Arguably, 
one of these proteins stands out among the rest, both 
in terms of importance to a large number of diverse 
viral functions as well as in its often perplexing be-
havior. This is the infected cell protein 0 (ICP0).

A survey of the literature quickly reveals the remark-
able variety of activities in which ICP0 has been im-
plicated, including roles in promoting lytic replication 

(Everett et al., 2004), promiscuous transactivation of 
both viral and cellular genes (Everett, 1984; Gelman 
and Silverstein, 1985; O’Hare and Hayward, 1985; 
Quinlan and Knipe, 1985), DNA template remode-
ling (Cliffe and Knipe, 2008; Coleman et al., 2008; 
Ferenczy and DeLuca, 2009; Kalamvoki and Roiz-
man, 2010; Orzalli et al., 2013), capsid transport (Del-
boy et al., 2010), interference with the DNA-damage 
response (Lees-Miller et al., 1996; Parkinson et al., 
1999; Li et al., 2008; Lilley et al., 2010; Chaurushiya 
et al., 2012), and disruption of both the centromere 
(Everett et al., 1999; Lomonte et al., 2001) and the 
cellular microtubule network (Liu et al., 2010). The 
means through which ICP0 accomplishes these dif-
ferent tasks remains unclear, and in many cases, con-
troversial. A feature of ICP0 that is much touted in 
the literature as being essential to all of its varied 
functions is its Really Interesting New Gene (RING) 
finger domain, which acts as an E3 ubiquitin ligase 
(Everett, 2000). Because ubiquitination has long 
been associated with proteasome-mediated degrada-
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tion, the various effects produced by ICP0 are gen-
erally thought to result from the loss of a particular 
cellular protein. Indeed, ICP0 is associated with the 
proteasome-dependent degradation of no less than 
15 cellular targets (Everett et al., 1998; Chelbi-Alix 
and de The, 1999; Everett, Earnshaw et al., 1999; Par-
kinson, Lees-Miller et al., 1999; Lomonte, Sullivan 
et al., 2001; Boutell and Everett, 2003; Boutell et al., 
2005; Diao et al., 2005; Kummer et al., 2007; Lilley, 
Chaurushiya et al., 2010; van Lint et al., 2010; Fuku-
yo et al., 2011; Orzalli et al., 2012; Lin et al., 2013). 
Recently, however, an appreciation has developed that 
not all ubiquitin chains target a protein for degrada-
tion – depending on the specific lysine residue used 
to link the ubiquitin monomers, “atypical” chains may 
instead have signalling roles unconnected to the pro-
teasome (reviewed in (Behrends and Harper, 2011)). 
Interestingly, E3 ubiquitin ligases can form more than 
one linkage type (reviewed in (Ye and Rape, 2009; 
Behrends and Harper, 2011)), and the particular ly-
sines involved in chains generated by ICP0 have not 
been identified.

ICP0 has also been implicated in combating innate 
antiviral signaling, although the exact significance 
and mechanism of this activity remains hotly con-
tested. The classic interferon (IFN)-mediated antivi-
ral response occurs when cellular pathogen recogni-
tion receptors (PRRs), such as the Toll-like receptors 
(TLRs) and the retinoic acid inducible gene I (RIG-
I)-like receptors (RLRs), recognize viral components 
and activate transcription factors, including IFN reg-
ulatory factor 3 (IRF3) and nuclear factor kappa B 
(NFκB), which collectively cause the production of 
the soluble cytokine IFN. Binding of IFN to cell-sur-
face receptors induces signal transduction pathways 
that ultimately result in the expression of hundreds 
of IFN stimulated genes (ISGs), which work together 
to block viral replication (reviewed in (Hertzog and 
Williams, 2013)). ICP0 has been found to be in-
volved in mediating viral resistance to the effects of 
IFN (Mossman et al., 2000; Harle et al., 2002; Moss-
man and Smiley, 2002; Everett and Orr, 2009), via the 
degradation of the ISG promeylocytic leukemia pro-
tein (PML) (Chee et al., 2003), a component of spe-
cialized nuclear bodies known as nuclear domain 10 
(ND10) (Grotzinger et al., 1996; Everett, Freemont 
et al., 1998). However, it has also been suggested that 
as opposed to being important in IFN-mediated sig-
naling, ND10 components such as PML, Sp100, hD-
axx and ATRX (Everett et al., 2006; Everett et al., 

2008; Lukashchuk and Everett, 2010) instead form 
an intrinsic antiviral response, composed of constitu-
tively expressed proteins that work to block viral ac-
tivities in the absence of de novo protein production 
(reviewed in (Bieniasz, 2004)). Indeed, members of 
ND10 cooperatively inhibit ICP0-null viral replica-
tion (Everett, Rechter et al., 2006; Everett, Parada et 
al., 2008; Lukashchuk and Everett, 2010; Glass and 
Everett, 2013), possibly by sequestering viral genomes 
to prevent their transcription (Boutell et al., 2011; 
Glass and Everett, 2013), which ICP0 counteracts by 
blocking the recruitment of these proteins to the vi-
ral genome (Maul et al., 1993; Everett, Freemont et 
al., 1998; Chelbi-Alix and de The, 1999; Everett and 
Murray, 2005; Lukashchuk and Everett, 2010).

Perhaps the most contentious of all the functions of 
ICP0 is its role in inhibiting the initial production of 
IFN. For example, the ability of ICP0 to block the 
activation of NFκB after TLR stimulation has been 
reported by two independent groups – each of which 
proposed a distinct and opposing mechanism. The 
first found that ICP0 recruited the deubiquitinating 
enzyme USP7 to the cytoplasm to remove non-deg-
radative, activating ubiquitin chains from adaptor 
proteins TRAF6 and IKK-γ, in a process that did 
not require the RING finger of ICP0 (Daubeuf et al., 
2009), while the second demonstrated that TLR sig-
naling was inhibited via the RING-dependent degra-
dation of adaptor proteins MyD88 and Mal (van Lint, 
Murawski et al., 2010). ICP0 has additionally been 
found to decrease both IRF3 activation and ISG ex-
pression (Mossman, Saffran et al., 2000; Mossman et 
al., 2001; Eidson et al., 2002; Lin et al., 2004; Melroe 
et al., 2004; Melroe et al., 2007; Paladino et al., 2010; 
Orzalli, DeLuca et al., 2012). This was initially found 
to require both the RING finger domain and an active 
proteasome (Eidson, Hobbs et al., 2002; Lin, Noyce et 
al., 2004), initiating a vigorous search for a component 
of IRF3 signaling that is subject to ICP0-mediated 
degradation. However, no change in the protein levels 
of TBK-1, IKK-γ, CBP, DDX3 or HSP90 was found 
during HSV infection (Lin, Noyce et al., 2004; Pala-
dino, Collins et al., 2010). An enhancement in IRF3 
degradation by ICP0, as well as the sequestration and 
inactivation of nuclear IRF3, has been proposed, but 
the Sendai virus co-infection model used in these 
studies complicates interpretation of these data (Mel-
roe, DeLuca et al., 2004; Melroe, Silva et al., 2007), 
and others have found no such effect on IRF3 levels 
in the context of a single HSV infection (Lin, Noyce 
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et al., 2004; Paladino, Collins et al., 2010). Another 
potential target is the catalytic subunit of DNA-de-
pendent protein kinase (DNA-PKcs), which is de-
graded by ICP0 (Lees-Miller, Long et al., 1996; Par-
kinson, Lees-Miller et al., 1999) and is also thought 
to be involved in the activation of IRF3 (Karpova et 
al., 2002; Ferguson et al., 2012) – but cells deficient in 
DNA-PKcs still produced ISGs after HSV infection 
(Noyce et al., 2006). Finally, ICP0 has been reported 
to target the nuclear DNA sensor IFI16 to the pro-
teasome, blocking IRF3 activation (Orzalli, DeLuca 
et al., 2012), but the loss of IFI16 has also been ob-
served during infection with an ICP0-null virus, sug-
gesting an ICP0-independent mechanism is involved 
(Cuchet-Lourenco et al., 2013). Therefore, the search 
continues for the ICP0-mediated degradation of a 
component involved in antiviral signaling.

Recently, further investigation into the means through 
which ICP0 blocks the activation of IRF3 has brought 
to light a key issue, which not only impacts our under-
standing of the role of ICP0 in antiviral signaling, but 
also has repercussions for the entire ICP0 field. This 
advance came from the discovery that the localization 
of ICP0 is crucial to its ability to inhibit IRF3 (Pala-
dino, Collins et al., 2010). Under normal circumstanc-
es, at early times post-infection, the nuclear localiza-
tion signal (NLS) of ICP0 causes it to localize to the 
nucleus, but it later translocates to the cytoplasm (Ev-
erett, 1988; Everett and Maul, 1994; Maul and Ever-
ett, 1994; Kawaguchi et al., 1997; Lopez et al., 2001). 
However, a variety of experimental manipulations can 
cause ICP0 to become partially or completely restrict-
ed to the nucleus (Zhu et al., 1994; Lopez, Van Sant 
et al., 2001; Van Sant et al., 2001; Potel and Elliott, 
2005; Kalamvoki and Roizman, 2008; Gu and Roiz-
man, 2009; Kalamvoki and Roizman, 2009; Taylor et 
al., 2014) including proteasome inhibition, expression 
of exogenous ICP0 outside of the context of viral in-
fection, and disruption of the RING finger domain. 
In consequence, many studies inadvertently analyze 
only the nuclear functions of ICP0. The danger of this 
oversight is clearly demonstrated by a report showing 
that ICP0 that has been restricted to the nucleus, via 
a single amino acid change or use of a proteasome 
inhibitor, is incapable of impairing the activation of 
IRF3 – but an NLS mutant of ICP0, which is found 
only in the cytoplasm, efficiently blocks antiviral sig-
naling, even during proteasome inhibition (Paladino, 
Collins et al., 2010). Therefore, because the localiza-
tion of ICP0 had not been examined, previous inves-

tigations had erroneously concluded that the protea-
some was required for the antiviral-inhibiting actions 
of ICP0 (Eidson, Hobbs et al., 2002), while it was, in 
fact, the cytoplasmic localization that was essential, 
and not the action of the proteasome at all. Similarly, 
when wildtype ICP0 is expressed in the absence of all 
other viral proteins, which also results in its nuclear 
retention, it is incapable of blocking ISG expression 
(Everett and Orr, 2009), leading to the misleading 
assumption that ICP0 is not involved in impairing 
IRF3. Interestingly, the RING finger of ICP0 has 
also been suggested to be involved in preventing ISG 
expression (Lin, Noyce et al., 2004), and once again, 
disruption of the RING finger causes ICP0 nuclear 
restriction (Gu and Roizman, 2009; Taylor, Chew et 
al., 2014). Surprisingly, however, the generation of a 
cytoplasmic RING finger mutant of ICP0 revealed 
that the RING finger domain is truly essential for the 
ability of cytoplasmic ICP0 to disrupt antiviral signa-
ling (Taylor, Chew et al., 2014). This suggests, for the 
first time, that the RING finger has proteasome-in-
dependent functions, potentially via the conjugation 
of an atypical ubiquitin chain to a protein involved 
in IRF3 activation. Although the exact target of such 
an atypical modification remains to be determined, 
the concept that the RING finger has activities that 
do not require the proteasome represents an impor-
tant paradigm shift in ICP0 biology. Importantly, the 
cytoplasmic RING finger mutant also revealed that 
ICP0 in this location has a RING finger-independ-
ent ability to promote viral replication both in vitro 
and in vivo (Taylor, Chew et al., 2014). Because of the 
reliance on RING finger mutants that predominantly 
localize to the nucleus, both of these intriguing effects 
had been previously overlooked – emphasizing the 
importance of considering localization when studying 
the function of ICP0.

In conclusion, ICP0 is a multifaceted viral protein in-
volved in many aspects of HSV replication, although 
consensus is lacking on the precise mechanisms 
through which it produces its effects. Recent advances 
in understanding how ICP0 influences antiviral sig-
naling have potentially revealed a general explanation 
for these inconsistent results – the location of ICP0 
is vital to its activities, but the influence of common 
experimental techniques on the localization of ICP0 
is rarely considered. The finding that the RING fin-
ger of ICP0 has proteasome-independent effects in 
inhibiting innate immunity, as well as the fact that 
ICP0 can enhance viral replication without requiring 



British Journal of Virology

October 2014 | Volume 1 | Issue 3 | Page 83	 Smith & Franklin
Academic Publishing Corporation

www.smithandfranklin.com

an intact RING domain, suggest that the functions 
of ICP0 go beyond the simple targeting of proteins 
for degradation, adding an exciting new dimension to 
this enigmatic viral protein.
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