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INTRODUCTION

Assisted reproductive techniques (ART) is the 
application of field or laboratory techniques to gonads, 

germ cells and embryos for the purposes of increasing 
reproductive performance or treatment of reproductive 
dysfunctions (Wani and Skidmore, 2010; Wani et al., 2010; 
Mohammed and Attaai, 2011; Al-Zeidi et al., 2022a, b; 
Mohammed et al., 2022). Several millions of humans are 
treated of reproductive dysfunctions annually in the world 
through assisted reproductive techniques (Dyer et al., 
2016; Kushnir et al., 2017).

Significant strides of development have made in assisted 
reproductive techniques during the past seventy years 

(Al-Zeidi et al., 2022a, b). This is a continuum, which 
started with artificial insemination. Artificial insemination 
application was greatly maximized with the advent of 
semen cryopreservation and synchronize estrus procedures 
in different species. Then, embryo transfer technique was 
arisen to produce offspring from females and males that 
were proven genetically superior (Seidel Jr  and Seidel, 
1991). Embryo transfer program enabled to shorten 
the interval between generations and multiply the 
number of species rapidly. Oestrous synchronization and 
superovulation protocols are necessitated for successful 
embryo transfer (Gordon, 2003; Mohammed et al., 2011). 
In addition, the procedures of in vitro embryo production 
including oocyte maturation, fertilization and culture were 
improved in addition to cryopreservation of oocytes and 
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embryos (Mohammed et al., 2005; Arav, 2014). Several 
techniques for fertilizing oocytes were developed as in 
vitro fertilization, subzonal sperm injection (SUZI), and 
intracytoplasmic sperm injection (ICSI) (Gordon, 2003). 
Semen and embryos’ sexing enable getting either males or 
females offspring for meat and milk production, respectively, 
and avoiding the genetic diseases (Mohammed and Al-
Hozab, 2016). Moreover, the progress of creating artificial 
oocytes through transfer of germ, embryonic and somatic 
cells enabled to solve the severe reproductive problems in 
different species (Mohammed et al., 2019a, 2022). The 
continuum progress of assisted reproductive techniques is 
helpful to livestock sectors and human medicine (Al-Zeidi 
et al., 2022a, b). Therefore, this review was designed to 
collect and consolidate the current knowledge of assisted 
reproductive techniques and their importance for oocyte 
maturation, artificial oocyte reprogramming, embryo 
development and their resulting newborns.

aSSiSted reproductive technologY in maleS 
Assisted reproductive techniques in males include semen 
collection, in vitro fertilization of oocytes in addition to 
intracytoplasmic sperm injection (ICSI), subzonal sperm 
injection (SUZI). Furthermore, genome resource banking 
is established to cryopreserve semen for hundreds of years 
(Ugur et al., 2019) (Figure 1).

Figure 1: Assisted reproductive techniques in males and 
females. Intracytoplasmic sperm injection (ICSI), subzonal 
sperm injection (SUZI).

artificial inSemination
The first assisted reproductive technique primarily emerged 
was artificial insemination (AI), which simply includes 
semen collection from males and subsequently followed 
by introduction of the collected semen into physiologically 
receptive females of domestic and wild mammalian species 
(Manafi, 2011; Waberski, 2018). Artificial insemination in 

different mammalian species is an important technique for 
the genetic improvement, as the selected proven male can 
produce sufficient spermatozoa to inseminate hundreds or 
thousands of females annually compared to natural service, 
which provides insemination for tenth of females annually 
(Dalton et al., 2021).

Although there are several techniques for semen collection, 
most of them include artificial vagina and electro-
ejaculation methods ( Jiménez-Rabadán et al., 2012). The 
collected semen is then diluted according to species to 
maximize the number of services per collection or male. 
The dilution solution contains components or factors that 
help preserving and stabilizing the sperm in addition to 
antibiotics to inhibit microorganism growth and reduce 
the spreading of contamination ( Jiménez-Rabadán et al., 
2012). The collected semen is packaged in plastic straws 
and might be stored either cooled (5oC) or frozen in 
liquid nitrogen (-196oC). It appears that the frozen semen 
can remain frozen for hundred years and regain viability 
upon appropriate thawing. The most common technique 
employs for inseminating receptive females involving the 
use of disposable and sterile catheter that inserts vaginally 
and might be extended through the cervix into the body of 
uterus depending on the species (Manafi, 2011). The frozen 
semen with desirable genetic characters could be exported 
or imported to any place in the world. Furthermore, the 
advent of sperm sexing technique of collected semen 
enables to get male or female offspring after parturition 
(Wheeler et al., 2006; Palma et al., 2008; Blondin et al., 
2009; Mohammed and Al-Hozab, 2016). 

in vitro fertilization 
In vitro fertilization refers to fertilizing oocytes using fresh 
or frozen-thawed spermatozoa through their incubation 
in fertilization medium (Mohammed et al., 2005; Chang 
et al., 2014). Spermatozoa need to be capacitated in vitro 
through swim-up or percoll-gradient techniques in order 
to penetrate the zona pellucida and fuse with the oocyte 
(Gordon, 2003; Mohammed et al., 2005; Volpes et al., 
2016). Capacitation procedure results in a series of sperm 
changes including increased motility, calcium uptake 
and protein binding (Donà et al., 2020). The capacitated 
sperm are incubated with oocytes in fertilizing medium 
for approximately 8-22 hours, and the resulting fertilized 
oocytes are called zygotes (Greda et al., 2006). In vitro 
fertilization can be applied for matured oocytes, which 
collected from either slaughterhouse ovaries and matured 
in vitro or live females through ovum pick-up (Mohammed 
et al., 2005; Aller et al., 2010). The purposes of in vitro 
fertilization are to obtain embryos from terminal females 
(age, accident, disease, prepuberal, pregnant females) or 
commercial purposes. Commercial and research centers 
have used OPU-IVF in several categories including females 
age, species, reproductive status, aspiration frequency, 
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culture protocols (co-culture BRL cells, chemically defined 
media, serum) with different degree of successes (Blondin 
et al., 2002; Aller et al., 2010) (Tables 1 and 2). Several 
techniques could be used for assisted in vitro fertilization 
including laser-assisted in vitro fertilization (Hammoud 
et al., 2010; Taylor et al., 2010), cumulus cells removal 
(Mohammed, 2008; Mohammed et al., 2008, 2010), zona 
thinning or opening through Tyrode solution (Mohammed 
2006, 2009a, b), subzonal sperm injection, intracytoplasmic 
sperm injection, and intracytoplasmic cell injection 
(Kimura and Yanagimachi, 1995; Gordon, 2003) (Figure 
2). Semen sexing procedure is used for sex pre-selection 
and is determined the sex with accuracy more than 95% 
(Wheeler et al., 2006; Palma et al., 2008; Blondin et al., 
2009; Mohammed and Al-Hozab, 2016). The sexed semen 
could be used for AI or IVF programs. There are several 
approaches proposed to preserve male genetic materials 
including germ cells, spermatozoa, cells and tissues 
( Johnston and Lacy, 1995). Semen banks are currently 
more developed for domestic and non-domestic species to 
facilitate the management and conservation of endangered 
species (Wildt et al., 1997; Comizzoli et al., 2000). Finally, 
in vitro fertilization of oocytes is considered a complement 
of an embryo transfer program (Zhao et al., 2019a, b).

aSSiSted reproductive technologY in femaleS 
The mammalian male and female reproductive systems is in 

partnership to produce offspring (Figure 3). The abnormal 
functions in either male or female reproductive systems 
result in infertility, which necessitates the urgent need for 
assisted reproductive technologies (Gordon, 2003). Several 
techniques were applied concerning oestrous or menstrual 
manipulation, oocytes and embryos manipulation in 
addition to ovarian cryopreservation and transplantation 
(Mohammed et al., 2011, 2019, 2012a, b; Mohammed and 
Farghaly, 2018).

Figure 2: Techniques of assisted in vitro fertilization: 
IVF, In vitro fertilization; ICSI, intracytoplasmic sperm 
injection; subzonal sperm injection, SUZI; PB, polar body; 
MII, metaphase II.

Table 1: Factors affecting developmental competence in vitro of aspirated oocytes from slaughterhouse ovaries or live 
organisms ovaries.
Ovaries Treatments Effects References
Live 
organisms

Follicular and luteal stages ↑ development of oocyte to embryos Gordon, 2003
Follicle sizes ↑ development of oocyte to embryos Maylinda et al., 2018; Hasler 1998; Raj et al., 2018
Follicular waves ↑ development of oocyte to embryos Gordon, 2003; Cavalieri et al., 2018; Baby and 

Bartlewski, 2011
Feed additives ↑ reproductive performance Mohammed and Al-Hozab, 2020; Senosy et al., 

2017, 2018
Nutrition Variable effects Gordon, 2003

Slaughter-
house
ovaries 

Follicle size ↑ development of oocyte to embryos Gordon, 2003; Shabankareh et al., 2014; Maylinda 
et al., 2018

Defined and undefined 
media

Variable effects
↑ development of oocyte to embryos

Mohammed et al., 2005; Madkour et al., 2018; 
Spacek and Carnevale, 2018; Abdoon et al., 2018

Co-culture cumulus and 
oviduct cells

↑ development of oocyte to embryos Lee et al., 2018

Cumulus cells surrounding 
the oocytes

↑ development of oocyte to embryos Mohammed et al., 2005; Al Zeidi et al., 2022a, b; 
Mohammed, 2006; Mohammed et al., 2008, 2010

Follicular fluid variable effects due to follicle size 
and added %

Mohammed et al., 2005; Sinclair et al., 2008

Fetal calf serum ↑ development of oocyte to embryos Mohammed et al., 2005; Moulavi et al., 2019
IGF-1 and FF Variable effects Oberlender et al., 2013
Hormone ↑ development of oocyte to embryos Moulavi and Hosseini, 2019
Storage the ovaries at 30 
°C for 3-4 hours

↑ development of oocyte to embryos Luu et al., 2011
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Table 2: Timing (hr.) of oocyte maturation from germinal vesicle to metaphase II stage in vitro due to different treatments 
in different animal species and human.
Species Duration, h Treatments References
Sheep

24
Oxygen tension
C-type natriuretic peptide

Sánchez-Ajofrín et al., 2020
Zhang et al., 2018

Resveratrol Zabihi et al., 2021
Sericin and growth factors Tian et al., 2021

Goat
24

Cysteamine, leukemia inhibitory factor, and Y27632
Physiological oocyte maturation
Leptin

An et al., 2018; Suresh et al., 2021; 
de Senna Costa et al., 2022

Cattle
24

FF and FCS
Retinoic acid
Lycopene

Mohammed et al., 2005 
Borges et al., 2021
Residiwati et al., 2021

Buffalo
24

-
Brain-derived neurotrophic factor
Retinoic acid

Marin et al., 2019
Zhao et al., 2019b
Gad et al., 2018

Camel 42-48 -
Macromolecule
Roscovitine

Wani and Hong 2018, Wani et al., 2018
Moulavi and Hosseini 2019
Wani and Hong 2020

Pig
48

Dihydroartemisinin
Zearalenone
CRH and ACTH
Allicin

Luo et al., 2018
Wang et al., 2022
Gong et al., 2022
Li et al., 2022

Rabbit 24 Gonadotropin-releasing hormone
-

Yoshimura et al., 1991
Arias-Álvarez et al., 2017

Rodents

17

Cumulus cells
Cumulus cells
Cumulus cells
Perfluorooctane
CRH and ACTH

Grabarek et al., 2004;
Mohammed 2006, 2008, 2009, 2011;
Mohammed et al., 2008, 2010, 2019;
Wei et al., 2021;
Gong et al., 2022

Human
24

-
-
Coenzyme Q10
A fertilin-derived peptide

Chian et al., 2004
Baruffi et al., 2004 
Ma et al., 2020
Sallem et al., 2022

multiple ovulation and embrYo tranSfer
Multiple ovulation or superovulation protocol is a procedure 
meant that more than one oocyte is released by an ovary 
of different species and human as well (Mohammed et al., 
2011; Macmillan et al., 2018). Embryo transfer program 
allows animals’ producers to obtain multiple progeny from 
superior genetic females (Gordon, 2003; Mohammed et 
al., 2011) (Figure 4). The embryos can be recovered from 
fallopian tube or uterus of females through surgical or 
nonsurgical techniques depending on species. Thereafter, 
genetically superior collected embryos are transferred to 
recipient females of lesser genetic merit or cryopreserved 
(Neto et al., 2005; Mohammed et al., 2011).

The collected embryos could be manipulated as partial 
zona dissection or zona drilling to raise their chances of 
hatching and implantation (Edwards and Brody, 1995). 
Partial zona dissection improves hatching rate of bovine 
blastocysts in vitro (Loskutoff et al., 1999). In addition, 
the embryo could be split into two embryonic parts. Fifty 

percent pregnancy rate of splitting embryos compared 
to hundred percent of intact embryos has been reported 
(Gray et al., 1991).

meiotic maturation of germinal veSicle oocYteS 
in vivo and in vitro
The germinal vesicle oocyte resumes meiotic maturation 
after removing from ovarian antral follicle or after LH 
surge (Dieleman et al., 1983; Grynberg et al., 2022). 
Meiosis resumption of fully-grown germinal vesicle oocyte 
is initiated in vivo after LH surge (Mehlmann et al., 
2006). Several layers of compact cumulus-enclosed cells 
are surrounding the oocytes before LH surge. Numerous 
projections of the surrounding cells penetrate the zona 
pellucida through gap junctions and end on the oocyte 
oolemma (Gordon, 2003). Gap junctions disruption 
occur shortly after LH surge. Several changes occur in 
the GV nucleus and cytoplast of the fully grown germinal 
vesicle oocyte of pre-ovulatory follicle known as oocyte 
maturation. 
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Figure 3: Caprine reproductive system; cumulus-enclosed 
germinal vesicle oocytes aspirate from antral follicles for 
embryo production; (#) the place in fallopian tube where 
the 1-8 cell-stage developed embryos are collected or 
transferred; (*) the place in the uterine tube where the 
morula-blastocyst embryos are collected or transferred 
(Mohammed and Kassab, 2015).

Figure 4: Rabbit offspring obtained after transferred 
embryos to uterus of surrogate mothers (Mohammed et 
al., 2011).

The first sign of meiotic maturation is germinal vesicle 
breakdown (GVBD), which occurred approximately 
2-3h of starting maturation in rodent oocytes (Gao et 
al., 2002; Mohammed et al., 2019a, 2022; Al-Zeidi et al., 
2022a, b) and is continued to reach the MII stage (Liu et 
al., 2006). The oocyte remains arrested at the MII stage 
until activation or fertilization, which makes the oocytes 
complete the second meiotic division and follow the 

embryonic developmental competence. Simultaneously, 
cytoplasmic maturation of oocytes involves morphological 
and ultrastructural changes that support fertilization 
and further embryo development (Chang et al., 2005). 
Mitochondrial migration and organelles redistribution in 
addition to changes in mitogen activated protein kinase 
and maturation promoting factor. Factors affecting 
developmental competence (Mohammed and Attaai, 
2011; Mohammed and Al-Hozab, 2020; Mohammed et 
al., 2020) of aspirated oocytes in vitro are indicated in 
Table 1. In addition, duration of oocyte maturation in vitro 
from germinal vesicle to metaphase II stage using different 
treatments in different species is indicated in Table 2.

Figure 5: Micromanipulation of germinal oocytes, Pro-
Metaphase I and Metaphase II oocytes in addition to 
enucleolation of germinal oocytes (Mohammed 2006; 
Mohammed et al., 2008, 2010; 2019; 2022).

nuclear tranSfer
Germ, embryonic, and somatic nuclear transfer were used 
for treatment of infertility and production of cloned and 
transgenic animals (Wilmut et al., 1997; Wani and Hong, 
2018). Cytoplasmic and nuclear maturation of intact 
and reconstructed oocytes control the developmental 
competence of embryos (Mohammed et al., 2019a, 2022). 
The nuclear and cytoplasmic maturation are essential for 
remodeling of the penetrated sperm or the introduced 
germ or embryonic or somatic nuclei in addition to further 
embryonic developmental competence (Mohammed et al., 
2008, 2010, 2022). The roles of germinal vesicle, nuclear 
sap and nucleoli, and surrounding cumulus cells on oocyte 
maturation and embryonic developmental competence 
were investigated through micromanipulation of germinal 
vesicle or metaphase II oocyte (Al-Zeidi et al., 2022a, b). 
The micromanipulation techniques applied to GV or MII 
oocytes help to explore cellular reprogramming of the 
introduced nuclei. Such assisted reproductive techniques 
of GV or MII oocytes are hypothesized to treat infertility, 
enhance meat and milk production, and save endangered 
species. Further studies are still required on gene expression 
of the manipulated oocytes.
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Different techniques were used to produce transgenic 
embryos and offspring including microinjection of nuclear 
of one-cell, two-cells, four-cells embryos ( Jura et al., 1994; 
Echelard et al., 2000). Furthermore, transfected somatic 
cells, embryonic cells, primordial germ cells after nuclear 
transfer might be used to achieve genetic modification in 
several species (Lee et al., 2000). Moreover, the transfected 
cells retained their developmental competence and when 
inserted into a developing embryo could contribute to all 
its tissues (McCreath et al., 2000; Robl et al., 2003).

recipient cYtoplaStS
Different stages of oocytes were enucleated including 
germinal vesicle, Pro-Metaphase I, Metaphase I and 
Metaphase II oocytes (Figure 5). The germinal vesicle or 
MII cytoplasts reconstructed with germ, germinal vesicle, 
embryonic and somatic nuclear transfer were used for 
meiotic maturation and further embryonic development till 
obtaining fetus (Wilmut et al., 1997; Mohammed, 2006; 
Mohammed et al., 2008, 2010, 2019a, 2022). The resulting 
embryos and offspring have the same genetic materials as 
the original donors, except for the mitochondrial DNA, 
which are derived from the recipient oocyte cytoplasts 
(Wolf et al., 2001; Yang et al., 2004). The cytoplasts of 
oocytes (Mohammed, 2006; Mohammed et al., 2008, 
2010, 2019a; Wani et al., 2010; Al-Zeidi et al., 2022a, b) or 
zygotes (Greda et al., 2006) were used over nuclear transfer 
for studying meiotic maturation, cellular reprogramming, 
pre- and post-implantation embryonic development.

donor nuclei
Different types of donor nuclei (germ, germinal vesicle, 
cumulus, muscle, skin, fibroblast etc.) with different cell 
cycle stage (G0/G1, S-phase and G2/M stage) were used 
for introducing into enucleated oocytes (Mohammed, 
2006; Mohammed et al., 2008, 2010, 2019a, 2022; Al-
Zeidi et al., 2022a, b). The donor nuclei of G0/G1 stage 
could be introduced into germinal vesicle cytoplasts 
whereas donor nuclei of G2/M stage could be introduced 
into MII cytoplasts (Grabarek et al., 2004; Mohammed 
2014a, b). On the other hand, donor nuclei of interphase 
stage (S-phase) resulted in abnormalities in meiotic 
maturation and further developmental competence upon 
introducing into GV cytoplasts (Mohammed, 2006). The 
resulting artificial gametes could be subsequently activated 
or fertilized by spermatozoa (Polanski et al., 2005; 
Mohammed, 2006). The effects of the donor nuclei types 
and their cycle stages on the success of cloning has been 
confirmed (Lagutina et al., 2005).

animal cloning
Animal cloning could be applied through embryo splitting 
or embryonic/somatic cloning (Willadsen, 1986; Wilmut 
et al., 1997). The resulting cloned animals were confirmed in 

several studies to be suffered from neonatal developmental 
and gestational abnormalities (Eckardt and McLaughlin, 
2004; Piedrahita et al., 2004) including abnormal placenta 
and large offspring syndromes (Wells, 2003). Hence, it has 
been suggested that nuclear transfer could be considered a 
useful strategy for cellular reprogramming basic research 
(Van Heyman, 2005). The interaction between the recipient 
cytoplasts and the donor nuclei is considered one of the 
fundamental questions in the field of assisted reproductive 
technology (Mohammed et al., 2022). 

embrYo Sexing
Embryo sexing could be controlled through oocytes’ 
fertilization using sorted semen as well as insemination 
of cycled mammalian females using sorted semen 
(Mohammed and Al-Hozab, 2016). The semen sorting 
is still an uncommercial viable form made embryo sexing 
a major route of gender preselection. There are several 
methods for embryo sexing. The only method used 
routinely on a commercial scale is to biopsy embryos and 
amplify Y chromosome specific DNA using polymerase 
chain reaction (Martinhago et al., 2010; Zoheir and Allam, 
2010; Mohammed and Al-Hozab, 2016). 

oocYteS, embrYo and tiSSueS reSource banking
Embryo storage and cryopreservation are allowing 
conservation of the full genetic complement of the dam 
and sire and thus has an enormous potential for managing 
and protecting species. The differences among mammalian 
embryos are substantial in cryo-sensitivity as demonstrated 
by the variance between the freezable bovine embryos 
versus the difficulties to freeze swine embryos (Nieman 
and Rath, 2001). Two embryo-freezing procedures were 
adapted including conventional freezing and vitrification 
protocols (Albarracin et al., 2005; Nicacio et al., 2012; 
Varago et al., 2014; Araújo-Lemos et al., 2015). The 
conventional freezing of embryos requires biological 
freezers or incubators and it is time-consuming, which 
replaced by a fast vitrification procedure (Araújo-Lemos 
et al., 2015). The procedures of freezing and vitrification 
were adapted to immature and mature oocytes of different 
species (Bautista and Kanagawa, 1998; Cetin and Bastan, 
2006). The studies in freezing and vitrification procedures 
for oocyte and embryos have made substantial progress in 
retaining the stability of cytoplast cytoskeleton (Ledda et 
al., 2019).

Gonadal tissues’ cryopreservation and transplantation offer 
fascinating opportunities for both animals and Humans 
as well (Mohammed, 2019). The recent developments in 
the auto-grafting and xeno-grafting of testes and ovaries 
demonstrate the potential values of cryopreserving 
gonadal tissues (Oktay and Yih, 2002; Tibary et al., 2005; 
Mohammed, 2019). Thawed ovarian tissues has been 
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transplanted into animals and humans as well resulting in 
the birth of normal young (Demirci et al., 2003; Donnez 
et al., 2004). Such helpful techniques give the females who 
suffer from caner the elixir of life through ovariectomy 
and cryopreservation before chemotherapy followed by 
re-transplantation after recovery. Furthermore, germ, 
embryonic, and somatic cells could be exploited for 
genome resource banking and used in the future for 
cloning conservation program (Wilmut et al., 1997). 

CONCLUSIONS AND 
RECOMMENDATIONS

The continuous progresses in assisted reproductive 
techniques are necessitated for both animals and human 
as well. There are differences among mammalian species to 
apply assisted reproductive techniques due to differences 
in anatomy of reproductive systems, duration of oestrous 
cycle, and gamete physiology, which require studies of the 
specific species. 
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