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INTRODUCTION

Among all livestock species, sheep (Ovis aries) are of 
significant importance in the global economy due to 

their high productivity characteristics (Ma et al., 2017; Al-
Thuwaini, 2021a). The litter size is considered a valuable 
characteristic in all sheep production systems (Yavarifard et 
al., 2015; Abd-Allah et al., 2019). In addition, reproductive 
performance is a critical determinant of flock efficiency 

(Mazinani and Rude, 2020). Aktaş et al. (2015) attribute 
the increased production efficiency of sheep flocks to their 
better reproductive performance. Genetic polymorphisms 
of candidate genes influence these economic traits 
(Ajafar et al., 2022a, b). The follistatin (FST) gene is an 
incredibly significant candidate gene for economic traits; 
reside on chromosome 5 of humans, chromosome 13 of 
mice, chromosome 20 of cows, and chromosome 16 of 
sheep (Ma et al., 2017; Zhu et al., 2022). Follistatin is 
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a glycoprotein encoded by this gene. It is expressed in 
various tissues, including the pituitary, adrenal cortex, 
ovary, and the granulosa cells of the developing ovary (Xia 
et al., 2010; Lee et al., 2015; Ma et al., 2017). This protein 
binds and neutralizes proteins in the transforming growth 
factor-beta (TGF-β) superfamily, especially activins and 
myostatin, growth differentiation factor 8 (GDF8), GDF9. 
It also binds to and neutralizes bone morphogenetic 
proteins (BMP) 2, 5, 7, and 8 (Zheng et al., 2017). Activin 
stimulates the pituitary to produce FSH and enhances 
the action of FSH on granulosa cells ( Jones et al., 2007). 
Activin is neutralized by follistatin by binding with high 
affinity (Xia et al., 2010). FST has also been shown to 
neutralize BMP systems, which regulate folliculogenesis 
and ovulation within the ovary (Zheng et al., 2017). 
According to Kashimada et al. (2011), FST blocks BMP2 
signaling in developing follicles.

The Awassi breed is well adapted to harsh conditions and 
provides high meat, milk, and carpet wool production 
(Ajafar et al., 2022a). However, it has a lower ovulation 
rate and unbalanced productivity compared to the other 
surrounding breeds of sheep in the Middle East (Üstüner 
and Oğan, 2013). Reproductive traits are responsible for 
flock productivity (Ibarra et al., 2000), and are regulated 
by several candidate genes, including the GREM1 gene 
in Awassi sheep (Imran et al., 2020), the prolactin gene 
(Al-Thuwaini, 2021b), the OLR1 gene in Awassi sheep 
(Mohammed et al., 2022), and numerous new candidates 
(Zlobin et al., 2019), one among them being FST gene. 
FST gene polymorphisms have been linked to a variety of 
economic traits in livestock that include wool quality traits 
in Chinese Merino sheep (Ma et al., 2017), chicken growth 
traits (Dushyanth et al., 2020), and the litter size of Dazu 
black goats (Zhu et al., 2022). The relationship between FST 
variants and reproductive hormones in livestock has been 
investigated a little bit. A limited amount of information is 
available on FST gene polymorphism and how they relate 
to sheep reproductive traits. This study investigated the 
genetic polymorphisms of the FST gene in Awassi sheep 
and their association with reproductive hormone levels. It 
is the first study in Iraq to report that the FST gene variant 
influences reproductive hormones in a worthwhile sheep 
population during pregnancy and postpartum.

MATERIALS AND METHODS

AnimAls, Blood sAmpling, And HormonAl AssAy 
The study was conducted at Al-Qasim Green University 
from July 2021 to April 2022 and followed international 
guidelines for animal care and use (Agri, No. 015,7,20). 
There were 232 healthy, sexually mature ewes of three to 
four years old in the study. Randomly selected ewes were 
taken from two sheep stations – Babylon and Karbala. Of 
these 123 ewes had single pregnancies and 109 had twins 

that were classified according to litter size after parturition 
and their weight ranged between 40-60 kg. Four, five-
month pregnant ewes, and the month following delivery 
participated in the study. Animals were fed concentrates in 
proportion to 2.5% of their weight, including 59% barley 
and 40% bran, and 1% salt. Each animal received three 
kg of green alfalfa and one kg of straw. Drinking water 
was accessible at all times. The sheep’s blood (5 ml) was 
collected by puncturing the external jugular vein with a 
disposable 18-gauge sterile needle, the serum was separated 
from the blood by centrifugation at 2,000 xg for 15 
minutes and frozen at -20°C until the hormone levels were 
determined.  The Enzyme-linked Immune-sorbent Assay 
(ELISA) kit E0047Sh, E0015Sh, E0105Sh, and E0106Sh 
from Bioassay Technology Laboratory (Shanghai, China) 
was used to measure reproductive hormones (estrogen, 
progesterone, FSH, and LH hormones).

dnA exTrAcTion, genoTyping, And sequencing 
reAcTion
The rapid salting-out method was applied for extracting 
genomic DNA from whole blood (Al-Shuhaib, 2017). 
DNA samples were tested with the NanodropμLITE 
spectrophotometer (Biodrop, UK) before conducting 
a polymerase chain reaction (PCR). Ten pmol of each 
primer, 50 ng of genomic DNA, 50 dNTPs, 10 mM 
Tris-HCl (pH 9.0), 30 mM KCl, 1.5 mM MgCl2, and 
one unit of Top DNA polymerase were used in PCR 
reaction (Al-Thuwaini, 2021b). GenBank ovine sequence 
(NC_019458.2) was used to design primers for the FST 
gene (exon 4). The primer sequence of the FST gene was 
F-5′-TCCTTCCTCAATCCAGAATACCT-3′ and R-5′ 
TCAGAGACCTGTCGGGATG T-3′. PCR PreMix 
from Bioneer (South Korea) was used in this experiment. 
Denaturation was carried out at 94°C for 4 minutes, 
annealing at 59.8°C for 45 seconds, elongation at 72°C for 
45 seconds, and a final extension at 72°C for 5 minutes in 
the PCR amplification. The PCR products were visualized 
on a 2 % agarose gel (Al-Thuwaini, 2020).

After this, polymerase chain reaction-SSCP (PCR-SSCP) 
was performed according to Imran et al. (2020). Each 
amplicon was loaded with equal amounts of denaturing-
loading buffer SSCP. The samples were denatured for 
7 minutes and cooled for 10 minutes on wet ice before 
loading onto 8% polyacrylamide gels in 0.5X TBE buffer. 
During electrophoresis, constant current and voltage of 
200 mA and 100 V were used for 4 hours, and gel staining 
according to Byun et al. (2009). Sequencing and editing of 
the detected nucleic acid polymorphisms were performed 
at Macrogen Geumchen, followed by viewing in Bioedit 
(version 7.1) (DNASTAR, Madison) and SnapGene 
Viewer ver. 4.0.4 (www.snapgene.com). In addition, 
ensemble genome browser 96 (https://asia.ensembl.
org/ index.html) was used to confirm the novelty of FST 

www.snapgene.com
https://asia.ensembl.org/ index.html
https://asia.ensembl.org/ index.html
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variants observed.

sTATisTicAl AnAlysis
The data were analyzed using SPSS, version 23.0, SPSS 
Inc., Chicago, IL, with repeated measures ANOVA. The 
following model was used; Yijk = µ + Gi +Lj +Pk + (GLP)ijk + 
pk(j) + eijk, where µ is the overall mean, Gi is the main effect 
of genotype (CC, CG, GG) (fixed w/∑i Gi=0), Lj is the main 
effect of progeny type (single, twin) (fixed w/∑j Lj=0), Pk is 
the main effect of the physiological stage (gestation and 
postpartum) (fixed w/∑k Pk =0), pk(j) is the main effect of 
subjects N (0, σ2 p), and eijk is random error assumed eijk ~ N 
(0; σ2). A Tukey-Kramer test was used for comparing the 
main factors’ means. A 0.05 P-value was used to measure 
significance. In a preliminary statistical analysis two factors 
interactions, season and station had no significant effect on 
phenotypic traits, resulting in a no match in the general 
linear model. Popgen32 software, version 1.31, was used 
to measure genetic data, allele frequencies, and Hardy-
Weinberg disequilibrium (Yeh et al., 1999).

RESULTS AND DISCUSSION

PCR amplification was performed on all 232 samples 
(Figure 1). The PCR-SSCP patterns for exon 4 were 
investigated, and three distinct PCR-SSCP patterns 
were found. The sequencing reactions revealed that the c. 
25760691 C>G SNP occurred only in one of the SSCP 
variants, indicating the presence of heterogeneity in 
exon 4. Based on the c. 25760691 C>G substitution, the 
identified variants were assigned CC, CG, and GG in 
homozygous C/C and G/G and the heterozygous C/G 
patterns of the 254th position PCR amplicons (Figure 
1). Based on polymorphism information content results 
(low polymorphism for PIC values less than 0.25, median 
polymorphism for PIC values between 0.25 and 0.5, and 
high polymorphism for PIC values >0.5), this study showed 
moderate polymorphism levels at the c. 25760691 C>G 
locus. When comparing polymorphisms of the FST gene 
to the HWE, the Chi-square test indicated a significant 
difference (P ≤ 0.05).

Genetic diversity analysis and genotyping analysis 
indicated the polymorphism in exon 4 of the FST gene in 
Awassi sheep. Several studies in livestock have examined 
FST gene variations. Ma et al. (2017) detected seven SNPs 
in the FST gene in Chinese Merino sheep ( Junken Type) 
using a sequencing analysis. Dushyanth et al. (2020) found 
polymorphisms in the coding regions (exons 2 and 5) 
of the FST gene in white leghorn chickens (PD-1) and 
Native American (Aseel) chickens. By using SNaPshot, 
Zhu et al. (2022) detected twenty-six single nucleotide 
polymorphisms (SNPs) and one deletion in UTRs of 186 
Dazu black goats. Unfortunately, there is a lack of literature 

on FST polymorphism in Awassi sheep. 

Figure 1: Genotyping and genetic diversity of the FST 
gene in Awassi ewes. Ho: observed heterozygosity; He: 
expected heterozygosity; Ne: effective allele frequency; 
PIC: polymorphism information content; χ2: Chi-square. 
All Chi-square tests have two degree of freedom and are 
within the significance level (P ≤ 0.05). 

In terms of the effects of FST genotypes on reproductive 
hormone levels, the three genotypes had significant 
differences (P ≤ 0.05) in reproductive hormone levels (Table 
1). Comparing twin-pregnant ewes to single-pregnant 
ewes, CC genotypes had higher estrogen, progesterone, 
and lower FSH levels (85.10 ± 3.11) (pg/ml), (8.82 ± 0.52) 
(ng/ml), and (13.95 ± 2.71) (ng/ml) as compared to CG 
and GG genotypes, respectively.

The present study demonstrated that CC genotype 
individuals in twin pregnancy had higher estrogen, 
progesterone, and lower FSH levels than CG and GG 
genotypes when compared with single-pregnant ewes. 
Therefore, the c. 25760691 C>G mutation negatively 
affected the reproductive hormones of Awassi ewes. 
Hormones have been implicated as regulators of 
multiple reproductive processes in mammals, including 
sheep. Hypothalamic-pituitary-gonadal (HPG) factors 
contribute to most of these reproductive processes 
( Juengel et al., 2018; Al-Thuwaini, 2022). At the anterior 
pituitary level, activin, follistatin, and inhibin factors are 
known to play a role in autocrine/paracrine regulation 
of anterior pituitary FSH secretion (Padmanabhan and 
Cardoso, 2020). In mammals, follistatin regulates oocyte 
maturation, follicular cell proliferation, differentiation, 
steroidogenesis, and corpus luteum function (Stangaferro 
et al., 2014). Activin-follistatin affects the production of 
gonadotropin receptors and steroids, which control antral 
follicle growth and differentiation (Tian et al., 2022). 
The amount of activin produced by a follicle decreases 
when it becomes a dominant follicle, while inhibin and
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Table 1: The association between FST genetic polymorphism and litter size with reproductive hormones levels during 
pregnancy and postpartum in Awassi ewes.
Hormones Geno-

types
Progeny type (LSM ± SE) P 

valueSingle (123) Twin (109)
4th Month 5th Month Post parturition 4th Month 5th Month Post-parturition

Estrogen 
(pg/ml)

CC 61.34 ± 3.16Ba 34.60 ± 2.04 Aa 41.98 ± 2.42 Aa 85.10 ± 3.11Aa 34.06 ± 3.02 Aa 43.71 ± 2.12 Aa 0.04
CG 48.32 ± 3.69 Bb 38.33 ± 2.45 Aa 42.21 ± 2.21 Aa 67.34 ± 1.65Ab 37.61 ± 2.45 Aa 43.87 ± 2.06 Aa 0.03
GG 29.74 ± 1.69 Bc 32.99 ± 2.33 Aa 45.41 ± 2.42 Aa 42.47 ± 1.42Ac 35.36 ± 2.31 Aa 40.36 ± 4.20 Aa 0.01

Progester-
one (ng/ml)

CC 6.15 ± 0.80 Ba 3.03 ± 0.43 Aa 2.69 ± 0.34 Aa 8.82 ± 0.52Aa 3.01 ± 0.33 Aa 2.66 ± 0.34 Aa 0.02
CG 3.29 ± 0.55 Bb 2.94 ± 0.33 Aa 2.61 ± 0.28 Aa 4.50 ± 0.35Ab 2.97 ± 0.16 Aa 2.70 ± 0.14 Aa 0.03
GG 2.72 ± 0.64 Bc 2.70 ± 0.19 Aa 2.68 ± 0.32 Aa 4.12 ± 0.42 Ac 2.78 ± 0.42 Aa 2.65 ± 0.27 Aa 0.02

FSH (ng/
ml)

CC 11.57 ± 2.97 Bc 17.21 ± 2.31 Aa 7.89 ± 1.28 Aa 13.95 ± 2.71Ac 18.35 ± 2.60 Aa 10.09 ± 2.07 Aa 0.04
CG 16.85 ± 1.78 Bb 19.08 ± 2.14 Aa 8.77 ± 1.43 Aa 17.56 ± 2.37Ab 18.23 ± 2.34 Aa 9.13 ± 1.96 Aa 0.02
GG 19.25 ± 2.52 Ba 19.36 ± 1.78 Aa 9.10 ± 1.53 Aa 21.92 ± 1.89Aa 17.08 ± 2.22 Aa 9.79 ± 2.11 Aa 0.02

LH(ng/ml) CC 11.37 ± 0.32 Aa 10.49 ± 0.28 Aa 8.54 ± 0.14 Aa 11.84 ± 0.24Aa 10.41 ± 1.11 Aa 8.46 ± 0.07 Aa 0.13
CG 10.72 ± 0.22 Aa 10.97 ± 0.13 Aa 8.62 ± 0.17 Aa 10.87 ± 0.16Aa 10.89 ± 0.13 Aa 8.57 ± 0.05 Aa 0.24
GG 10.46 ± 0.25 Aa 10.12 ± 0.16 Aa 8.41 ± 0.20 Aa 10.32 ± 0.21 Aa 10.74 ± 0.09 Aa 8.34 ± 0.01 Aa 0.35

LSM ± SE, Least square means ± Standard error. A, B different capital letters indicate a significant difference in the raw within each 
classification (P ≤0.05). a, b different lowercase letters indicate a significant difference in columns within each classification (P ≤0.05).

follistatin are produced (Muttukrishna et al., 2004; Tian et 
al., 2022). Additionally, follistatin inhibits FSH secretion 
by inhibiting activins’ internalization and degradation, 
which reduces their bioavailability (Cash et al., 2009). 
Follistatin is recognized first as an inhibitor of the FSH 
(Zheng et al., 2017). The administration of recombinant 
human follistatin to sheep has been shown to suppress 
FSH concentrations but not luteinizing hormone (LH), 
according to Padmanabhan and Sharma (2001).

Based on the results of the FST gene association study, 
twin-pregnant ewes with a CC genotype showed higher 
estradiol, progesterone, and lower FSH levels in comparison 
to single-pregnant ewes. The reason behind this is that 
follistatin plays a crucial role during development and early 
neonatal life and during pregnancy in sheep (McFarlane 
et al., 2002). According to the study by Lee et al. (2009), 
follistatin treatment accelerates development to the 
blastocyst stage in early embryos, suggesting that follistatin 
derived from the oocyte is crucial for determining the 
competence of oocytes in cattle. O’Connell et al. (2016) 
reported that activin and follistatin work on numerous 
reproductive processes, including luteinization to facilitate 
luteinization, and implantation of the conceptus. In 
mammals, the deletion of the follistatin gene causes various 
fertility defects that include reduced litter size, impaired 
fertilization and ovulation, and elevated levels of FSH and 
LH ( Jorgez et al., 2004). As a result, a lower frequency of 
c. 25760691 C>G is associated with better reproductive 
traits in Awassi ewes. Therefore, the current study in the 
Awassi breed explains the superiority of CC genotype in 
twin-pregnant ewes compared to single-pregnant ewes.

CONCLUSIONS AND 
RECOMMENDATIONS

Genetic variations in the FST gene were linked to 
reproductive hormone levels in Iraqi Awassi sheep. These 
results suggest that FST gene polymorphism contributes to 
sheep reproductive traits. It is crucial to select sheep with 
CC genotypes and conduct future studies to determine 
whether this gene is associated with high prolificacy.
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