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INTRODUCTION

The percentage of metabolic diseases and health 
complications increases in the transition period. 

Reduction of Ca occurs due to an increased calcium 

excretion in the colostrum, delay within the absorption of 
Ca from GIT and bone mobilization at parturition (Diehl 
et al., 2018). Acute and severe hypocalcemia happens once 
Ca loses 1.9 to 2.8 g/kg of colostrum (Bojkovski et al., 
2005; Abd El-Fattah et al., 2012) and 1.1 g/kg of milk 
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conclusion, feeding negative DCAD in the late gestation period improves the performance and productivity of dairy 
cows by increasing blood minerals and milk production.
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(Tsioulpas et al., 2007). Preserving Ca level depends on 
the rate of gastrointestinal Ca absorption (Martin-Tereso 
and Verstegen, variations are constrained by parathyroid 
hormone (PTH) and calcitriol (1, 25 dihydroxy vitamin D3), 
which are viewed as the principal Ca regulatory hormones 
in mammals. Calcium homeostasis in periparturient dairy 
cattle is driven principally by the balance between, iCa 
admission (a function of the calcium content of the diet 
and feed intake), Ca absorption from the gastrointestinal 
tract, Ca mobilization from accessible stores and Ca lost to 
the fetus, colostrum, bone accretion, and urinary excretion 
(Martin-Tereso and Verstegen, 2011). Feeding negative 
DCAD ration prepartum stimulated Ca absorption 
and mobilization, thus preventing hypocalcemia, and 
maintained DMI and increased milk production after 
parturition (DeGroot et al., 2010). Accordingly, several 
studies were conducted to characterize the change in 
serum [Ca] in periparturient multiparous Holstein- 
Friesian cows fed a negative DCAD ration in the close-up 
period reposing beneficial effects for lactating dairy cows 
immediately after calving (El-Sheikh et al., 2002; Chan et 
al., 2005; Hu et al., 2007b). Therefore, the objectives of this 
study were to determine the effect of feeding a diet with 
different levels of negative DCAD on the concentration of 
mineral elements, acid-base balance, calcium homeostasis, 
milk production, and health status in dairy cows.

MATERIALS AND METHODS

experiMentAl desiGn
On day 21 before the estimated parturition date, cows 
were assigned to 1 of 2 treatment groups: Group 1 had 24 
cattle were fed an acidogenic TMR with negative-DCAD 
(dietary cation-anion difference) = −50 mEq/100 g of DM 
mEq/100g of matter, where DCAD = ([Na+] + [K+]) – 
([Cl–] + [S2–]) based on formulations recommended by 
the National Research Council for close-up cows (Table 
1). Group 2 included 24 control cows that fed the ration 
without DACD(CONT). Multiparous Cattle were fed an 
acidogenic close-up ration starting 3 wk before parturition. 
The ration was fed three times daily (every 8h). Cows 
in both\groups were switched to a lactating cow TMR 
immediately after parturition based on the formulation 
recommended by NRC for fresh cows. The time of calving 
was recorded to the nearest hour, and the calf and dam 
separated within a few hours of parturition. Calf birth 
weight was determined as described previously (Hiew 
et al., 2016). Cows were kept in temperature-controlled 
individual box stalls for 3 d after parturition or until they 
had recovered from any postpartum health disorders 
before being moved to a free-stall barn for lactating cows. 
After parturition, cows were milked three times daily 
every 8 h, in a milking parlor. Daily milk production was 
recorded.

Table 1: Ingredients of the ration for close-up, fresh cows, 
and control diet.
Ingredients Kg/day Kg/day %

(DM) (As-Fed) (DM)
Close-up
Corn grain, cracked 2.39 2.75 19.46
Soybean meal, solv. 44% CP 1.81 2.00 14.72
Wheat bran 0.89 1.00 7.24
Vitamin premix 1 0.04 0.05 0.36
Sod. bicarbonate 0.00 0.00 0.00
Calcium phosphate 0.06 0.06 0.49
Magnesium oxide 0.00 0.00 0.00
Salt 0.02 0.02 1.16
Alfalfa meal, 17% CP 1.35 1.50 10.98
Beet Pulp 0.46 0.50 3.74
Vegetable oil 0.05 0.05 0.40
Calcium chloride 0.11 0.11 0.89
Limestone 0.16 0.16 1.27
Zinc 0.00 0.00 0.00
Silage 4.95 16.50 40.26
Fresh
Corn grain, cracked 5.44 6.25 23.38
Soybean, meal, solv.44% CP 4.16 4.60 17.90
Wheat bran 1.29 1.45 5.55
Vitamin premix 1 0.07 0.07 0.28
Sodium bicarbonate 0.20 0.20 0.85
Calcium phosphate (mono-) 0.05 0.05 0.21
Magnesium oxide 0.05 0.05 0.21
Salt 0.09 0.09 0.38
Alfalfa meal, 17% CP 4.05 4.50 17.41
Beet pulp 0.00 0.00 0.00
Vegetable oil 0.51 0.52 2.19
Calcium chloride 0.00 0.00 0.00
Limestone 0.00 0.00 0.00
Zinc 0.01 0.01 0.03
Silage 7.35 24.50 31.60
Control
Corn grain, cracked 1.2375 1.375 16.86
Soybean meal, solv. 44% CP 0.225 0.25 3.07
Wheat bran 0.2975 0.35 4.05
Vitamin premix 1 0.04 0.05 0.54
Sod. bicarbonate 0.00 0.00 0.00
Calcium phosphate 0.06 0.06 0.82
Magnesium oxide 0.00 0.00 0.00
Salt 0.02 0.02 0.27
Alfalfa meal, 17% CP 1.35 1.50 18.39
Beet pulp 0.46 0.50 6.27
Vegetable oil 0.05 0.05 0.68
Calcium chloride 0.00 0.00 0.00
Limestone 0.00 0.00 0.00
Zinc 0.00 0.00 0.00
Silage 3.6 12 49.05
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AniMAls, housinG, And FeedinG
Fourty-Eight multiparous periparturient Holstein-Friesian 
cows (4-7y old) from private dairy farm in Sharqia (out of 
a total of 150 dairy cows) were fed on DCAD ration. The 
study was conducted between January 2020 and May 2020. 
All cows were kept in free-stall barns and under similar 
environmental conditions. Enrolled cows were moved from 
the outdoor to temperature-controlled individual box stalls 
(3.1 ×3.1 m) 21 days before the estimated parturition date. 
All enrolled cows underwent a daily routine health check 
including a California mastitis test for subclinical mastitis 
detection and all animals were deemed healthy. Access to 
clean water was maintained at all times at libitum.

experiMentAl studY And sAMplinG
Urine and blood sampling were performed daily between 
09:00 and 11:00 h with the animal gently restrained in 
a headlock. Mid-stream urine samples were collected by 
perineal stimulation into a 20-mL plastic collection cup 
on d −1, 0, +1, and +2 relative to calving (d 0). The vials 
were completely filled with urine and immediately closed 
to minimize exposure to air. Urine samples were then 
placed in a water bath at 38°C and urine pH was measured 
within 15 min of collection using a pH meter (Orion 20A, 
Thermo Electron Corp., Beverly, MA). Urine samples were 
stored at −20°C for further analysis. Blood samples were 
obtained daily at approximately 08:00 h from the jugular 
vein on d −1, 0, 1 and 2 relatives to calving using 20-gauge 
Vacutainer needles, Vacutainer holders, and 10-mL plan 
blood collection tubes (BD Diagnostics, Franklin Lakes, 
NJ). The proposed puncture site at the side of the neck was 
cleared of debris by swabbing the site with gauze containing 
70% isopropyl alcohol. Blood samples were centrifuged for 
5 min at 1,300 × g within 30 min of collection.

ethicAl ApprovAl
This longitudinal observational study used a convenience 
sample of per parturient multiparous dairy cattle. The 
study design and protocols were performed under the 
owner’s consent, approval of the Internal Ethics Review 
Committee of Faculty of Veterinary Medicine, Benha 
University, Benha city, Egypt (No: BUFVTM 11-02-22).

urine And seruM biocheMicAl AnAlYsis
Stored urine samples were thawed at room temperature 
and vortexed for 10 s immediately before biochemical 
analysis. Urine concentrations of Ca (cresolphthalein), 
and creatinine (picric acid) concentrations were 
determined spectrophotometrically (BioTek Instruments 
Inc., Winooski, VT, USA) at the Veterinary Diagnostic 
Laboratory, Faculty of Veterinary Medicine Benha 
University, Egypt. Urine Ca excretion (g/d) for each 24-h 
period was calculated from two days prepartum to two days 
postpartum using the measured urine Ca concentration 

(urine Ca expressed in mg/dL), measured urine creatinine 
concentration (urine creatinine, expressed in mg/dL).

seruM biocheMicAl AnAlYsis
All continuous data were evaluated for normal distribution 
or homogeneous variances. Log-transformation was used 
for data that deviated from normality. Data are expressed 
as mean ± stadard deviation and P < 0.05 was assigned as 
statistically significant. To test the effects of treatment (2 
levels) and time (3 levels), and the interaction between 
treatment and time, with cow nested within treatment, 
repeated-measures ANOVA was used using the MIXED 
procedure of SAS version 9.4 (SAS Institute Inc., Cary, NC, 
USA). Whenever the F-test was significant, Bonferroni-
adjusted P-values were used to assess differences between 
two treatment groups at a specific time and between times 
within a treatment group.

RESULTS

eFFect oF dcAd rAtion on urine ph, urine 
creAtinine, And urine cA
The data in the Table 2 showed that: Cows fed DCAD 
ration showed a significant decrease (P<0.001) in urine 
pH at –1 day compared to non-DCAD group at the same 
time period (Table 2, Figure 1). Urine creatinine showed 
non-significant changes before parturition (-1 day), and 
after parturition (+1 day) in cows fed DCAD ration, 
While urine creatinine in NON DCAD group showed a 
significant decrease (P<0.001) before parturition (-1 day) 
compared to zero day but a significant increase (P<0.0001) 
after parturition (+1 day) and (+2 day) compared to DCAD 
group (Table 2, Figure 2).Urine Ca execration showed a 
significant increase before parturition (-1 day) at group 
fed DCAD ration, compared to the NON-DCAD group 
(Table 2, Figure 3).

Table 2: Changes in urine pH, urine Ca, urine creatinine 
during -1,0,1,2 peripartum day in multiparous dairy cattle 
fed acidogenic and non-acidogenic diets.
Group Day-

spp
Urine pH urine Ca Urine 

creatinine
DCAD -1 6.6±0.17b 36.59±0.78a* 30.61±0.63a

DCAD 0 7.30±0.51a 20.74±0.67b 33.71±1.44a

DCAD 1 7.36±0.20a 15.87±3.05b 31.54±4.12a

DCAD 2 7.7±0.26a* 13.21±2.23b 16.46±0.76b
Non-DCAD -1 7.9±0.00a* 12.82±0.16b 37.06±1.29b
Non-DCAD 0 7.66±0.05a 22.23±0.38a 45.08±4.02a*
Non-DCAD 1 7.73±0.64a 16.15±0.59b 53.36±2.49b*
Non-DCAD 2 7.56±0.40a 14.93±0.27b 48.40±0.96b*

a-b Values with different letters within a column are significantly 
different between zero and other time points for each type of 
diet (P<0.05). significant increase of Ca in urine occurs at -1 
day before parturition. * Values within a column are significantly 
different between same time points at different diets (P<0.05).
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Figure 1: A diagram showing Urine pH for DCAD 
and NON-DCAD of Holstein- Friesian cattle. There is 
significant reduction in urine pH at group fed acidogenic 
diet.

Figure 2: Urine Creat concentration for DCAD and 
NON-DCAD of Holstein- Friesian cattle.

Figure 3: Urine Ca concentration for DCAD and 
NON-DCAD of Holstein- Friesian cattle. 

Figure 4: Serum Ca for DCAD and NON-DCAD of 
Holstein- Friesian cattle. DCAD increases the level of Ca, 
compared to non-DCAD group.

eFFect oF dcAd rAtion on blood MinerAls, 
bicArbonAte, ureA And creAtinine
The data in Table 3 showed that serum Ca concentration 
(Figure 4) showed a significant increase (P<0.05) before and 
after parturition at the DCAD group, compare to NON-
DCAD group. Serum P concentration (Figure 5) showed 
a significant increase (P<0.05) before and after parturition 
at group fed DCAD ration, compared to the NON-DCAD 
group. Serum Mg concentration showed a significant in-
crease (P<0.05) before and after parturition at group fed 
DCAD ration, compared to the NON-DCAD group. Serum 
Na concentration (Figure 6) showed a significant increase 
(P<0.05) before and after parturition at group fed DCAD 
ration, compared to the NON-DCAD group. Serum K con-
centration (Figure 7) showed a significant increase (P<0.05) 
before and after parturition at group fed DCAD ration, com-
pared to the NON-DCAD group. Serum Cl concentration 
(Figure 8) showed a significant increase (P<0.05) before and 
after parturition at group fed DCAD ration, compared to the 
NON-DCAD group. Serum Bicarb concentration (Figure 9) 
showed significant decrease (P<0.05) at group fed DCAD ra-
tion before and after parturition, compared to NON-DCAD 
group. Serum urea concentration (Figure 9) showed a signif-
icant increase (P<0.05) before parturition (-1 day), compared 
to the NON-DCAD group. Serum creatinine (Figure 10) 
concentration increased significantly before parturition (-1 
day) and decreased after parturition (+1 day) at group fed 
DCAD ration compared to NON-DCAD group (Table 3).

eFFect oF dcAd rAtion on MilK production 
And cAlF weiGht
The data in Table 4 showed non-significant change in the 
weight of the calf between the two groups (Figure 12). 
The Milk production (Figure 13) showed a significant in-
crease at group fed DCAD ration compared to the NON-
DCAD group.
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Table 3: Changes in blood minerals, bicarbonate, urea and creat during -1,0,1,2 peripartum day in multiparous dairy 
cattle fed acidogenic and non-acidogenic diets.
Parameters DCAD group Non-DCAD group

-1day 0 day 1 day 2 day -1 day 0 day 1 day 2 day
Ca (mg/dl) 10.33±0.19b* 9.06±0.09b* 10.46±0.45b* 11.05±0.50a* 7.47±0.42a 6.6±01.10a 7.8±0.06a 7.8±0.06a

P (mg/dl) 5.58±0.56b* 4.85±0.06b* 6.43±0.21a* 6.9±0.13a* 3.61±0.03a 3.06±0.10b 4.05±0.05a 4.55±0.05a

Mg (mg/dl) 3.79±0.09b* 2.81±0.13b* 3.5±0.07a* 3.77±0.10a* 1.36±0.37a 1.03±0.27a 2.05±0.27a 2.75±0.27a

Na (mEq/l) 144.01±4.74a* 133.61±3.54a* 141.90±3.87a* 154.49±2.25a* 127.95±0.66b 124.90±1.17b 131.25±0.72a 131.1±1.83a

K (mEq/l) 5.02±0.62a* 4.56±0.12b 5.24±0.09a 5.54±0.30a 4.06±0.07a 3.53±0.04a 3.85±0.05a 3.93±0.04a

Cl (mEq/l) 120.84±1.67a* 100.19±1.75a* 124.28±1.66a* 126.77±1.56a* 100.08±0.08a 92.16±1.28b 98.01±0.23a 99.76±0.49a

Bicarb(mg/dl) 27.38±3.61b 30.88±0.69b 33.53±2.15a 34.64±1.90a 30.60±0.53b* 32.77±1.27b* 35.95±0.43a* 36.94±0.55a

Urea (mg/dl) 51.69±6.84b* 62.45±0.59a 41.72±0.45b* 31.76±0.46b 47.15±1.55b 72.04±1.56a* 37.01±0.06b 32.46±2.45b

Creat (mg/dl) 2.47±0.45a* 2.71±0.07a 1.46±0.17b* 0.94±0.05b 1.85±0.04b 2.90±0.05a 0.86±0.03b 0.81±0.15b

a-b Values with different letters within a column are significantly different between zero and other time points for each type of diet 
(P<0.05). * Values within a column are significantly different between same time points at different diets (P<0.05).

Table 4: Calf weight, Milk weight during 0, 1, 2, -1 
peripartum day in multiparous dairy cattle fed acidogenic 
and non-acidogenic diets.
Group Dayspp Calf weight (Kg) Milk weight (Kg)
DCAD -1 - -
DCAD 0 40±5a 30.33±0.57a*
DCAD 1 40±5b 32.66±0.57a*
DCAD 2 40±5a 34.66±0.57b*
Non-DCAD -1 - -
Non-DCAD 0 41.66±1.52a 21.66±1.52a

Non-DCAD 1 41.66±1.52a 23.33±1.15a

Non-DCAD 2 41.66±1.52a 25.0±5.55a

a-b Values with different letters within a column are significantly 
different between zero and other time points for each type of 
diet (P<0.05). * Values within a column are significantly different 
between same time points at different diets (P<0.05).

Figure 5: Serum phosphorus concentration for DCAD 
and NON-DCAD of Holstein- Friesian cattle.

DISCUSSION

One of the recurring problems in dairy farms, especially 
those with high production Holstein-Friesian cows, is the 
emergence of Ca deficiency cases, in late gestation. One of 
the ways that dairy farms help reduce cases of hypocalcemia

Figure 6: Serum Na concentration for DCAD and 
NON-DCAD of Holstein- Friesian cattle.

Figure 7: Serum potassium concentration for DCAD 
and NON-DCAD of Holstein- Friesian cattle.

Figure 8: Serum Chlorid Concentration for DCAD 
and NON-DCAD of Holstein- Friesian cattle.
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Figure 9: Serum bicarbonate concentration for DCAD 
and NON-DCAD of Holstein- Friesian cattle.

Figure 10: Serum urea concentration for DCAD and 
NON-DCAD of Holstein- Friesian cattle.

Figure 11: Serum creatinine concentration for DCAD 
and non-DCAD of Holstein- Friesian cattle, showing 
significant increase in DCAD group group compared to 
non-DCAD group at -1 day.

Figure 12: Calf Wt for DCAD and NON-DCAD of 
Holstein- Friesian cattle, showing non-significant change.

Figure 13: Milk kg for DCAD and NON-DCAD of 
Holstein- Friesian cattle, showing significant increase in 
milk production in DCAD group.

in multiparous cattle is to use Negative DCAD diets, which 
increase blood calcium concentrations postpartum. That 
leads to enhance health outcomes, improved production, 
and reproduction. The discovery of improved turnover can 
stimulate systemic acidsis. In addition, (Goff et al., 2014) 
state that dietary metabolic acidosis activates the PTH 
vitamin D axis, increasing intestinal Ca absorption and 
renal Ca reabsorption. This study found that prepartum 
feeding of the DCAD diet on dairy farms reduced urinary 
pH and increased urinary Ca excretion. Moore et al. 
(2000); Charbonneau et al. (2006) reported that increased 
acidity in the diet leads to mild compensatory metabolic 
acidosis that lowers urinary pH. Aciduria is caused by an 
excessively acidic diet that causes excessive proton excretion 
in the urine. The decrease in urine pH at peripartum 
intervals observed in this study is consistent with previous 
findings that urinary pH in cows fed an acidogenic diet 
in the late dry season did not change until 12- 24 hours 
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after parturition (DeGaris and Lean, 2008; Grünberg 
et al., 2011). Elevated H + levels in the distal tubules 
block the ability of Ca receptors to reabsorb Ca, causing 
hypercalcemia (Zahed and Chehrazi, 2017). This study 
found that feeding a DCAD diet reduced levels of HCO3. 
(Oberleithner et al., 1982) stated that there was less iCa 
complex with bicarbonate, resulting in more iCa available 
in the blood (Roche et al., 2003), with changes in urinary 
pH. By changing changes in blood pH, the kidneys play 
an important role in minimizing this change by making 
urine pH alkaline, excreting more HCO3-, and conserving 
H +. The feeding of the DCAD diet before parturition 
in dairy cows helps to reduce cases of hypocalcemia in 
periparturient Holstein-Friesian cows. Charbonneau 
et al. (2006) said that feeding an acidogenic diet lowers 
the decrease in serum calcium 24 hours after parturition 
and reduces the incidence of prepartum and postpartum 
hypocalcemia from 16.4% to 3.2%. As a result, the serum 
calcium concentration before and after parturition was 
significantly increased in the DCAD distribution group 
compared to the NON-DCAD group. El-Sheikh et al. 
(2002) and Couto-Serrenho et al. (2021) found that a 
negative prepartum DCAD diet increased postpartum 
serum Ca levels and reduced the incidence of mastitis, 
abomasum dislocation, and clinical mastitis (Reinhardt et 
al., 2011; Miltenburg et al., 2016). Negative relationship 
between serum Ca before and after confinement, (Espino 
et al., 2003) maintains the ability of bovine Ca homeostasis 
obtained by acidification promoting the mobilization 
by removing calcium from bone (Goff, 2000; Espino 
et al., 2003) by promoting the action of PTH on bone 
and kidney or by the role of bone in buffering. This study 
found that prepartum feeding an acidogenic diet increased 
serum P levels before and after parturition (Ramos-Nieves 
et al., 2009). Agree with some previous studies (Ramos-
Nieves et al., 2009; Vieira-Neto et al., 2021). Recently, it 
was reported that serum P concentration was negatively 
correlated with urinary pH (Vieira-Neto et al., 2021). 
However, these results reports are in contrast to previous 
studies that reported a direct association between DCAD 
reduction and P concentration (Castro et al., 2004). As 
mentioned earlier, metabolic acidosis and cystinuria 
promote renal Pi loss, so take an acidogenic diet before 
parturition (Grünberg et al., 2011). This study found that 
feeding a prepartum acidogenic diet increased serum Mg 
levels around calves (Goff, 2008). Similarly, in this study, 
high serum Mg levels in cattle fed an acidogenic diet were 
observed in previous studies (Goff and Horst, 2003; Farnia 
et al., 2018; Megahed et al., 2018; Rodney et al., 2003, 
2018). Transient hypermagnesemia is most often due to 
increased renal Mg reabsorption in response to decreased 
blood Ca levels that stimulate PTH release (Rodney et al., 
2018). Interestingly, cows fed an acidogenic diet showed 
increased serum Na and K levels around the calf compared 

to NON-DCAD cows. Metabolic acidosis has a dual 
effect on electrolyte balance, and increased electrolyte 
levels around calves are likely to be of renal origin (Stacy 
and Wilson, 1970). High serum levels in DCAD cattle 
are likely due to high Cl content in low DCAD diet 
(El-Sheikh et al., 2002; Grünberg et al., 2011). Renal 
function indices which includes serum urea and creatinine 
used to evaluate the functional integrity of the kidney, 
with expanded values being a demonstration of defective 
functional state (Yakuba et al., 2003). Linearly multiplied 
serum urea and the tendency to linearly increase creatinine 
concentrations found on this study also additionally mean 
some degree of renal toxicity imposed by negative DCAD. 
The urinary pH to as little as 5.5. By decreasing the pH 
from ordinary values 8.5 to values near 5.5 (3 Ph units), an 
immoderate load is imposed at the kidneys, as they need 
to excrete 1,000 instances the extra H+ produced by the 
body (Goff, 2018). The most negative DCAD also caused 
some indications of liver and kidney damage. This study 
found that feeding a prepartum acidogenic diet increased 
postpartum milk yield in calves (DeGroot et al., 2010). 
Postpartum (Puntenney, 2006) stated that acidifying the 
diet before parturition reduces the incidence of clinical 
and asymptomatic hypocalcemia and increases postpartum 
DMI and milk yield.

CONCLUSION

Feeding diets-induced mild metabolic acidosis during the 
close-up period enhances minerals homeostasis around 
calving, particularly calcium level, DCAD diet also 
enhanced milk production in dairy cattle fed acidogenic 
diet in late gestation. However, mild adverse effect on 
kidney function was detected. Further investigation on 
required adjust the doses of DCAD for dairy cows to 
overcome this effect.
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