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INTRODUCTION

Heavy metals (HMs) contamination of chicken meat 
and its products is crucial for human diets everywhere 

because they help to address global food issues and provide 
well-known nutrients like protein, fat, essential amino 
acids, minerals, and vitamins. They also have a milder 
flavor that is easier to pair with seasonings and sauces 
(Al-Maylay and Hussein, 2014). Food pollution with 
HMs is one of the severe issues worldwide, which causes 
significant hazards to a person’s health. As seen in Figure 1, 
toxic metals enter the food through various sources, either 
naturally or through human activities, then can accumulate 
in human organs and cause severe problems due to their 

toxicity. Also, HMs can accumulate in the human body 
through inhalation (Al-Maylay and Hussein, 2014). 

Over the past few decades, heavy metal pollution of the 
environment has been regarded as one of the world’s most 
essential complications (Bakshi et al., 2018). The most 
abundant environmental HMs are copper (Cu), chromium 
(Cr), lead (Pb), nickel (Ni), mercury (Cd), cadmium (Cd), 
arsenic (As), and iron (Fe) (Bakshi et al., 2018). Some 
HMs, like iron and nickel, are vital to survival at trim 
levels (Bakshi et al., 2018). However, HMs such as Pb, 
Cd, and Cd are lethal to living creatures at elevated and 
low levels. They are sponsors of metabolic abnormalities 
in organisms, particularly customers of food from plants 
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from polluted soil. Environmental contamination from 
HMs mainly originated from sources like solid and liquid 
wastes, urban-industrial aerosols, industries, mining 
activities, and agriculture chemicals (Agbemafle et al., 
2020). HMs toxicity could be detected in different degrees 
depending on its consumption route, chemical formula, 
dosage, tissue affinity, sex, and age of the host, as well as 
whether exposure is acute or chronic (Agbemafle et al., 
2020). Fish byproducts can transfer heavy metals to poultry 
feed after being collected from contaminated waters. Also, 
their toxicity, bioaccumulation, and biomagnification in 
the food chain can pose a severe threat. Today, poultry 
feed is produced from various raw materials, including fish 
byproducts (Agbemafle et al., 2020). 

Figure 1: Heavy metals environmental contamination and 
human health hazards.

Decent human health is linked to a healthy environment. 
Some dumped materials containing HMs in open 
dumpsites pose a risk to individuals who touch the 
polluted soil and plants due to poor waste disposal 
management (Ugurlu, 2004). Waste generation and 
disposal were identified as the primary causes of HM’s soil 
contamination. In general, garbage in landfills comes from 
various sources, is composed of various substances, and is 
disposed of randomly (Ihedioha et al., 2017). There are no 
established guidelines for garbage disposal, resulting in a 
mixture of trash that leaches into the groundwater and soil 
(Ihedioha et al., 2017). 

There is elevating awareness about the risk of soil pollution 
leading to the entry of harmful materials into food chains 
via plant uptake, compromising food safety (Ozcan et al., 
2016). The buildup of HMs in soil and plants impacts 
plant physiological functions like photosynthesis, nutrient 
uptake, and gaseous exchange, resulting in reduced plant 
development and dry matter precipitation (Gebre and 
Debelie, 2015; Ozcan et al., 2016). The environmental 
pollution and health posing caused by HMs are among the 
top causes of worry across the world. Because lead inhibits 
hemoglobin manufacture and shortens the lifespan of 

erythrocytes’ circulating, it has a hematological effect and 
causes anemia (Yilmaz, 2005). Lead is a toxin that builds 
up over time; its harmful effects include increased blood 
pressure, renal and brain damage, cardiovascular and 
reproductive disorders in adults, and reduced intellectual 
and cognitive development and performance in children. 
For example, Pb bioaccumulation in the human body 
disrupts mitochondrial function, limiting breathing, 
causing constipation, brain enlargement, paralysis, and 
eventual death (Singh and Kalamdhad, 2011). As observed 
by Yilmaz (Yilmaz, 2005), Pb is a mainly hazardous 
metal with no biological function and has a significant 
detrimental impact on children.

Because of HMs poisonousness at specific levels, 
translocation across food chains, and non-biodegradability, 
HMs have a substantial ecological impact, all of which 
contribute to their precipitation in the biosphere (Sridevi 
et al., 2012). Soil is a severe environmental origin for 
maintaining people’s property, food, and ecosystem 
demands (Gebre and Debelie, 2015). Plants cultivated on 
soil contaminated with municipal, residential, or industrial 
waste can deliver HMs in the form of mobile ions from 
the soil solution via foliar uptake or their roots. Plant 
roots, stems, fruits, grains, and leaves bio-accumulate the 
absorbed metals (Ugurlu, 2004). HMs such as Cd, Hg, As, 
and Pb are harmful to plants, animals, and people; when 
HMs such as Fe, Hg, As, Cd, Mn, Pb, Co, Cu, Ni, and Zn 
are leached out of dumpsites, they terminated in the soil as 
the sink (Alloway and Jackson, 1991). 

Vegetables are grown in polluted soil absorbing HMs in 
elevated quantities to reveal probable impacts on agricultural 
outcomes and revealed in human health hazards (Sridevi 
et al., 2012). Since HMs are destroyers of the ecosystem 
and man’s health, it is critical to observe these pollutants 
in the ecosystem regularly. Heavy metal research is critical 
because minor changes in their level above the appropriate 
concentration, whether caused by typical or anthropogenic 
agents, can cause significant ecological and health troubles. 
This review will investigate the hazardous impacts of HMs 
levels in the soil and the crops cultivated in the landfill and 
search their resources and remediation approaches to react 
with these HMs pollution in the soils to recognize the HMs 
situation and their influences on the soil and environment.

Biochar, zeolite, yeast, and bacteria have functional groups 
that can adsorb the toxic metals from soil and water 
according to the nature of their surface charge (Sayyadian 
et al., 2019; Wahba et al., 2017). Household treatments 
were used to minimize metals in food (Abdel-Rahman et 
al., 2018; Hussien and Nosir, 2017; Sayyadian et al., 2019; 
Wahba et al., 2017). Nanoparticles of metals have a broad 
spectrum of technological and environmental usage, like 
water and soil treatments (Anusa et al., 2017).
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Sources of HMs
HMs are everywhere in the ecosystem because of natural 
and anthropogenic actions (Tables 1, 2; Figures 2, 3 and 
4. The sources of HMs to the various ecological media 
like soil, air, and water are divided into natural and 
anthropogenic origins (El-Kady and Abdel-Wahhab, 
2018). The natural beginnings, such as volcanic eruptions, 
sea-salt sprays, rock weathering, forest fires, and wind-
borne soil particles, as well as biogenic origins, are all 
typical (Figure 2). The anthropogenic origins include 
industrial processes, agriculture processes, wastewater 
discharge, mining processes, metallurgical procedures, and 
emissions of chimneys and motors (Figure 3).

Figure 2: Natural sources for heavy metals contamination.

Figure 3: The anthropogenic sources for heavy metals 
contamination.

Individuals are exposed to them in numerous methods 
(Bakshi et al., 2018; Sridevi et al., 2012). HMs are ever-
lasting ecological, undecomposed contaminants that go into 
the body via air, water, and food, and biologically collected 
over time. In the meantime, contamination from human 
activities has exposed some HMs to the environment 
(Rasmussen et al., 2007). The existence of HMs in the 
ecosystem, even at low levels, is still an ecological issue 
due to their harmfulness. Slight increases in heavy metal 
concentrations over the safe limit may be caused by natural 
or manufactured reasons, which are a significant source of

Table 1: Most common heavy metals contaminations and human health hazards.
Heavy metals Sources of heavy metals Human health hazards References
Lead Thermal power plants, crude petrol, 

mining, smelting, and paint 
Learning difficulties, nervous lesions, fertility 
problems, 
Cardiovascular problems, renal dysfunction 
and hepatic lesions

 (Flora et al., 2012; 
Weisskopf et al. 2010)

Cadmium Burning fossil fuels such as coal or oil and 
municipal trash such as plastics and nickel-
cadmium batteries

Lung, prostate, pancreas, and kidney cancers  (Satarug et al., 2017)

Mercury Coal-fired power plants, factories, waste 
incinerators, and mining for mercury, gold, 
and other metals cause air pollution.

Nervous, renal, and immune systems affec-
tions

(Karri et al., 2016; 
Rafati-Rahimzadeh et 
al., 2014)

Arsenic The use of polluted water in food 
preparation and the irrigation of crops, 
industrial activities, and the use of 
cigarettes all pose health risks.

Skin irritation, and lung, bladder, liver, and 
renal cancers 

(Kesici, 2016)

Chromium Polluted soil, air, water, smoking, and food. Dermatitis, allergies, ulcers, respiratory, 
gastrointestinal, neurologic, reproductive 
problems and and cancers

(Remy et al., 2017)

Nickel Diesel oil and fuel oil, and the incineration 
of waste and sewage

Lung fibrous, cardiovascular difficulties, renal 
illnesses, and degenerative changes in heart 
muscle and brain, lung, liver, and kidney 
tissues lead to cancer of the respiratory system 
and lungs, which in turn leads to sarcoma of 
bone, connective tissue, and muscles.

 (Duda-Chodak and 
Blaszczyk, 2008)

Copper Irrigation with polluted waste water Can affect renal and metabolic functions (Ahmed et al., 2017)
Zinc Irrigation with polluted waste water Respiratory dysfunction (ÖZKAY et al., 2014)
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Table 2: Natural and Anthropogenic sources of heavy metals contaminated soil, plants, and crops. 
Heavy 
metal

Sources References
Natural Anthropogenic

Pb 1. The limestone and dolomites also 
contribute to lead content in the soil. 
Besides, shale, mainly black shale, is also a 
Lead source in the soil
2. The acidic igneous rocks and 
argillaceous rocks, and sedimentary rocks

1. Lead can be spread in the soil by the mining and 
smelter sites
2. Paint, gasoline additives, smelting, automobile 
demolition, and pesticide application
3. Pb can be released in the soil from manufacture/ 
industrial effluent
4. The following items containing Lead (traditional or folk 
remedies, candy/food packaging, Batteries, leaded crystal 
glassware, ceramic glazes, cosmetics, solders, hair colors, 
jewelry, firearms and ammunition, antique fishing sinkers, 
tire weights, imported children's toys) 
5. Burning coal and oil, domestic sewage effluent, and 
burning of waste

(Bakshi et al., 
2018; Ihedioha et 
al., 2017; Khan et 
al., 2008)

Cd 1. Cd can be naturally found in Black 
shale.
2. Volcanic activity also is the primary 
natural source of Cd in the soil and 
atmosphere, Parent material, marine 
sedimentary rocks, and phosphates

1. Extraction and refining of non-ferrous metals
2. Manufacture and application of phosphate fertilizers
3. Burning of fossil fuel
4. Incineration, domestic sewage, and disposal of waste
5. Tannery industry, electroplating, spent rechargeable as 
well as the household batteries
6. Cd can be added to the soil by batteries, paint, stained 
glass, and paper ink that are common in MSW

(Bakshi et al., 
2018; Ramelli 
et al., 2012; 
Rezapour et al., 
2018; Somani et 
al., 2019)

Hg 1. Gaseous emissions from the earth's 
crust
2. The pyrogenic, sedimentary rocks, and 
clayey residues

1. The burning of fossil fuel
2. The production of steel, cement, and phosphate
3. The smelting of metals from their sulfide ores

(Bakshi et al., 
2018; G et al., 
2004; Khan et al., 
2008)

Zn 1. Sedimentary rocks and acidic granitic 
rocks
2. Black shale and clayey sediments
3. Sandstone, limestone, and dolomite

1. Mining activities
2. Steel and Zinc production facilities 
3. Combustion of coal and fuel
4. Waste disposal and incineration
5. The use of fertilizers and pesticides containing zinc

(Bakshi et al., 
2018; Khan et al., 
2008; Lundberg 
et al., 1997)

Cu 1. Cu is naturally found in different 
parent rocks and can be abundant in basic 
igneous rock (basalts)
2. The abundance of Cu also can be found 
naturally in shale-clay and black shale

1. Non-ferrous metal production, copper smelters, and steel 
production
2. The municipal incinerators
3. The residue of copper mining, sewage sludge, mineral 
fertilizers, and pesticides
4. The valorizing and application of bio-solids add cupric to 
the soil.
5. Cupric contamination of agricultural land can also result 
from cupric-based fungicides.

(Bakshi et al., 
2018; Baranowska 
et al., 2005; Khan 
et al., 2008)

worry since they cause substantial ecological and human 
health issues. As observed in Table 2, anthropogenic 
origins of HMs pollution include agricultural activities, 
like herbicides and pesticides polluting irrigation water, and 
using municipal waste for fertilization aims (Alloway and 
Jackson, 1991; Bakshi et al., 2018). Also, the anthropogenic 
source involves mining activities, waste disposal in 
farmland, sewage discharge, smoking, building materials 
such as paints, and traffic emissions (G et al., 2004; Su, 
2014). The previous findings from studies reported that 
HMs introduced into the ecosystem by human works 
are primarily from waste disposals, agricultural work, and 
industrialization. Budiyanto and Lestari (2017) reported 
that the coastline region is polluted with hazardous 

materials due to the direct discharge of about 1,100 tons 
of solid trash. This massive release of toxins reduces water 
quality and aquatic life since it contributes to the demise 
of aquatic organisms such as coral reefs (Budiyanto and 
Lestari, 2017). Humans and animals are affected by HMs 
by breathing of dusty soil (Eneje and Lemoha, 2012). 
Heavy metal contaminants like Cu, Pb and Zn from 
additives applied in gasoline as well as lubricating oils are 
also accumulated in vegetation and soils of highway (Eneje 
and Lemoha, 2012).

Based on Table 2, each heavy metal has its resource and 
route to contaminate the soil. Whatever the resource 
variations, HMs track a typical biogeochemical cycle post-
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introducing the ecosystem, although their transportation, 
residence period, and fate vary from particular conditions 
(Bakshi et al., 2018). Overpopulated areas, industrial 
zones, driving zones, and municipal garbage sites 
contribute to regional pollution (Bakshi et al., 2018). Table 
1 demonstrates that the anthropogenic sources of all the 
metals discussed, including waste disposal and incineration, 
mining operations, and fertilizer, are identical. Herbicides, 
pesticides, fungicides, industrial waste storage, and the 
manufacture of metals and alloys have all contributed to an 
increase in the amount of HMs in the soil (Bakshi et al., 
2018; Khan et al., 2008), which suggests a substantial role 
in the presence of HMs in the ecosystem.

Bakshi et al. (2018) found that 25,000–125,000 tonnes/
year of Hg naturally emission the ecosystem. Only 10,000 
tons per year contaminate the ecosystem via smelting and 
mining, which has been elevated at 2% annually since 1973. 
According to Luoma and Rainbow (2005) anthropogenic 
Cadmium pollution is nearly 31 times greater than natural 
sources, with humans introducing 5.6-38x106 kg of Cd into 
the soil each year, and they have adverse effects (Benvenga 
et al., 2020; Dourado et al., 2020; Dutta et al., 2021; Balali-
Mood et al., 2021; Bandeira et al., 2022; Ohiagu et al., 
2022) with different mechanisms.

Air pollution
The primary source of air pollution caused by toxic HMs is 
vehicle exhausts, notably air pollution with Pb surrounding 
highway (Awofolu, 2004). The toxic metals are precipitated 
on soils surrounding highways, then accumulate in 
cultivated plants. They reported that the levels of Pb, Ni, 
Co, and Cd in citrus and cabbage decreased with increasing 
the distance from the agricultural highway, but when far 
about the highway, the levels decreased. Also, Fruits and 
vegetables growing at the roadside may be accumulating 
toxic metals, especially from vehicle emissions, as 
recommended by Feng et al. (2011); Shahid et al. (2017) 
disclosed that airborne HMs might be accumulated and 
absorbed on the leafy parts of the different plants. 

Irrigation water
Expanding population, food demand, and lack of 
irrigation freshwater in some developing countries lead 
to the irrigation of crops with contaminated water. The 
regular usage of wastewater for irrigation of crops results 
in the accumulation of HMs in crops and consequently 
transported via the food chain to animals and humans, 
producing probable human health hazards over time 
(Gupta et al., 2012). The contamination of food such as 
fruits, vegetables, and crops by HMs may happen due to 
the release of industrial wastewater and sewage wastewater 
that contaminates the irrigation water sources such as 
canals, nearby streams, and rivers (Yadav et al., 2016). 

To keep the ecosystem and public health, the contaminated 
water in agricultural uses requires an understanding of the 
levels and types of water contaminants, particularly toxic 
metals. Monitoring metal levels in irrigation water are 
required to safeguard environmental and human health 
due to its toxic impacts and stability (Nazar et al., 2012). 
The quality of irrigation water determines the heavy metal 
contents in wheat grains. The concentrations of Cd, Pb, 
Ni, and Cu in wheat grains irrigated with fresh water were 
0.07, 0.09, 0.22, and 1.04 mg kg-1, respectively; however, 
that irrigated with drainage water recorded higher levels 
of Cd, Pb, Ni and Cu as 0.09, 1.18, 0.84 and 1.55 mg kg-1, 
respectively.

Agricultural practices
Agricultural practices like fertilizers, manures, and sewage 
sludge are important origins of HMs (De Miguel et 
al., 1999). Sewage sludge is a primary source of plant 
nutritive substances and organic material but also a 
source of HMs. Also, phosphatic fertilizers such as P2O5 
are essential sources of Ni and Pb in soils and have a 
considerable acidifying impact on soils and hence increase 
the mobilization and plant absorption of the metals, which 
increase the deposition of toxic HMs in crops (Banuelos 
and Ajwa, 1999). They have elevated Cd, Cr, Cu, Zn, Ni, 
and Pb levels at 10.1, 29.7, 29.2, 89, 17.9, and 12.2 ppm, 
respectively (Carnelo et al., 1997). Applying fertilizer and 
manure in the long term, the levels of Cd, Pb, and As were 
elevated in the soil and cultivated plant by 125% after 
harvesting (AlKhader, 2015; Atafar et al., 2010). 

Agricultural soils
Agricultural soils are not the only source of nutrients 
for plant life, but they also transfer many contaminants, 
such as HMs, to cultivated plants through their roots. 
Contamination of agricultural soils with HMs, like Pb, Cd, 
Cu, and Ni, increased dramatically during the last years 
(Mahmoud and Ghoneim, 2016). The agricultural soils 
receive many toxic metals from natural and anthropogenic 
origins (Table 2). HMs may accumulate in agricultural 
soil due to industrial releases, petrochemicals, wastewater 
irrigation, atmospheric accumulation, and agricultural 
operations like fertilizers and pesticides (Elnazer et 
al., 2015). In this respect, Baranowska et al. (2005) 
noticed considerable increases in Cd and Pb (mg kg-1) in 
contaminated agricultural soil, increased 44 and 265 times, 
respectively. The accumulated metals in grass, milk, cereals, 
eggs, and fruits were also marvelously increased.

Animal feed
Metal contamination of animal feed and its ingredients 
represent a central dilemma for animal health and the 
accumulation of poisonous metals in the food chain, such as 
meat, egg, and milk. HMs like As, Cd, and Pb contaminate 
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poultry and ruminant feed with different concentrations 
(Elliott et al., 2017). Consequently, it accumulated in the 
egg. Higher concentrations of accumulated Pb, Cr, and Se 
were recorded in egg yolk as 0.701, 0.262, and 0.266 ppm, 
respectively. Moreover, Makridis et al. (2012) researched 
the transfer of some HMs (Cr, Cu, Pb, Cd, Zn, and Ni) 
from livestock feeds to cows and sheep organs such as 
muscle tissues, liver, and kidney. The higher deposition of 
Cu, Zn, and Cd was recorded in the liver, muscle tissues, 
and kidney. Meanwhile, Cr, Pb, and Ni levels were below 
0.02 mg kg-1 in all animal organs.

Figure 4: Sources of food contamination by toxic metals.

Cans, packages, and equipment materials
Food industrialization, such as the canning process, led to 
the metal contamination of canned foods. For example, 
Pb’s leading source of food contamination is solder used 
in manufacturing cans (Brhane and Dargo, 2014). The 
toxic metals (Cr, Pb, and Cd) were higher in canned food 
(tuna, corned beef, sardines, and tomato paste) than in the 
corresponding fresh food. Also, food packaging papers such 
as sweet boxes, pizza boxes, coffee cups, and pastry boxes 
had variable levels of Sood and Sharma (2019). Moreover, 
the HMs like Zn, Ni, Cu, Cr, Mn, and Pb were migrated 
from plastic food packaging containers to 3% acetic acid 
and 0.9% NaCl (Khan and Khan, 2015).
 
Vulnerable foods for HMs contamination
The common HMs sources in human food are seen in 
Figure 5.

Figure 5: Common heavy metals sources in human food.

Milk and milk products
Milk and its products are a completely food as healthy 
food. Nevertheless, toxic metals in milk or milk products 
could harm human health. So, the safety of milk or its 
products reduces with the rising metal levels (Singh et al., 
2020a). Cashman (2011) showed that the levels of HMs 
in milk and its products depend on the genetic factors 
of the animal, stage of lactation, metal pollution from 
the equipment during production, nutritional type of the 
animal, environmental factors, and manufacturing practices. 
Dairy animals graze on the polluted plants accumulates 
the toxic HMs in their cells and milk if lactating (Yahaya 
et al., 2010). The primary sources of Cu contamination in 
milk or milk products are animal feed, increased Cu levels 
in the water, and Cu alloys used in different equipment. 
Also, the presence of Pb in milk may be a return to 
industrial air pollution in areas of dairy farms (Malhat et 
al., 2012). So, HMs are the widespread pollutant found in 
milk. The significant origins of HMs in animal systems are 
(1) consumption of polluted water and feed, (2) polluted 
air, (3) soil, (4) contaminated types of equipment, and (5) 
improper manufacturing practices (Caggiano et al., 2005). 
Also, levels of metal in milk increased with increasing the 
animal age (Mohamadiun et al., 2018). They added that 
the animal body acts as an effective biological filter and 
accumulates the metals brought by the feed into the bone 
tissue rather than the milk. 

Fish
Fish meat is a desirable source of nutritional substances 
such as vitamins, minerals, and high-quality protein. 
Many environmental pollutants, such as toxic metals, 
are the primary resources of HMs, contaminating water 
during discharges of industrial and agricultural wastes like 
pesticides, coal and oil combustion, plastics, and phosphate 
fertilizers (Munir et al., 2021; Idowu, 2022; Mawari et al., 
2022; Mukhi et al., 2022; Borah and Deka, 2023; Xu et al., 
2023). The fish accumulated toxic metals from the water via 
direct water uptake or absorption via the gills, skin, and gut 
(Marzouk et al., 2016). Hamada et al. (2018) investigated 
Hg, Pb, and Cd levels in Nile tilapia fillet samples.

Meat
In Egypt, offal of animals such as heart, kidneys, liver, 
lungs, rumen, spleen, intestine, and tongue are widely 
consumed as a food source. The levels of metals in meat 
depended on the animal’s age Darwish et al. (2010) noticed 
that the water and protein contents of meat decreased 
with increasing the animal age, while fat and ash contents 
increased with increasing the animal age, leading to an 
increase of metal levels in meat. Maximum levels of Cd 
and Pb were reported in the liver and kidneys of cattle and 
sheep, while low levels of metals were reported in their 
muscles. Also, the studied metals in cattle organs were 
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higher than those detected in sheep. The frozen chicken 
sample had higher Pb and Hg levels at 0.035 and 0.085 mg 
kg-1, respectively. Meanwhile, the sample of frozen minced 
beef recorded the highest level of Cd as 0.012 mg kg-1. 
Food provided to patients at hospitals must be free from 
poisonous metals (Hassouba et al., 2007). El-Wehedy et al. 
(2018) determined the toxic metal levels in meats served at 
Egyptian hospitals, such as cooked meat, cooked chicken, 
raw meat, and raw chicken. The cooked chicken recorded 
the highest mean concentrations of As, Cd, and Pb at 
0.122, 0.202, and 0.421 mg kg-1, respectively. They added 
that was no significant difference in metal levels between 
chicken and beef samples. But the cooked samples had 
a significant increase in HMs levels compared with raw 
samples, which may be a return to the evaporation and loss 
of water in the cooked tissue.

Egg
The egg is economical food and the most nutritious for 
human health. However, some toxic metals can accumulate 
in egg (Hussien and Nosir, 2017). The average levels of 
some metals in egg samples were 0.70, 0.31, 2.12, and 1.61 
mg kg-1 for Pb, Cd, Cr and Cu, respectively. The residual 
concentrations of As, Cd, Cu, Fe, and Pb in brown shell 
egg samples (Al-Ashmawy, 2013).

Vegetables, fruits, and cereals
The highest accumulation of toxic metals (Cd, Pb, Al, 
and As) in leafy plants (lettuce and watercress) and 
tuber vegetables (potato) compared with fruit vegetables 
(tomatoes, cucumber) was the critical observation of this 
study (Abdel-Rahman, 2021). Eissa and Negim (2018) 
studied the translocation of some HMs (Zn, Cu, Pb, Cd, 
and Ni) from a metal-contaminated soil to lettuce and 
spinach. They noticed that the accumulated HMs in the 
roots of lettuce and spinach were higher than those in their 
shoots. Radwan and Salama (2006) discovered the levels 
of Pb, Cd, Cu, and Zn in different fruits such as apple, 
banana, melon, date, grapefruit, peach, orange, strawberries, 
and watermelon. The detected metals ranged from 0.05 to 
0.87 mg kg-1 for Pb, from < 0.002 to 0.05 mg kg-1 for Cd, 
from 1.2 to 18.3 mg kg-1 for Cu, and from 1.36 to 10.5 
mg kg-1 for Zn (Akoury et al., 2023). In the meantime, 
the maximum levels of Cu in orange, pomegranate and 
strawberry were 1.9, 5.5 and 3.5 mg kg-1, respectively.

Hazard influences of HMs on crops and soil 
The influences of HMs on soil
HMs are one of the significant origins of soil 
contamination. HMs pollution in the soil is produced by 
different kinds of HMs, mostly Pb, Cu, Zn, Ni, Cd, and 
Cr (Hinojosa et al., 2004). Human activities like waste 
production and throwing in landfills and dumpsites were 
found as the most common resource of soil contamination 

with HMs. Heavy metals in the soils surrounded by waste 
dumps are affected by numerous factors like the kinds of 
wastes, run-off, topography, and level of scavenging ( Järup, 
2003). Inadequate waste disposal results in pollution of 
both groundwater and soil. Paper, ashes, metal scraps, 
food trash, glass, and ceramics are all part of municipal 
solid waste. The breakdown or oxidation process transfers 
HMs from trash into the surrounding soil (Cataldo and 
Wildung, 1978). Changes in soil fertility and quality, 
groundwater pollution, biomagnification, and eventually 
permanent harm to soil biota are all caused by HMs in the 
soil (Borah et al., 2020).

Historically, consuming foreign compounds like HMs 
subjected soil systems to physical stress. When soil contains 
high content, the resulting unhealthy environment 
negatively impacts all living things (Figure 6 and Table 
3). Table 3 talks about the hazard influences of HMs. 
Table 3 indicates that Lead is a poisonous metal with 
little mobility but high bioavailability., Lead continues for 
an extended period on the soil surface (Akanchise et al., 
2020). Cadmium and its compounds may migrate through 
the soil, their movability depending on several parameters, 
i.e., soil pH and the quantity of organic substance, both of 
which are affected by the ecosystem (Karaca et al., 2010).

Figure 6: Influences of HMs on public health.

Furthermore, cadmium binds closely to organic material 
in the soil, where it remains immobile and is absorbed by 
plants, eventually entering the food chain (Karaca et al., 
2010). HMs pollution in the soil is linked to high heavy 
metal concentrations, inadequate nutritional and organic 
substance, low water retention capability, and low cation 
exchange capability based on Singh and Kalamdhad (2011). 
Furthermore, increased heavy metal concentrations in the 
soil have harmful effects on the soil biota by interfering 
with crucial microbial activities and lowering the count 
of organisms (Singh and Kalamdhad, 2011; Sanaei et 
al., 2021; Mitra et al., 2022; Nolos et al., 2022; Su et al., 
2023; Wang et al., 2023). HMs inhibit the soil enzymes 
producing microbiota, affecting the enzyme activity in the 
soil (Karaca et al., 2010; Zaynab et al., 2022). 
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Table 3: The adverse effects of heavy metal-contaminated soils, plants, and crops.
Heavy 
metals

Soil References
Adverse effects on soil

Cd Disable protease, urease, and alkaline phosphatase activity
Abnormalities in the metabolic function of organisms.
Affect the soil N and S availability for crop production

(Akanchise et al., 2020; Bakshi et al., 
2018; Balkhair and Ashraf, 2016; 
Karaca et al., 2010)

Pb Reduce urease, catalase, invertase, and acid phosphatase activity in the soil.
Abnormalities in the metabolic function of organisms
Shortage of soil macronutrients like Phosphorus
Disrupts water equilibrium, enzyme function, and mineral nutrition
Reducing soil productivity.

(Alloway and Jackson, 1991; Bakshi 
et al., 2018; Fenn et al., 2006; Karaca 
et al., 2010; Kumar et al., 2019; 
Somani et al., 2019)

Hg The metabolic activity of organisms was affected (Akanchise et al., 2020)

Zn Reduce soil fertility
Reduce the biomass nitrogen
Lack of soil macronutrients such as Phosphorus 

(Balkhair and Ashraf, 2016; Fenn et 
al., 2006; Yao et al., 2003)

Cu The bioavailability of S and N decreased in the soil
Decrease the activity of Beta glucosidase
Decrease the microbial biomass N

(Bakshi et al., 2018; Karaca et al., 
2010)

Plants and crops
Cd Cause numerous irregularities in various plant parts, including roots, shoots, leaves, 

and fruits, and an enhanced dry-to-fresh mass ratio (DM / FM) in all organs.
Adverse effects on sugar amount and amino acids in some plant species are caused 
by increasing their concentration, indicating inhibition of starch hydrolysis. In 
Aeluropus littoralis, balance the macro- and micronutrients by increasing and 
decreasing micronutrients. 
 Lead to less photosynthetic carbon assimilation when interacting with different 
photosynthetic complexes. 
Interferes with guard cell regulation, affecting the plant's water status; soil 
contamination hurts photoheating production due to an interruption of the 
transporter/channel for loading other elements and an imbalance of plant nutrients.

(Bakshi et al., 2018; Kumar et al., 
2019; Singh et al., 2020b)

Pb Seed germination was decreased
 Disorder in plant metabolism, physiological and morphological characteristics, plant 
development, and productivity
Reduce plant growth. Cause malformation of cellular structure, decreased chloro-
phyll biosynthesis, hormonal imbalance, and excess production of reactive oxygen 
species (ROS), which can cause oxidative stress within plant cells and readily attack 
biological structures and bioactive molecules, resulting in metabolic dysfunction.

(Kumar et al., 2019; Singh and 
Kalamdhad, 2011; Tang et al., 2017)

Cu Reduced the bioavailability of Nitrogen and Sulfur in soil required for plant 
production
Hinder β-glycosidase activity more than the cellulose

(Bakshi et al., 2018; Karaca et al., 
2010)

Zn Affect the crop yield
Affect the growth of pea plants

(Bakshi et al., 2018; Balkhair and 
Ashraf, 2016)

Following Bakshi et al. (2018), By increasing the saturation 
or supersaturation of the cation exchange sites with heavy 
metal cations, the contamination of HMs indicates a 
reduction in the selective absorption of other cations, 
displaces the protons in the soil solution and lowers pH. 
Enzymatic activity is inhibited by HM pollution in the 
soil, which weakens SOM mineralization and the nitrogen 
cycle (Bakshi et al., 2018).

Also, from Table 2, HMs such as Cd are considered 
dangerous HMs to enzymatic activities. The data of the 
research performed by Karaca et al. (2010), found that 

the low concentration of cadmium does not affect the soil 
enzyme, while the increase of Cd reduces the activity of 
soil enzymes. The highest impacts of Cd on enzymatic 
activity were higher in sandy loam contrasted in loam 
or clay loam soils. Also, Hemida et al. (1997) found that 
higher levels of copper and zinc in soil (2 mg/g) inhibit 
urease activity in the soil.
 
The hazard impacts of HMs on plants
Plants growing around municipal solid waste landfills are 
linked to HMs pollution that may impact the food chain 
(Vongdala et al., 2019). HMs have various adverse plant 
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effects (Table 3 and Figure 7). HMs are unbreakable and 
affect the environment on a worldwide scale. Depending on 
their abundance in the environment, some HMs can serve 
as plant nutrients. For example, human activities dispose 
of Hg, Pb, Cd, Ag, and Cr have deadly effects even at low 
concentrations (Kumar et al., 2019). Several variables, 
including temperature, humidity, organic matter, pH, and 
nutrient availability, affect the plant tissue uptake and HMs 
accumulation. According to this study, several metals like 
Cd, Zn, Cr, and Mn were discovered to be absorbed and 
deposited in spinach at higher rates during the summer. At 
the same time, Cu, Ni, and Pb were found to be deposited 
at higher rates during the winter. According to estimates, 
the summertime pace of organic matter decomposition 
most certainly released HMs into the soil solution for 
potential plant absorption. High sweating was predicted to 
be the reason for the higher assimilation of HMs like Cd, 
Zn, Cr, and Mn in the summer. In contrast, high ambient 
temperature and low humidity were predicted to be the 
causes of the higher accumulation rate of HMs in the 
winter (Sharma et al., 2007).

Figure 7: Influences of HMs on plants.

Animal and human health are at risk because of HMs 
being absorbed by plants and then deposited in food chains. 
Because they are easily absorbed by plants, infiltrate food 
chains, or contaminate groundwater, mobile HMs pose 
serious contamination issues (Sprynskyy et al., 2007). Metal 
and plant species are a couple of the factors influencing 
how well plants absorb HMs. According to research by 
several prior scientists, crops, particularly leafy vegetables 
grown in HM-polluted soil, shed significant amounts of 
metals through their leaves (Yongsheng et al., 2011). The 
replacement of faulty components with poisonous HMs 
and the inhibition of photosynthetic activities in plant cells 
are all effects of high levels of HMs that are detrimental 
to plant growth. HMs can also produce oxidative stress in 
plants and damage cell structure (Bakshi et al., 2018).

Additionally, HMs impact seed germination and lessen 
the likelihood of crop production. Compared to other 
environmental pressures, HMs harm plant growth. 

Amylase, protease, and ribonuclease are three examples 
of delayed enzymatic activities caused by Ni poisoning 
that impact plant germination and growth (Bakshi et 
al., 2018). Ni can cause a decrease in plant height, root 
length, chlorophyll content, photosynthetic pigments, and 
an accumulation of Na+, K+, and Ca2+ in plant (Bakshi 
et al., 2018). Lower nutrient uptakes disrupt plant 
metabolism. Heavy metals adversely affect the capability 
to repair nitrogen in legumes, causing chlorosis, poor plant 
growth, and depression (Singh and Kalamdhad, 2011). The 
hazard influences of HMs on plants are discussed in Table 
3 and Figure 7.

Remediation technics of soil contaminated 
with HMs
Due to its biochemical and geochemical heterogeneity 
(Alloway and Jackson, 1991), soil retains heavy metals 
longer than air and water (Kamari, 2011). Because soil is 
a biochemical and geochemical heterogeneous complex 
mixture retains heavy metals longer than air and water. 
HMs are pristine, and, once introduced to soil, they 
endure. With HMs, there are several options for recovering 
contaminated soil (Rebezov et al., 2021a, b, c, d). Chemical, 
physical, or biological techniques are commonly used in 
remediation, as seen in Figure 8 and Table 4.

Figure 8: Remediation of HMs contamination in the 
ecosystem.

Engineering remediation is the first technique used in 
remediation, as illustrated in Table 4. In engineering 
remediation, the process involves adding much clean soil 
to cover or mix with polluted soil (XS et al., 2002). The soil 
removal and isolation approach are required for severely 
polluted soil with a small area since it entails removing 
polluted dirt and replacing it with clean soil. The following 
approach employs soil electro-kinetic remediation, which 
is successful in low-permeability soil and creates an electric 
field gradient on both sides of the electro-lytic tank 
containing the contaminated soil (Kamari, 2011; Sabatini 
and Knox, 1992). Another method includes cleaning 
contaminated soil with specific chemicals to remove HMs 
complexes and dissolved iron from solid-phase particles 
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(Su, 2014; El-Nagar and Abdel-Halim, 2021; Wu et al., 
2023; Mukherjee et al., 2021; Islam et al., 2022a; Mathur 
et al., 2022; Sharma et al., 2021; Sodhi et al., 2022). The 
last approach is clay mineral fixing and adsorption, such as 
zeolite, bentonite, etc. (Xin and Qixing, 2004).

The bioremediation method, which includes 
phytoremediation and microbiological remediation, is also 
shown in Table 4. Growing specific plants in the polluted 
soil, such as Cruciferae species like the genus Brassica, 
Alyssums, etc., was part of the phytoremediation process 
(Xin et al., 2003; Elbasiouny et al., 2021; Jeyasundar et al., 

2021; Kumar et al., 2021; Mazarji et al., 2021; Verma et 
al., 2021; Amuah et al., 2022; Awasthi et al., 2022). The 
most crucial factor is finding plants with a solid capacity 
to amass and overcome HMs. These sorts of plants must 
have a substantial hyper deposition potential for pollutants 
in the soil. The detoxifying enzyme and nucleic acid are 
produced and expressed by plants as a means of plant 
resistance in the phytoremediation process, which is 
integrated with plant defense against damage (Kumar et 
al., 2019). Another approach involves plants producing 
phytochelatins (PSc), which bind to heavy metals (HMs) 
and sequester the chemicals inside cells so the HMs will not 

Table 4: Remediation technics of soil, plants, and crops contaminated with heavy metals.
Tech-
niques

Method Mechanism References

Anthro-
pogenic
remedia-
tion

Soil leaching As part of this procedure, contaminated soil is cleaned using specific 
chemicals to remove complexes of heavy metals and dissolved iron 
from solid-phase particles. The extracted heavy metals are then 
extracted from the extraction solution.

(Su, 2014)

Soil removal and 
isolation

This strategy entails removing contaminated soil and replacing 
it with clean soil. It is essential for soil in a limited region that is 
significantly polluted.

96

Electro-kinetic 
remediation

This method uses the DC-voltage concept to establish an electric 
field gradient on both sides of the electro-lytic tank containing 
the contaminated soil. The processing chamber is positioned at the 
two poles of the electro-lytic cell and employs electric migration, 
seepage, or electrophoresis to decrease soil contamination. This 
technique is helpful in soils with low permeability.

(Kamari, 2011; Su, 2014)

Replacement of 
contaminated soil

It involves putting a large volume of clean soil on the surface of 
contaminated soil or mixing it.

(Su, 2014; XS et al., 2002)

Adsorption Fixed and adsorbed by clay minerals such as bentonite, zeolite, etc. (Xin and Qixing, 2004)
Bioreme-
diation

Phytoremediation Involve cultivating certain plants in polluted soil, such as Cruciferae 
species such as Brassica, Alyssums, etc.
The plant byproducts were used to remove heavy metals from 
polluted water. The biosorbents derived from the Jatropha plant 
demonstrated an aptitude for removing metals such as copper and 
zinc from contaminated water.

(Nacke et al., 2016; Kamari, 
2011; Su, 2014; Xin et al., 
2003)

Microbial reme-
diation

Utilizes several microorganisms (bacteria, archaea, and fungus) to 
absorb, deposit, oxidize, and reduce heavy metals 
Saccharomyces cerevisiae can remove Pb, Zn, Cr, Co, Cd, and Cu 
ions from aqueous solutions. 
Algae biomass was used as a wastewater treatment method to 
eliminate Cu, Pb, Cd, and Zn ions 

(Davies et al., 2001; Farhan 
and Khadom, 2015; Kamari, 
2011; Su, 2014; Utomo et al., 
2016)

Nanomaterials Also, Cu oxide nanoparticles were tested for adsorption of Ni and 
Cr from aqueous solutions 
Another application estimated the effectiveness of Fe+3 oxide 
nanoparticles stabilized with polyacrylic acid on Cd removal from 
contaminated soil 
The use of metals and metal oxides nanoparticle induces 
genotoxicity, oxidative stress, and inflammation and has been 
identified as a possible human carcinogen.

(Al-Rikaby, 2021; Al Olayan 
et al., 2020; Banerjee et al., 
2020; Camps et al., 2020; 
Cherkasova et al., 2021; 
Coetzee et al., 2020; Genchi 
et al., 2020; Gong et al., 2021; 
Gudkov et al., 2021a; Hos-
seini et al., 2019; Islam et al., 
2022b; Maksimiuk et al., 2021; 
Mohamadiun et al., 2018; 
Rajakumar et al., 2021; Shen 
et al., 2023).



Advances in Animal and Veterinary Sciences

April 2023 | Volume 11 | Issue 4 | Page 689

interfere with cell metabolism (XS et al., 2002). However, 
microbial remediation uses a variety of microorganisms, 
with bacteria, archaea, and fungi serving as the primary 
bio-remediators, to make the uptake, deposition, oxidation, 
and reduction of HMs in the soil (Davies Jr et al., 2001; 
Gudkov et al., 2021b; Maftouh et al., 2023; Shen et al., 
2023; White and Dhankher, 2022). Numerous ions in the 
functional groups of microbial cell surfaces, like nitrogen, 
oxygen, sulfur, and Phosphorus, could be replaced by 
metal ions known as coordination atoms. The cationic 
group-carrying, negatively charged microorganisms used 
in microbial remediation allow the heavy metal to flow 
through their cell walls (Akanchise et al., 2020).

CONCLUSIONS AND 
RECOMMENDATIONS

Metal concentrations in plants, water, animals and people’s 
bodies mirror the high concentrations of HMs in soil. The 
soil pollution near the landfill suggests that tainted food 
harms human health. This is a significant problem that 
must be addressed right away. Since slight alterations in 
their level above the permissible levels reveal significant 
ecological and consequent health hazards. Toxic metals 
can be found in foods such as milk, fish, meat, egg, and 
crops. Different applications could be applied for lowering 
the transferred metals to the food chain, such as biochar, 
zeolite, yeast, bacteria, Jatropha plant, Jojoba plant, and 
household treatments.

NOVELTY STATEMENT

The present review focused on the hazardous impacts 
of HMs levels in the soil and the crops cultivated in 
the landfill and search their resources and remediation 
approaches to react with this HMs pollution in the soils to 
recognize the HMs situation and their influences on the 
soil and environment.
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