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INTRODUCTION

Nitric oxide (NO) a free radical, is produced by NO 
synthase (NOS) through a reaction that coverts 

L-arginine and oxygen into citrulline and NO (Cyr et 
al., 2020). NOS are complex proteins found in a family 
of three isoforms which differ in their structure and 
distribution. Neuronal NOS (NOS1/nNOS), expressed in 

a subpopulation of neurons and endothelial NOS (NOS3/
eNOS) expressed in endothelial cells, both being Ca2+ 
calmodulin-dependent and constituve enzymes, while the 
third isoform inducible NOS (NOS2/iNOS) is primarily 
present in immune system cells and its activation is Ca2+ 
calmodulin independent (Barbaresi et al., 2020; Chachlaki 
and Prevot, 2020). 
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In the brain, endogenous NO acts as a diffusible 
neurotransmitter mainly produced by nNOS, activated 
upon glutamate binding to postsynaptic N-methyl-D-
aspartate (NMDA) receptors (Chachlaki and Prevot, 2020; 
Fernando et al., 2022). Since Nnos has been identified at 
different time points in various cell types of the central 
nervous system (CNS) (Maccallini and Amoroso, 2023), in 
certain areas of the brain, it is only temporarily expressed 
(Chung et al., 2004; Imura et al., 2005) and there is a 
gradual increase in others (Tripathi et al., 2023) during 
embryonic and postnatal development. Additionally, 
during the first month of postnatal life, histochemical 
and immunocytochemical research have characterized the 
distribution of NO-producing neurons in the rat corpus 
callosum structure (cc) (Barbaresi et al., 2020).

Previous studies have indicated that the stage of postnatal 
development plays a crucial role in determining the 
biological activity of NO within developmental processes 
such as neurogenesis, neuronal survival and differentiation, 
synaptic transmission especially in the cortex and 
hippocampus. This has been demonstrated in several 
studies (Tagliaferro et al., 2003; Contestabile and Ciani, 
2004; Ziaja et al., 2005; Chong et al., 2017; Kourosh-arami 
et al., 2020; Zeiss, 2021; Fernando et al., 2022).

In rodents like rats and mice, numerous developmental 
processes occur during the period from birth to weaning 
and sexual maturity. Within these species, neurogenesis 
remains notably active during the initial two weeks after 
birth (Zeiss, 2021). Although, However,  it has been 
shown that the NO generated by neuronal NOS inhibits 
neurogenesis in the adult brain (Moreno-López et al., 
2004). In addition, research by Luo et al. suggest that NO 
generation in neurons may be the source of the inhibitory 
effect that nNOS enhances and not from neural stem cells 
(NSCs) (Luo et al., 2010).

The aim of this study is to enhance our understanding 
of NO’s role in diverse developmental mechanisms by 
studying its kinetics. Additionally, we want to study 
differences in NO levels between male and female rats, 
examining the effects of age and gender on NO levels.

MATERIALS AND METHODS

experiMentaL aniMaLs 
In our investigation, we utilized male and female Wistar 
rat pups. Initially, a total of 14 pregnant female Wistar rats 
were obtained from the Laboratory of Biology and Health 
at Ibn Tofail University. These rats were individually 
housed in standard plexiglass cages (430*290*210mm) 
under constant condition, maintaining a temperature of 
24°C and a relative humidity of 50-60%. A 12-hour light-
dark cycle, and the rats had unrestricted access to both 

food and water. The pregnant females gave birth to a total 
of 112 pups, distributed between 56 males and 56 females. 
The newborn pups were monitored daily at 9:30 a.m., and 
the day of birth was designated as postnatal day 0 (PND0) 
for each rat pup.

All experiments adhered to the ethical guidelines outlined 
by the National Institutes of Health for the appropriate use 
of laboratory animals in research. The protocols employed 
in these experiments were approved by the Animal Ethics 
Committee of Ibn Tofail University (ITU). The subsequent 
biochemical analyses were carried out at the Biology and 
Health Laboratory of ITU.

biocHeMicaL anaLyses 
tissue processing
A total of 112 Wistar rats, both male and female, were 
used, with 8 pups for each day (4 males and 4 females). Rat 
pups were sacrificed by decapitation at each of PND 1, 2, 3, 
4, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, and the prefrontal cortex, 
hippocampal, striatum, and hypothalamus from each 
hemisphere were individually dissected and homogenized 
using a Dounce homogenizer in a lysis buffer kept at 
an ice-cold temperature (RIPA lysate solution +1mM 
PMSF). The homogenates were centrifuged for 15 minutes 
at 14,000g and were subsequently stored at -80°C.

nitrite/nitrate assay
The conversion of NO to nitrite and nitrate is assumed 
to increase nitrite formation in the aqueous solutions 
of biological systems. Nitrite is the only stable product 
that remains after NO undergoes auto-oxidation. 
Consequently, assessing its concentrations in serum and 
tissue homogenates is widely acknowledged as a reliable 
indicator of NO activity (Bryan and Grisham, 2007; 
Zghari et al., 2023). In the present study, we quantified 
nitrite concentration using the diazotization method, 
which is based on the Griess reaction, in rat brain tissue 
homogenates (prefrontal cortex, hippo campus, striatum, 
and hypothalamus). This indirect assay serves as a means to 
assess NO production (Chao et al., 1992).

Tissue samples (500μl) were dispensed into tubes, and an 
equivalent volume of Griess reagent (1% sulphanilamide 
(1 ml) and 0, 1% N-1-naphthylethylenediamine 
dihydrochloride (1 ml) in 2, 5% orthophosphoric acid) was 
added to each tube. Following a 30 minute incubation at 
room temperature, absorbance was measured at 540 nm. 
The nitrite concentrations in the tissue homogenates were 
determined through linear regression analysis, utilizing 
standard calibration curves generated with sodium nitrite. 
Tissue nitrite levels were expressed in μmol/g tissue. Figure 
1 provides a Schematic representation of the experiment 
design.
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statisticaL anaLysis
All data were analyzed by two-way ANOVA, followed by 
Bonferroni’s post hoc test for comparison between groups. 
The data are represented as mean ± standard error of the 
mean (SEM) and illustrated by figures produced by the 
Graph Pad Prism 8 software (Graph Pad Software Inc., 
La Jolla, California, United States). Significant differences 
were considered for p < 0.05. 

Figure 1: Experimental design. Male and female Wistar 
rat pups were sacrificed by decapitation at each of Postnatal 
Days (PND) 1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17. The prefrontal cortex (PFC), hippocampus (HC), 
striatum (STR), and hypothalamus (HY) were separately 
dissected and homogenized for the measurement of NO 
concentrations by using the diazotization method based on 
the Griess reaction.

RESULTS AND DISCUSSION

kinetics of no reLease in rat brain as a function 
of tHe type of regions anD genDer 
pre-frontaL cortex
We analyzed here the time-dependent formation of NO 
in the Pre-frontal cortex (Figure 2). No activity increased 
from P1 to P7 in males and females and then decreased 
from P7 to P9 in female than in male rats, the activity at 
these points was significantly different in both sexes.  From 
PND 9 to PND 17, the level of NO increases progressively 
in both sexes. The level of NO at P17 was higher than P1 
in both groups.

The two-way ANOVA identified a main effect of gender 
on NOx activities (F(1, 84) =11,39 ; p = 0,0011) additionally 
to significant differences in interaction between age and 
sex (F(13, 84) = 3,488; p = 0,0002).

striatuM
In general, NO activity showed a slight increase from 

PND 4 to PND 8 in female and male rats with significant 
difference was observed between the genders on PND7, 
and then decreased at P9. From PND9 to PND17, the level 
of NO increased progressively with significant difference 
was observed between the genders on PND9, PND14 and 
PND17. Males had a significantly higher concentration of 
NO compared to females during these time points (Figure 
3).

Figure 2: The graphic shows the Kinetics of the NO 
release in the Pre-frontal cortex area from male and female 
animals, for each postnatal day analyzed (PND1 to PND 
17). Error bars represent the standard deviation of the 
means. The significance level is 0.05.*p < 0.05.

Figure 3: The graphic shows the Kinetics of the NO 
release in the Striatum area from male and female animals, 
for each postnatal day analyzed (PND1 to PND17). Error 
bars represent the standard deviation of the means. The 
significance level is 0.05.*p < 0.05.

ANOVA showed that sex differences had a significant 
impact on NOx activities in striatum (F(1, 84) =19,52 ; p 
< 0,0001). There was also significant interaction between 
Age and sex (F(13, 84) = 5,459; p < 0,0001 ).

HippocaMpus
NO levels increased both in male and female rats, without 
sex differences, between postnatal days 1 and 8 and then 
decreased at PND9 with significant difference between 
male and female.
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Figure 4: The graphic shows the Kinetics of the NO release 
in the Hippocampus area from male and female animals, 
for each postnatal day analyzed (PND1 to PND 17). Error 
bars represent the standard deviation of the means. The 
significance level is 0.05.*p < 0.05.

Starting from PND10, the NO peak returned to very high 
levels with a significant difference observed between the 
genders among all ages except for PND12 (Figure 4). The 
two-way ANOVA identified a main effect of gender on 
NOx activities (F(1, 84) =11,55 ;p = 0,001) additionally to 
significant differences in interaction between age and sex 
(F(13, 84) = 14,32 ; p < 0,0001).

HypotHaLaMus
At PND1, the NO showed a slight increase in both sexes. 
Thereafter, the NO level stabilized in both sexes until 
PND4. From P7 to P8, the NO activity increased in males 
and females and then decreased at P9. Between the genders, 
there was no significant difference during this time.

Figure 5: The graphic shows the Kinetics of the NO release 
in the Hypothalamus area from male and female animals, 
for each postnatal day analyzed (PND1 to PND 17). Error 
bars represent the standard deviation of the means. The 
significance level is 0.05.*p < 0.05.

After PND9, the NO level augmented progressively until 
12 days of age. From then on, values varied in the females 
with a significant difference was observed between the 
genders at PND14, while in males NO level continued 
to increase, to become higher at 17 days with significant 

difference between males and female pups (Figure 5). 
ANOVA indicated no significant effect of sex differences 
on NOx activities in hypothalamus (F(1, 84) = 0,3254 ; p = 
0,5699). But age and sex interacted significantly (F(13, 84) 
=9,714; p < 0,0001).

Based on the results of previous studies, we have 
examined the changes in NO production during early 
and late postnatal development in the prefrontal cortex, 
hippocampus, striatum, and hypothalamus of rats using 
histological techniques to visualize NO metabolite such 
as nitrite and nitrate. This study was performed during 
the postnatal period (P1–P17), with a group of male and 
female Wistar rats born normally and sacrificed in each 
day.

The present results indicate that NO exhibited different 
variations across the four areas examined. The amount 
of NO produced depends on the area of the brain, it is 
most obvious in the cortex, hippocampus, hypothalamus, 
substantia nigra, and amygdala (Kuppusamy et al., 1995; 
Chachlaki et al., 2017a). Additionally, our study found that 
NO levels change during postnatal development in an age-
dependent manner. During this postnatal development 
period, three distinct periods can be distinguished. In the 
first period, between PND1 and PND4, NO expression in 
both sexes increased, reaching a peak at PND8. The second 
period (PND8 to PND10) showed a slight decrease in 
NO expression. In the last period (PND11 to PND17), 
NO expression showed a high level. These changes in 
NO expression correlate with two stages of postnatal 
development in rats (Neonatal 0-6 d, infantile 7-17 d) 
(Semple et al., 2013; Carrascal et al., 2020). Therefore, 
these finding indicate that the NO production change may 
be associated with neuronal maturation during postnatal 
development.

We first observed for this first period, P1–P8 progressive 
increase of NO in both sexes across the two areas 
hippocampus and hypothalamus except the STR and PFC 
area. In addition, the result shows gender differences at P7 
in STR and at P8 in PFC. It may be possible that this 
progressive increase could further be attributed to the level 
of nNOS expression; early reports have linked increased 
levels of NO with the origin of nNOS production. 
According to a study by Luo and colleagues, Neural Stem 
cell derived nNOS is localized in the nuclus and expressed 
at a much lower amount than in neurons, which suggests 
that NO diffuses slowly outside NSCs and may act via a 
nuclear signaling molecule (Luo et al., 2010). Similarly, a 
study by Fernandez et al. (2003) found that the synthesis 
of NO is associated with an increase in immune reactivity, 
expression, and constitutive NOS activities during the few 
postnatal days, with a peak occurring on PND5 (Fernández 
et al., 2003). Furthermore, sex differences at P7 and P8 
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might be caused by an increase in factors that stimulate 
NO production in male than female. 

In the rat neocortex, nicotinamide adenine dinucleotide 
phosphate-diaphorase (NADPH-d) cells are a unique 
population of neurons that develop quite quickly and 
mature early in the developmental process. It is generally 
acknowledged that only around 98% of NADPH-d 
positive neurons in the cortex have nNOS (Kharazia et al. 
1994). A study used histochemical techniques of NADPH-
diaphorase to evaluate the postnatal development of 
nitrergic neurons in the male rat pre-frontal cortex found 
that neurons begin to express NADPH-d at birth and 
differentiate during a relatively short period (Hvizdosova 
et al., 2014). While another study by Zhang and al. found 
that at the age of PND2, the striatum of control pups had 
a dense distribution of nNOS immunoreactive cells with 
no obvious sex difference (Zhang et al., 2018). A study 
found a correlation between elevated nNOS expression 
in hypothalamic neurons and elevated catecholamine 
expression in the brain (Taranukhin et al., 2006).

Additionally, a study found that Brain-derived neurotrophic 
factor (BDNF) stimulates the production of NO in the 
soma and dendrites of hippocampal neurons (Kolarow 
et al., 2014). Several investigations have demonstrated 
the postsynaptic localization of both nNOS and TrKB 
receptors in the postsynaptic density of glutamatergic 
synapses in the hippocampus (Husi et al., 2000). On the 
other hand, our results during the second period from 
postnatal days P8 to P10 are in concurrence with earlier 
studies that found a correlation between a decrease in NO 
and a decrease in synaptic density (Nikonenko et al., 2013).

A literature survey revealed that the regulation of brain 
network development occurs through plasticity and 
activity-dependent mechanisms that control the continuous 
formation and elimination of spine synapses. NO is 
involved in these aspects of structural plasticity (Nikonenko 
et al., 2013). In the rat brain, synaptogenesis begins 
during the initial postnatal week and it is subsequently 
followed by a period of pruning (Garay et al., 2013). This 
synaptogenesis is accompanied by robust astrogenesis and 
is possibly enhanced by the early liberation from astrocytes 
of synapse-forming factors that include thrombospondins 
1 and 2 (Christopherson et al., 2005).

Activation of the synapse, achieved by the involvement 
of NMDA receptors and calcium influx, could trigger to 
the activation on nNOS closely linked with postsynaptic 
density protein 95 (PSD-95) within the postsynaptic 
density. NO would be released as a result of this process and 
the initiation of a cGMP- PKG cascade in nearby dendrites 
(Nikonenko et al., 2013). NO is released in a calcium-
dependent manner by some NADPH-d-positive cells in 

response to glutamate activation of NMDA receptors, 
suggesting that this neuroactive molecule may contribute 
to the generation of axonal projections, the elimination of 
redundant connections, and/or the formation of axonal 
synapsis in the late stages of development.

During synapse formation in the early postnatal days 
(PND 8–10), there is an increase in microglia’s interaction 
with developing dendritic spines causing a change in the 
synapse’s consequent elimination (Tremblay et al., 2010). 
Aldo, reduced NO production in the second phase may 
result from microglia’s role in the final neuronal network’s 
creation, which includes supporting in the pruning of excess 
neurons and synapses and promoting cell differentiation 
(P8 to P10). 

In addition to synapse development, Ca2+ transients, 
actin buildup, and the production of dendritic filopodia 
are all induced by the contact between microglia and 
dendrites of layer 2/3 pyramidal neurons in the developing 
somatosensory cortex. It is interesting that this filopodia 
production only occurred during the period of robust 
synaptogenesis (P8-P10) and not occur at later postnatal 
ages (P12-P14 and P26-P30) (Miyamoto et al., 2016).

In vitro and in vivo findings indicates that microglia have 
the capacity to decrease the number of neural precursor 
cells within proliferative zones in the neocortex of primates 
and rodents. This reduction in neural precursor cells aligns 
with the aggregation of microglia and coincides with the 
onset of developmental cell death in diverse brain regions. 
The first few weeks after birth are the only times when 
synapses are eliminated by microglia (Cunningham et al., 
2013).

A study by Rörig and colleagues has shown in rodents 
that between PND6 and PND10, NO may affect 
electrical coupling, coordination of transcriptional 
activity, synchronization of metabolic states, and electrical 
connection between adjacent neurons (Rörig and Sutor, 
1996; Roerig and Feller, 2000). As known, NO functions 
as a paracrine messengerin newly generated neurons to 
regulate the growth and differentiation of mouse brain 
neural progenitor cells (NPC) (Portillo and Moreno-
López, 2020).

Our data in the third period (P11 to P17) suggested 
that there are regional differences in the timing of NO 
production in males and females. In the hippocampus 
and hypothalamus, our results show gender difference at 
P11 which NO expression was higher in females than in 
males in contrast at P14 and PND17 female showed low 
expression of NO. Consistent with these findings, a study 
indicates that a majority of neuronal populations expressing 
nNOS also exhibit the presence of estrogen receptor alpha 
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(ERα) in the hypothalamus at PND11 (Chachlaki et 
al., 2017b). Similarly, recent research has shown that E2 
increases nNOS in the brain. Furthermore, it has been 
suggested that observed sex differences in NO release are 
related to differential modulation of nNOS expression as 
well as activity (Xue et al., 2007). In addition, the early-life 
expression of nNOS in the hypothalamus shows that NO 
plays a part in the maturation of gonadotropin-releasing 
hormone (GnRH) by regulating GnRH mRNA expression 
(Chachlaki et al., 2017b). A microRNA switch regulates 
the rise in hypothalamic GnRH production puberty a 
phenomenon that might be crucial for sexual maturation 
(Messina et al., 2016). 

According to Prevot, the first groups of ovarian follicles 
that may ovulate during puberty begin to form at P12 in 
conjunction with a decline in circulating levels of estrogen-
binding alpha-fetoprotein between PND12 and PND16 
(Prevot, 2015). The impact of sex hormones on microglial 
activities in these rat’s hippocampal and hypothalamus 
regions could be another explanation for the sex differences 
we observed in our study and it may be possible that 
changes in NO level coincide with robust synaptogenesis 
and astrogenesis. Previous studies have shown that at 
PND11–16, the hippocampus has shown the largest rise in 
the number of GFAP-positive cells (Catalani et al., 2002). 
Another study have demonstrated that in mice, microglial 
cell numbers dramatically rise in many brain regions across 
the first two postnatal weeks, peaking in density at PND14 
(Chachlaki et al., 2017b).

CONCLUSION

In summary, this biochemical investigation reveals more 
precise information on NO kinetics in the prefrontal cortex, 
the striatum, the hippocampus and the hypothalamus of 
female and male rats. It also revealed the timing of critical 
changes in NO levels during postnatal development. 
These findings reinforce the role of neurodevelopmental 
processes in the control of NO production in newborn and 
infant animals.
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