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Abstract | The objective of this study was to evaluate activation, expansion, and cytokine production after Mycobacterium 
bovis in vitro specific stimulation of peripheral blood mononuclear cells (PBMC) subpopulations from Argentinian 
Holstein cows that reacted to the bovine purified protein derivatives (PPDb) caudal fold skin test and were transiting 
the early peripartum period (EPPp). Flow cytometry, interferon gamma (IFNγ) production, and metabolic activity 
assessed peripheral blood mononuclear cells (PBMC) stimulation. The study enrolled 19 Argentinian Holstein cows 
older than two years classified into four groups, one of PPDb reactors that transited the EPP period (PPDbEPPp) 
(n=5), another of PPDb reactors that did not transit the EPP period (PPDbNoEPPp) (n=5), the third of no PPDb 
reactors that transited the EPP period (NoPPDbEPPp) (n=5), and the last of no PPDb reactors that did not transit the 
EPP period (NoPPDbNoEPPp) (n=4). PPDb reactors came from two dairy farms with endemic bovine tuberculosis 
(TB) and nonreactors from a dairy farm free of PPDb reactors for 12 years. In PPDb reactors, CD14 expressing cells 
increased significantly after specific stimulation. In PPDbEPPp group, B B2 cells expanded significantly (p=0.004), 
and cells with the activation marker CD25 (or interleukin-2 receptor α chain) expanded significantly (p= 0.03) with 
half IFNγ production. Results from this study suggest that in naturally M. bovis infected dairy cows EPP period would 
not influence the presentation of PPDb by CD14 expressing cells. However, a deregulated immune response might 
occur because B B2 and CD25 lymphocyte subsets expanded with a lowered IFNγ production.
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INTRODUCTION

Mammalian tuberculosis is a chronic granulomatous 
infectious disease caused by members of 

the  Mycobacterium tuberculosis  complex that affects 
cattle and a wide range of other mammalian species, 
including human beings (WOAH, 2022). Within this 
complex  Mycobacterium bovis  is the major causative 
agent of bovine tuberculosis (TB) (Blanco  et al., 2021). 
TB poses a public health threat because of its zoonotic 
nature (de Macedo Couto et al., 2022) and is worldwide 
reported in cattle generating significant financial loss 
(Blanco  et al., 2021). Zoonotic TB has been associated 
with the extrapulmonary form in children, usually caused 
by the consumption of unpasteurized milk from infected 
cows (de Macedo Couto  et al., 2022). World Health 
Organization points out that human tuberculosis surveys 
need adjustments to include children and extrapulmonary 
tuberculosis because they focus only on bacteriologically 
confirmed tuberculosis in adults (WHO, 2019, 2020). In 
Argentina between 2018 and 2019, Garrahan Pediatric 
Hospital reported three cases of pediatric zoonotic TB 
in immunocompetent patients. Two cases exhibited 
extrapulmonary disease and referred ingestion of dairy 
products purchased in informal markets (Highton et al., 
2018; Vega Saldaña et al., 2019). The reduction of M. bovis 
infection in cattle should be the pillar of disease prevention 
in humans (de Macedo Couto et al., 2022). 

M. bovis is an acid-fast intracellular pathogen, and the 
cell-mediated immune response is essential in its control 
(Maggioli et al., 2015; Guerra-Maupome et al., 2019). In 
M. bovis infected host, immune protection and diagnosis 
depends on cell-mediated immunity (Pollock et al., 2005). 
The tuberculin intradermal diagnostic test detects cell-
mediated immunity in M. bovis infected cattle, either as 
the caudal fold test or the single cervical test (Schiller 
et al., 2010; Roperto et al., 2017). The former showed 
68–96.8% sensitivity and 96–98.8% specificity, and the 
latter 80–91% and 75.5–96.8%, respectively (Schiller et 
al., 2010). The single tuberculin test occasionally presents 
false positive and false negative reactions. Cross reactivity 
to other mycobacteria or sensitization by other allergens 
can cause non-specific responses that lead to false positive 
reactions. Anergy present during the late stage of infection, 
the pre-allergic period in early cases (until 3–6 weeks post-
infection), desensitized animals by PPD administration 
during the preceding 8 to 60 days, old cattle, postparturient 
desensitization, low potency tuberculin, subcutaneous 
injection (rather than intradermal), or bacterial 
contamination of the tuberculin can lead to false negative 
reactions (Borham et al., 2022).

T helper (Th) 1 cell-mediated immune response in infected 
cattle is characterized by the production of IFNγ capable 

of activating the microbicidal pathways of macrophages. 
LTCD4 appears to be the dominant population producing 
IFNγ while LTγδ releases it in lower levels, and LTCD8 
has a greater involvement in the apoptosis of infected 
cells (Pollock et al., 2005). After TB infection, changes 
in LT subpopulations occur and comprise three phases. 
First LTγδ decreases, and then increases (suggesting the 
recruitment at the site of infection and clonal expansion), 
second LTCD4:LTCD8 ratio increases, and third this 
ratio decreases (Pollock et al., 1996). TB progression also 
triggers a shift from a Th1 response towards a Th2 response 
with associated anergy of cell mediated immunity and the 
development of humoral immune response (Waters et al., 
2012). A 91% of the bovines that show humoral specific 
immune response present macroscopic TB lesions, and in 
73% of the cases, lesions match generalized TB (Garbaccio 
et al., 2019). 

During mammalian reproduction, the mother fails to reject 
the fetal allograft because some immunological mechanisms 
allow maternal fetal tolerance (Skarzynski et al., 2022). The 
most critical phase of the productive life of high yielding 
dairy cows occurs from 3 weeks before to 3 weeks after 
calving. This lapse is known as the early peripartum period 
(EPPp) and is also called transition (Van Kampen and 
Mallard, 1997). During the EPPp, healthy cows go from 
a non-lactating to a lactating state and from a pregnant to 
a non-pregnant condition; thereby fundamental changes 
occur. This situation could be considered a physiological 
adaptation however, when changes are dramatic and long 
lasting, adaptations are difficult. Dairy EPPp cows struggle 
to regain homeostasis, but some adaptive mechanisms 
may be dysregulated. For example, reduced immunological 
competence and overt systemic proinflammatory response 
are present. Transcriptomic studies described increased 
activities in the circulatory cells that belong to the immune 
system, indicating that its functions are not suppressed 
but are deregulated. In addition, in this lapse of multiple 
aggressions, the overt and systemic proinflammatory 
response occurs with a release of proinflammatory 
cytokines capable of attenuating the cellular immune 
response (Trevisi and Minuti, 2018).

Kerr et al. (1946) reported adverse effects of pregnancy 
on TB diagnosis because they showed that of 20 bovines 
positive to the tuberculin test, seven lost the capacity for 
immunological reaction after parturition, and four to 
six weeks after parturition those bovines recovered this 
capacity. Buddle et al. (1994) described that pregnancy did 
not appear to affect the susceptibility to M. bovis infection. 
Recently, a cross-sectional study surveyed 1865 farmed 
cattle from 79 herds in selected dairy-intensive districts of 
Bangladesh. This study identified pregnancy as a risk factor 
associated with TB infection at cattle level, a risk factor 
that also increased the odds of TB infection by 1.7 times 
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(Shaheenur et al., 2020). As there is little information 
about the role of pregnancy in the ongoing of TB immune 
response in naturally infected cattle, the objective of this 
study was to evaluate activation, expansion, and IFNγ 
production after M. bovis in vitro specific stimulation 
of PBMC leukocyte subpopulations from Argentinian 
Holstein cows that reacted to the tuberculin skin test and 
were transiting the EPP period.

MATERIALS AND METHODS

sTudy design
This study enrolled 19 Argentinian Holstein cows older 
than two years housed on three private dairy farms. Two 
farms had endemic TB confirmed by the single caudal fold 
test with PPDb (SENASA, 2012) and by the presence of 
disseminated granulomatous lesions. The third farm had 
never presented PPDb reactors for 12 years. The EPPp 
was established between three weeks before birth and three 
weeks after, according to Van Kampen and Mallard (1997). 
Ten of the 19 cows reacted to the single PPDb caudal fold 
test and came from dairy farms with endemic TB. PPDb 
cows were sub-classified into two study groups based on 
EPP period establishment. One group consisted of PPDb 
reactors that transited the EPP period (PPDbEPPp) 
(n=5). The second group consisted of PPDb reactors that 
did not transit the EPP period (PPDbNoEPPp) (n=5). The 
remaining nine cows did not react to the PPDb caudal fold 
test and came from a dairy farm that had not reported TB 
for 12 years. PPDb negative cows were also sub-classified 
into two groups based on EPP period establishment. The 
third group consisted of non PPDb reactors that transited 
the EPP period (NoPPDbEPPp) (n=5). The last group 
consisted of non PPDb reactors that did not transit the 
EPP period (NoPPDbNoEPPp) (n=4).

sPeciMen collecTion and blood cell counT
Noncoagulated blood (15 mL) was extracted by jugular 
venipuncture using ethylenediaminetetraacetic acid 
(EDTA) (ANTICOAGULANT W, WIENER, Rosario, 
Argentina) from all cows in this study. Samples were 
collected once morning milking ended. Immobilization 
was done according to welfare rules with a nontraumatic 
halter. Absolute blood cell populations and relative 
leukocyte differential counts were rated with a coulter (BC 
3000 PLUS MINDRAY, Shenzhen, Popular Republic of 
China) and Giemsa stained blood smears (MERCK, Saint 
Paul MN, EEUU), respectively.

lyMPhocyTe sTiMulaTion assay
To perform the specific stimulation assay PBMC 
were separated by gradient centrifugation from bovine 
noncoagulated blood. Blood was diluted in PBS (1:3) and 
layered onto Histopaque 1077 (SIGMA-ALDRICH, 

Saint Louis, EEUU). Diluted blood was centrifuged under 
400 g for 30 minutes at room temperature with a swinging 
bucket without a brake (SORVALL RC-3C, SORVALL 
THERMO SCIENTIFIC ™, Waltham, USA). PBMC 
were collected, and washed twice in PBS, and Trypan blue 
vital staining assessed viability. PBMC were resuspended, 
at a concentration of 1x106 PBMC/mL, in RPMI 1640 
media (SIGMA-ALDRICH) supplemented with 0.3 
g/L glutamine (SIGMA-ALDRICH), 2g/L sodium 
bicarbonate (SIGMA-ALDRICH), 50 mg/L gentamicin 
(SIGMA-ALDRICH), and 10% bovine fetal serum (PAA 
LABORATORIES GmbH, Cölbe, Germany).

To determine in-vitro PBMC specific activity 500 µL 
(1x106) of suspension were set in duplicated tubes; one was 
to define resting initial values and the other to define values 
after specific stimulation or final values. Specific stimulation 
was with PPDb (CDV Serie 044, Ciudad Autónoma de 
Buenos Aires, Argentina) at a final concentration of 20 µg/
mL ( Joardan et al., 2002; Hodgkin, 2005). PPDb stimuli 
were certified by the Argentinian National Animal Health 
Authority (SENASA) under WOAH standards, derived 
from inactivated AN 5 strain, and the concentration was 
1mg/ml containing 32.500 UI/ml. Incubation lasted six 
days at 37°C in a 5% CO2 chamber ( Joardan et al., 2002; 
Waters et al., 2000). To measure PBMC metabolic activity 
and viability the colorimetric experiment with thiazolyl 
blue tetrazolium bromide (MTT) was performed (Ramayo 
et al., 2005).

FloW cyToMeTry (Fc) 
Dual-color indirect immunolabelling of duplicates and 
FC defined resting and stimulated PBMC sets and subsets 
percentages. Autofluorescence and nonspecific reaction 
to secondary antibody (Ab) controls were included. For 
dual-color indirect immunolabelling primary monoclonal 
antibodies (MAb) and secondary Ab were in cocktail of 
two. Each MAb was at 15 µg/mL, and each secondary 
Ab was in a 1:200 dilution (Traversa et al., 2010). MAb 
were mouse IgG1 and IgM isotypes; secondary Ab 
were goat antimouseIgG1 conjugated to phycoerythrin 
(PE), and goat antimouse IgM conjugated to fluorescein 
isothiocyanate (FITC) ( Jackson IMMUNO RESEARCH 
LABORATORIES INC, Bar Harbor, USA). Table 1 details 
MAb used during dual indirect immunolabelling, MAb 
specificity and cells recognized, and fluorescence channel. 
During primary and secondary PBMC immunolabeling 
incubation periods lasted 15 minutes under darkness and 
refrigeration. PBMC were washed, fixed with formalin 
solution, and stored under darkness. A flow cytometer BD 
FACSCanto™ (BD™, Franklin Lakes, USA) acquired ten 
thousand fixed PBMC. FCS EXPRESS 3 trial version (De 
Novo Software, Los Angeles, USA) processed acquisition 
data of resting and stimulated PBMC populations
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Table 1: MAb and secondary Ab applied during secondary immunolabeling of bovine PBMC.
MAb Molecule recognized Cells expressing the molecule Fluorescent
BAQ95A CD2 (MIgG1) T lymphocytes PE
BAQ44A CD unknown (MIgM) B B2 lymphocytes FITC
CAM36A CD14 (MIgG1) Monocytes PE
CACT148A WC1 TcR1 (MIgM) γδ T lymphocytes FITC
CACT138A CD4 (IgG1) T helper/inducer lymphocytes PE
BAQ111A CD8 (MIgM) T cytotoxic/suppressor lymphocytes FITC
CACT116A CD25 (IgG1) IL -2 receptor PE
GC42A CD45Ro (IgG1) Recall activated lymphocytes PE

Leukocytes sets and subsets were indirectly immunolabeled with specific MAb and secondary Ab. MAb were mouse IgG1(MIgG1) 
and IgM(MIgM) isotypes. Ab were goat anti-mouseIgG1 conjugated to phycoerythrin (PE) or goat anti-mouseIgM conjugated to 
fluorescein isothiocyanate (FITC). Minor leukocyte populations were labeled with PE and major ones with FITC so that minority 
populations were labeled with the fluorochromes that exhibit the highest emission capability.

and subpopulations. PBMC gates were defined with a side 
scatter (SSC) and forward scatter (FSC) dot plot. Then, a 
second dot plot was performed to define fluorescence in PE 
and FITC channels. To corroborate gates in fluorescence 
channels a histogram determining fluorescence peaks was 
set, and data from those peaks were backgated to the second 
dot plot. Statistical information to obtain percentages of 
each population or subpopulation was requested.

cyTokine assay
IFNγ production was quantified in duplicates with a 
sandwich ELISA (BOVIGAM, PRIONICS GmbH, 
Zurich, Switzerland) in PBMC stimulation assay 
culture media, following the manufacturer protocol. The 
colorimetric signal was read with a microplate reader under 
450 nm. The results were the mean optical density (OD) of 
duplicate supernatants plus the standard deviation (Rhodes 
et al., 2001). To complement the cytoquine assay PBMC 
metabolic activity was measured with the colorimetric 
experiment with MTT. Plates were read with a microplate 
reader under a 570 nm filter and stimulation index (SI) 
was expressed as the ratio between PPDb treated PBMC 
and concanavalin-A treated PBMC (Ramayo et al., 2005).

sTaTisTical analyses
Statistical analyses were performed with GRAPHPAD 
PRISM trial version 9.0.0 for Windows, GraphPad 
Software, San Diego, California USA, www.graphpad.com. 
Stimulated PBMC subsets were statistically compared 
against resting PBMC subsets with a multiple paired t test. 
p adjusted values were chosen, and the significance level 
was p<0.05. Statistical analyses of the other variables were 
performed with one-way ANOVA followed by Dunett’s 
multiple comparisons test, and the significance level 
was p<0.05. If normality could not be assumed Kruskal 
and Wallis test replaced the one-way ANOVA, and the 
significance level was p<0.05. 

RESULTS AND DISCUSSION

The average hematology parameters of cows under study 
are summarized in Table 2. Average absolute counts of 
red blood cells and platelets (data not shown) were within 
bovine hematological reference ranges for healthy cattle. 
The average absolute leukocyte counts were higher than the 
reported ranges for healthy cattle in all study groups, and 
there were no statistically significant differences between 
groups. The differential leukocyte counts (data not shown) 
were also within normal ranges for healthy cattle (Roland 
et al., 2014), and there were no statistically significant 
differences between groups. 

After six days in culture with PPDb, PBMC were alive, 
metabolically active, and produced IFNγ. Figure 1A 
shows PBMC activation through stimulation indexes 
from the MTT assay. The difference between MTT assay 
average stimulation indexes between study groups was 
not statistically significant. Figure 1B displays cytokine 
production through optical densities (OD) from the 
IFN-γ assay. PBMC produced higher levels of IFNγ 
in both PPDb reactor groups. PPDbNoEPPp cows 
and PPDbEPPp cows presented a mean OD value of 
0.86±0.96 and 0.46±0.57, respectively. Even though IFNγ 
mean production in PPDbNoEPPp cows almost doubled 
the production of PPDbEPPp cows, differences were not 
statistically significant (p=0.06). 

WC1 γδ TCR cells responsible for recognizing PPDb 
antigens did not display statistically significant increase 
response in cows from the groups under study with 
stimulation assay measured by flow cytometry (Figure 2A).

Regarding the processing and presentation of the antigen, 
CD14 expressing cells increased significantly in both 
PPDb study groups and B B2 cells increased significantly 
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in PPDbEPPp study group. PPDbEPPp cows presented 
CD14 mean resting values of 1.44% and mean stimulated 
values of 11.69% (p=0.008), and PPDbNoEPPp cows 
showed values of 2.95% and 9.06% (Table 3) (p=0.005), 
respectively (Figure 2B). B B2 cells from cows in 
PPDbEPPp displayed a statistically significant response to 
PPDb stimuli (p=0.004) (Figure 2C) from a mean resting 
value of 8.97% to a mean stimulated of 24.92% (Table 3).

 

 
Figure 1: IFN-γ production and MTT reduction to 
formazan of PBMC after PPDB stimuli. 
IFN-γ production in mean OD ± SD(Graphic 1A) 
and metabolic activity of PBMC after PPDB stimuli 
measured through MTT stimulation index in mean 
percentages ± SD (Graphic 1B). PBMC were from cows 
PPDbEPPp , PPDbNoEPPp ▨, NoPPDbEPPp  and 
NoPPDbNoEPPp  ░. 

After stimuli, PBMC from PPDb reactor cows showed the 
highest percentages of cells expressing CD25 activation 
marker (interleukin 2 receptor α chain). The increase 
was statistically significant in PPDbEPPp study group 
(p=0.03) (Figure 2D). PPDbEPPp cows presented a mean 
stimulated value of 17.41% from a mean resting value of 
5.45% (Table 3).

Respecting the adaptive cellular immune response, the mean 
stimulated LT values were lower than resting values in all 
the experimental groups (Figure 2E). In the PPDbEPPp 
study group, the resting LT mean value was 66.86%, while 
the NoPPDbNoEPPp study group presented 62.08% 
(Table 3). In NoPPDbEPPp and PPDbNoEPPp study 
groups those values were 54.62% and 48.61% respectively 
(Table 3). 

CD8 cytotoxic T cells presented a weak response in the two 
study groups that did not transit the EPP period, and in 
the two groups that transited the EPP period, CD8 T cells 
response was negative (Figure 2F). In the PPDbNoEPPp 
group, CD8 T cells mean resting percentage was 12.92%, 
and the mean stimulated percentage was 16.79%. In the 
NoPPDbNoEPPp group, these percentages were 20.41% 
and 21.35%, respectively (Table 3).

CD4 helper T cells survived but presented a negative 
response in all study groups (Figure 2G). However, in 
PPDb negative cattle resting CD4 T cells were higher 
than in PPDb positive cattle. CD4 T cells resting values 
were 32.78% in the NoPPDbEPPp group and 32.32% in 
the NoPPDbNoEPPp group (Table 3).

CD45Ro recall activated T cells presented a positive 
response in the four study groups (Figure 2H). The mean 
resting values of CD45Ro T cells in both groups of animals 
that went through the EPP period were lower than those 
presented by both groups that did not go through the 
EPP period. In PPDbEPPp cows, resting CD45Ro T cells 
was 1.22%, and in the NoPPDbEPPp cows, it was 1.85% 
(Table 3).

Specific in vitro immune response of TB natural host 
was characterized, quantitatively and functionally because 
limited research has been conducted in M. bovis naturally 
infected dairy cows transiting the early peripartum 
period. Quantitative characterization was carried 
out with differential leukocyte counts and functional 
characterization with specific stimulation assays based on 
flow cytometry counts, IFNγ production, and color based 
MTT assay.

All study groups showed higher absolute leukocyte and 
lymphocyte counts than reported values for healthy cattle 
(Roland et al., 2014). According to leukogram patterns 
interpretation and statistical analyses, leukocytosis and 
lymphocytosis can be considered physiologic (Webb and 
Latimer, 2011; Eclinpath Com, 2021). NoPPDbEPPp 
study group showed a physiologic neutrophilic profile 
with no increment in band neutrophils and without 
lymphopenia (Webb and Latimer, 2011; Eclinpath Com, 
2021). Even though leukocytosis and lymphocytosis were 
physiologic in this study, some authors describe in tuberculin
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Table 2: Absolute differential leukocytes counts in PPDbEPPp, PPDbNoEPPp and NoPPDbEPPp cattle (cells/µL). 
Study group Leukocytes Lymphocytes Monocytes Segmented

neutrophils
Band 
neutrophils

Basophils Eosinophils

PPDbEPPp 7,900 5,767 395 1,501 79 0 158
PPDbEPPp 16,100 7,889 161 7,406 161 0 483
PPDbEPPp 9,600 5,376 0 3,936 96 0 192
PPDbEPPp 22,700 13,620 227 8,172 227 0 454
PPDbEPPp 15,500 10,850 310 3,720 155 0 465
Mean 14,360 8,700 219 4,947 144 0 350
Standard deviation 5,879 3,504 160 2,777 59 0 161
PPDbNoEPPp 17,000 5,100 340 10,540 170 0 850
PPDbNoEPPp 40,700 13,838 814 17,501 407 0 8,140
PPDbNoEPPp 15,900 12,720 0 2,544 0 0 636
PPDbNoEPPp 7,300 2,701 146 4,015 0 0 438
PPDbNoEPPp 18,500 13,505 0 4,995 0 0 0
Mean 19,880 9,573 260 7,919 115 0 2,013
Standard deviation 12,427 5,263 340 6,152 179 0 3,440
NoPPDbEPPp 28,500 11,400 855 15,960 285 0 0
NoPPDbEPPp 43,000 16,340 430 25,800 430 0 0
NoPPDbEPPp 11,000 4,180 110 5,940 110 0 660
NoPPDbEPPp 12,600 4,662 378 6,300 126 0 1134
Mean 23,775 9,146 443 13,500 238 0 449
Standard deviation 15,056 5,820 308 9,422 151 0 553

  

  

  

  

Figure 2: Resting (r) and stimulated (s) leukocytes subsets before and after PPDb stimuli. Resting (r)  and stimulated (s) 
 LTγδ (Graphic 2A), CD14 leukocytes (Graphic 2B), B B2 (Graphic 2C), CD25 activation marker (Graphic 2D), LT 
(Graphic 2E), LTCD8 (Graphic 2F), LTCD4 (Graphic 2G) and CD45Ro (Graphic 2H) are shown in mean percentages 
with standard deviation bars. Resting and stimulated leukocytes subsets were set with FACS before and after PPDb stimuli 
(20 µg/mL), respectively. Values were compared with multiple paired t test and significance was signaled with * when p<0.05.
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Table 3: Individual resting (r) and stim
ulated (s) m

ean leukocytes subsets with standard deviation (SD
) in PPD

bEPPp, PPD
bN

oEPPp, N
oPPD

bEPPp, 
and N

oPPD
bN

oEPPp cattle obtained with flow cytom
etry (FC

) (results are presented in percentages). 
Study 
G

roups
LTr
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 B
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B
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C
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D
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14,45
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PPD
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66,67
40,65

4,64
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12,28
14,67

11,88
15,18

22,75
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5,5
15,1
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16,35
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PPD
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42,07

3,31
25,24

1,06
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PPD
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reactor cattle leukocytosis (Mohankumar et al., 2011; 
Quevillon et al., 2013) and lymphocytosis (Mohankumar 
et al., 2011; Quevillon et al., 2013; Javed et al., 2010; Killick 
et al., 2011). 

In the present study, all study groups showed physiological 
leukograms, but when FC assessed PBMC characterization, 
differences between leukocyte subsets became detectable. 
NoPPDbNoEPPp study group showed resting percentages 
of LTCD4, LTCD8, and LTγδ within reported values 
for healthy cattle that did not transit early peripartum 
period and lowered CD14 cells percentage (Pastoret et 
al., 1998). NoPPDbEPPp study group presented resting 
LT, LTCD4, and LTCD8 values within reported ones for 
healthy cattle that transited the early peripartum period 
(Harp et al., 2004). Both study groups that were PPDb 
reactor showed LTCD4:LTCD8 ratios (data not shown) 
according to those described in tuberculous cattle (Pollock 
et al., 1996), and LTCD4 and LTCD8 percentages 
accorded to reported values for tuberculous cattle (Manzo-
Sandoval et al., 2023). The PPDbEPPp group showed the 
lowest LTCD4:LTCD8 ratio, with the highest LTCD8 
absolute count and percentage, but the PPDbNoEPPp 
group had the lowest LTCD8 counts. Furthermore, both 
PPDb reactor study groups showed lower resting CD14 
expressing cells percentages than percentages reported for 
healthy cattle that did not transit EPPp (Pastoret  et al., 
1998), and the lowest one belonged to the PPDbEPPp 
study group. Regarding resting LTγδ counts in PPDb 
reactor study groups, values agreed with those reported in 
tuberculous cattle (Pollock et al., 1996).

In our four study groups, specific lymphocyte stimulation 
with PPDb caused increased expression of the activation 
marker CD25, IFNγ production, and metabolically active 
PBMC survival until the stimulation assay ended. After 
PPDb stimulation, the proportion of CD14 expressing 
cells increased significantly in both study groups of PPDb 
reactors, although they had lower resting values. In cattle, 
the CD14 molecule is expressed mainly on macrophages 
and monocytes (Sohn et al., 2004). Macrophages and 
monocytes are antigen presenting cells that play a central 
role in innate immunity against infection and help initiate 
cell mediated adaptative immunity (Blanco et al., 2021). 
Our results suggest that in naturally M. bovis infected dairy 
cows, the early peripartum period would not influence the 
response to PPDb by CD14 expressing cells.

In the current study, B B2 lymphocytes increased 
significantly after specific stimuli in tuberculin reactor 
cattle that transited the early peripartum period. The B B2 
marker is present in most ruminants B lymphocytes (with 
equivalence to CD19 marker) (Stabel et al., 2022), has no 
known human orthologue (Foote et al., 2007; Davis and 
Hamilton, 2008), and may play a role in immunoglobulin 

production in vaccinated cattle (Foote et al., 2007). The B 
B 2 subset demonstrated a trend towards a higher number 
in Mycobacterium avium subsp. paratuberculosis naturally 
infected cows in the clinical stage of disease in specifically 
stimulated cells (Stabel et al., 2022). Our results suggest that 
the early peripartum period in naturally M. bovis infected 
dairy cows can induce the expansion of B B2 lymphocytes 
after specific stimuli; this finding might be part of a Th2 
immune profile.

CD25 lymphocytes expanded significantly in PPDbEPPp 
study group. CD25 is the interleukin 2 receptor α chain 
(Maue et al., 2005), and interleukin 2 (IL2) is a cytokine 
that, by interacting with CD25 can assume pleiotropic 
functions (Ross and Cattrell, 2018). In human tuberculosis 
CD25 is a phenotype marker of LTCD4 regulatory 
subsets (Roberts et al., 2007; Ahmed and Vyakarnam, 
2020). Unlike human tuberculosis, in bovine tuberculosis, 
LTγδ perform regulatory functions (Waters et al., 2011). 
In bovine, LTγδ coexpress low levels of CD25 (Baldwin et 
al., 2021) and releases lower levels of INFγ than LTCD4 
(Pollock et al., 2005). In M. bovis experimentally infected 
cattle, CD25 is also coexpressed by activated LTCD8 that 
produces lowered levels of INFγ (Liébana et al., 1999). 

In our study, IFNγ production carried out by PPDb 
stimulated PBMC from PPDbNoEPPp study group 
almost doubled the production of PPDbEPPp study group. 
Relating the IFNγ detection and the reproductive stage in 
cattle, Buddle et al. (1994) reported that in the first test 
after calving, the IFNγ production by PPDb stimulated 
PBMC was lower than the production before calving. 

CONCLUSIONS AND 
RECOMMENDATIONS

Results from this study suggest that in naturally M. bovis 
infected dairy cows, the early peripartum period might not 
influence the presentation of PPDb by CD14 expressing 
cells, and might upregulate the expansion of B B2 and 
CD25 lymphocytes and lower IFNγ production when 
PBMC are in vitro specifically stimulated. The expansion 
of B B2 cells might indicate antibody synthesis that can be 
detected with serological diagnostic tests, complementing 
the single tuberculin test in infected tuberculin false 
negative cows during the early peripartum period. The same 
happens with the Bovigam assay because the expansion of 
CD25 lymphocytes in M. bovis infected cows during the 
early peripartum period might point out the activation of 
some subsets that might have lowered, but still detectable, 
IFNγ production. This study provides information on the 
influence of the transition period in bovine tuberculosis in 
vitro immune response, a field not extensively studied.
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