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INTRODUCTION 

Agricultural waste contributes to pollution issues as 
a result of ineffective management. Many countries 

invest in research and development to benefit from 

agricultural waste under the bio, circular, and green 
economy concepts. Asparagus has received increasing 
popularity from consumers due to its distinct flavor, 
low calories, and presence of beneficial phytochemicals. 
Asparagus is a great source of prebiotics. Fructans and 
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dietary fiber are responsible for the healthy properties of 
asparagus spear consumption (Majumder et al., 2017). 
During the processing, the asparagus spears are trimmed 
for the quality parts, which is accounted for 60%-70% 
of the whole plant. The trimmed asparagus by-products 
(TABP) and unqualified asparagus are discarded in general 
practices. The edible portion of asparagus has fructans 
approximately 0.5%-2% (dry weight) depending on the 
variety. Furthermore, fructans reserve polysaccharides that 
accumulate in the roots of the asparagus and account for 
approximately 25% of the fresh weight (Singh and Singh, 
2010; Viera-Alcaide et al., 2020). Previous research has 
shown that asparagus extract has a positive effect on the 
growth of lactic acid bacteria (Majumder et al., 2017). 
It has been demonstrated that asparagus promotes the 
growth of beneficial bacteria.

Poultry production with food safety was a difficult issue for 
industrial production systems that prioritize productivity 
and yield. After the European Union announced the 
elimination of antibiotics in animal feed in 2006 and the 
United States announced a voluntary plan to phase out 
antibiotics in feed in 2013 (Wang et al., 2016). However, 
the appearance of antibiotic resistance in pathogens 
identified as public health risks has resulted in the reduction 
or prohibition of routine antibiotic supplementation for 
agricultural use in several parts of the world (Ricke et al., 
2020). The ultimate goal of broiler diet development is 
improved nutrient digestibility, increased feed utilization, 
reduced feed costs, and minimized nutrient release into the 
environment. Nutribiotics such as probiotics, prebiotics, 
phytobiotics, and synbiotics are alternative feed additives 
that are used to solve such problems. Synbiotics are created 
by combining prebiotics and probiotics as they have a 
synergistic effect to improve productive performance, 
promote the activity of beneficial gut micro bacteria, and 
decrease ammonia release (Audrey et al., 2020). Prebiotics 
are food components that selectively stimulate the growth 
and activity of probiotics. They are non-digestible food 
ingredients composed of short-chain carbohydrates, 
primarily oligosaccharides such as fructooligosaccharides 
(FOS), and inulin (Sugiharto, 2016). Probiotics are live, 
nonpathogenic microorganisms including yeast, Bacillus 
sp., Lactobacillus sp., Bifidobacterium, and others (Bai et 
al., 2017). The lower gastrointestinal tract is a community 
of microorganisms that play an important role in the 
host’s gut health and digestion efficiency. Thus, microbial 
balance in the gastrointestinal tract affected the efficient 
fermentation process in the lower gut. It affects the 
formation of short-chain fatty acids, which promote the 
development of intestinal epithelial cells for increased 
absorption and bird growth. Hutsko et al. (2016) described 
the ability of synbiotics to improve the ecological balance of 
the gut. In addition, synbiotics provide numerous benefits, 
including inhibiting of colonization of pathogens (Wang 

et al., 2016), enhancing nutrient digestibility (Palamidi et 
al., 2016), improving gut integrity, immune function, and 
strengthening intestinal absorption cells (Hu et al., 2022), 
promoting health, and enhancing growth performance 
(Mohammed et al., 2018). 

According to the previous study of Nopparatmaitree et 
al. (2022), TABP supplementation can improve intestinal 
ecology, productivity, and provide chicken meat with 
beneficial properties. However, no research has been 
conducted to describe synbiotics derived from the use 
of asparagus by-products in broiler diets with beneficial 
microorganisms. Therefore, additional research is required 
to assist in guiding the recycling of asparagus waste for use 
as synbiotics in bird diets. The main idea of this research will 
lead to an explanation of the synergism of synbiotics from 
the combination of prebiotics from TABP and probiotics 
as feed additives for the improvement of feed utilization 
efficiency, gut ecology, and broiler productivity as well as 
the addition of value from agricultural waste and biological 
base for maximum benefit. This experiment was conducted 
to determine the effects of synbiotic supplementation 
from TABP combined with probiotics in broiler diets on 
the digestibility, cecal microorganisms, small-intestine 
histomorphology, productive performance and economic 
benefit return.

MATERIALS AND METHODS 

ethical approval 
The Animal Care Protocol Management and Review 
Committee of Silpakorn University’s Faculty of Animal 
Science and Agricultural Technology approved the 
protocol for this study (record no. ASAT SU0101/2562).

experiMental product
TABP were collected from the Royal Project of His 
Majesty the King of Thailand, Hup-krapong, Cha Am 
district, Phetchaburi province. TABP were sliced and oven-
dried at 60oC for three days. Then, dried TABP was ground 
by pulverizing machine (RT-34, Chyuntseh industrial 
CO., LTD.) to achieve uniform granules of 2 mm. The 
chemical composition of TABP was analyzed according to 
AOAC (2005), as well as FOS content was determined 
using thin-layer chromatography (TLC) according to 
Reiffová and Nemcová’s (2006). The results of TABP 
nutrient composition are as followed; 86.80% dry matter 
(DM), 18.50% crude protein (CP), 0.61% ether extract 
(EE), 37.62% crude fiber (CF), 90.77% organic matter 
(OM), 2175.23 kcal/kg gross energy (GE), 0.10% calcium, 
0.66% phosphorus and 1.84% FOS. The probiotics used 
in this trial contained of Lactobacillus acidophilus (10 Log 
cfu/g), Lactobacillus plantarum (10 Log cfu/g), Pediococcus 
pentosaceus (10 Log cfu/g), Streptococcus faecium (10 Log 
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cfu/g), Saccharomyces cerevisiae (10 Log cfu/g), Bacillus 
subtilis (10 Log cfu/g), and Bacillus licheniformis (10 Log 
cfu/g) and an added carrier to complete 1 kg.

experiMental design, Birds, and diets
In a completely randomized design with four treatments 
and four replications, with 20 birds per experimental 
unit, 320 one-day-old Ross 308® chicks (160 male and 
160 female) were distributed. The chicks were vaccinated 
against Marek’s disease in the hatchery, but vaccinations 
against infectious bronchitis and Newcastle were given at 
7 and 14 days. The following are the treatments:
• Treatment 1 = Control diet without supplementation 

(base diet)
• Treatment 2 = Control diet + Supplementation of 10 

g/kg of TABP combine with 2 g/kg probiotics

• Treatment 3 = Control diet + Supplementation of 30 
g/kg of TABP combine with 2 g/kg probiotics

• Treatment 4 = Control diet + Supplementation of 50 
g/kg of TABP combine with 2 g/kg probiotics

The birds were fed ad libitum drinking water, as well as a 
starter (0–21 days) and finisher (22–35 days) diets designed 
in accordance with the recommendations of the National 
Research Council (1994) (Table 1). 

nutrient digestiBility 
Another 32 birds (several days old) were placed in 16 cages 
with wired bottoms (two birds per cage). The indicator 
method was used to assess the nutrient digestibility 
in broilers over two periods, namely, adaptation (0–18 
days) and collection periods (19–21 days), following 
the methoddescribed by Fenton and Fenton (1979). 

Table 1: Ingredient composition and nutritive value of experimental diet.
Experimental diet* Starter diet (0-21 day) Finisher diet (22-35 day)

T1 T2 T3 T4 T1 T2 T3 T4
Ingredient composition (%)
Corn 49.50 48.50 49.50 49.50 46.92 46.92 46.92 46.92
Soybean meal(44%CP) 36.50 36.32 35.96 35.60 30.90 30.72 30.36 30.00
TABP1 - 1.00 3.00 5.00 - 1.00 3.00 5.00
Probiotics2 - 0.20 0.20 0.20 - 0.20 0.20 0.20
Defatted rice bran 8.00 7.18 5.54 3.90 12.50 11.68 10.04 8.4
Rice bran oil 1.70 1.70 1.70 1.70 5.56 5.56 5.56 5.56
Limestone (CaCO3) 1.35 1.35 1.35 1.35 1.20 1.20 1.20 1.20
DCP (18%P) 2.10 2.10 2.10 2.10 1.90 1.90 1.90 1.90
Choline Chloride-L 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
NaCl 0.14 0.14 0.14 0.14 0.23 0.23 0.23 0.23
DL-Methionine (99%) 0.34 0.34 0.34 0.34 0.28 0.28 0.28 0.28
L-lysine (98.5%) - - - - 0.22 0.22 0.22 0.22
L-Threonine (98.5%) 0.15 0.15 0.15 0.15 0.06 0.06 0.06 0.06
Premix3 0.20 0.20 0.20 0.20 0.02 0.02 0.02 0.02
Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Nutritive value from laboratory analysis (%)
Dry matter 90.35 90.31 91.02 90.67 91.13 90.76 90.87 90.49
Crude protein 23.56 23.91 23.71 23.57 20.49 20.36 20.41 20.33
Ether extract 5.39 5.23 5.60 5.00 5.51 5.30 5.52 5.63
Crude fiber 4.26 4.19 4.31 4.49 3.54 3.79 4.87 4.90
Ash 8.11 7.93 7.36 6.35 6.82 7.10 6.61 7.31
Metabilizable energy (Kcal/kg) 4,079.30 4,033.60 4,012.30 4,073.90 4,089.60 4,069.90 4,148.90 4,082.00

*T1: ration without TABP, T2: ration + 10 g/kg TABP powder; T3: ration + 30 g/kg TABP powder, and T4: ration + 50 g/kg TABP 
powder. 1TABP = Trimmed asparagus by-products; 2Probiotics used in this trial contained of Lactobacillus acidophilus (10 Log cfu/g), 
Lactobacillus plantarum (10 Log cfu/g), Pediococcus pentosaceus (10 Log cfu/g), Streptococcus faecium (10 Log cfu/g), Saccharomyces 
cerevisiae (10 Log cfu/g), Bacillus subtilis (10 Log cfu/g), and Bacillus licheniformis (10 Log cfu/g) and an added carrier to complete 1 
kg; 3Each one kilogram of vitamin–mineral premix contained 20.02 MIU of retinal palmitate, 9.10 MIU of cholecalciferol, 136.50 g 
of DL-3-tocophyryl acetate, 5.46 g of phylloquinone, 5.46 g of thiamine, 14.56 g of riboflavin, 27.30 g of Ca-D-pantothenate, 7.28 
g of pyridoxine, 109.20 g of niacin, 3.64 g of folic acid, 29.12 mg of cobalamin, 237.00 mg of D-biotin, 120 g of manganese, 3.00 g 
of selenium, 1,000 mg of zinc, 160.00 mg of copper, 400.00 mg of ferrous, 12.50 g of iodine.
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The diets were supplemented with chromic oxide at a rate 
of 3 g/kg diet as an analytical marker for measurement. 
The birds were fed with a chromic oxide diet for 0–21 days, 
and their feces were collected in 3% H2SO4 in a plastic bag 
and stored at −20℃ until the time of analysis for nutrient 
retention, as described by Mountzouris et al. (2010), to 
determine the nutrient digestibility; the feed and feces were 
dried at 60℃ and then analyzed (AOAC, 2005). Standard 
methods were used to determine the DM, OM, CF, EE, 
CP, and GE of feed and feces samples in accordance with 
AOAC (2005). The chromic oxide content was determined 
using a spectrophotometer and standard absorption curves 
of chromic oxide at various levels following the method 
described by AOAC (2005). The nutritional value and 
chromic oxide content were used to calculate the apparent 
dry matter digestibility (ADMD) and apparent nutrient 
digestibility (AND) using the method described by Zewdie 
(2019), and the following formulas were used:
1.) ADMD = [{(% Cr2O3 in feces − % Cr2O3 in diets) × 
100}/{% Cr2O3 in feces}]
2.) AND = 100 − [100 × {(% Cr2O3 in diets × % Cr2O3 in 
feces) / (% nutrient in feces × % nutrient in diets)}]

cecal MicroBiota, volatile fatty acid, and sMall 
intestine Morphology
Broilers were restricted feed for at least 6 h before their 
slaughter at 21 days old. Four broilers were slaughtered 
in each experimental unit (two males and two females) 
to collect cecum content samples to count the number of 
microorganisms and a small-intestine sample from the 
duodenum, jejunum, and ilium section in accordance with 
the method described by Yang et al. (2016). Small-intestine 
samples were collected in a 10% formaldehyde solution using 
the method described by Gava et al. (2015) for analysis. In 
the analysis of laboratory samples, microorganisms were 
measured using the culture technique lactic acid bacteria 
(LAB) (Lactobacillus + Bifidobacterium spp.), Enterococcus 
sp., E. coli, and Salmonella spp., in accordance with the 
method described by McDonald et al. (1983), Horn et al. 
(1996), and Schillinger and Holzapfel (2003). The number 
of microorganisms was then transformed with the base 10 
log algorithm following the method described by Cengiz 
et al. (2015).

The volatile cyanide analysis was performed by collecting 
a 1.5 g sterile liquid sample in sterile water (1:1 g/v) in 
a screw-capped tube and storing the sample at −20℃ for 
the analysis using the method described by Khattak et al. 
(2018). After homogenization and centrifugation, a 1 mL 
supernatant sample was packed into an ampulla with 0.2% 
meta-phosphoric acid and homogenized before being 
placed in an ice bucket for 30 min. The supernatant was 
extracted after centrifuging the sample at 10844 ×g for 10 
min to determine the short-chain fatty acid content using 

the method described by Wang et al. (2005). The sample 
solution was analyzed for short-chain fatty acid content 
using gas chromatography (HP 5890 Series II GC; Agilent 
J&W 30 m 0.535 mm 1.00 micron HP-FFAP column 
technique), and a flame-ionization detector was used 
as a measure. The sample injected with 4-methylvaleric 
acid (Alfa Aesar, United Kingdom) served as an internal 
standard for acetic acid, propionic acid, butyric acid, 
and lactic acid analysis. The composition of VFAs was 
determined by comparing them to standard solutions 
using the method described by Khattak et al. (2018).

The small-intestine samples were embedded in paraffin 
and biopsied to a thickness of 5 µm to prepare the sample 
slides for histology. Alcian blue was used to stain the 
biopsy, which was then mounted on the slide following 
the method described by Shang et al. (2015). The small-
intestine histology was measured with an Olympus BX 
50, 20 × optical magnification optical microscopy and 
analyzed with the Motic Images 2.0 Multi language 
program (Tsirtsikos et al., 2012). Ten villi were sampled 
per slide to determine the villus height, villus width, and 
cryptal depth using the method described by Shang et al. 
(2015), whereas the villus surface area was calculated from 
2π × (average villus width/2) ×villus height (Sakamoto et 
al., 2000).

productive perforMance and econoMic Benefit 
return
The broilers were raised for 35 days in total, and the raising 
period was divided into two: 0–21 and 22–35 days. The 
total feed intake and initial and final weight of broilers were 
recorded to calculate average daily feed intake (ADFI) and 
average daily gain (ADG) for each growth period and feed 
conversion ratio (FCR). Daily mortality was recorded, and 
the percentage of viability was calculated using the data 
obtained. For the analysis of productive performance 
indicators, such as body weight gain (BWG), ADG, 
ADFI, FCR, and viability, the following formulas were 
used: BWG (g on period) = BW (g) at the end period − 
BW (g) on the first day; ADG (g/chick/day) = BWG/days 
of growth period; ADFI (g/chick/day) = total feed intake/
days of growth period; FCR (feed/gain) = cumulative feed 
intake (kg)/total weight gain (kg); viability (%) = chicks 
remaining at the end of period (%), in accordance with the 
method described by Marcu et al. (2013); productive index 
(PI) was calculated using the formula PI = (daily weight 
gain (kg) × livability/FCR) × 100, following the method 
described by Barbosa et al. (2017). In addition, economic 
benefit return indicators, such as feed cost per gain (FCG), 
salable bird return (SBR), net profits return per bird 
(NPR), and return of investment (ROI), were calculated 
using the following formula: FCG = (FCR × feed cost × 
BWG), SBR = (the price of live chicken (40 THB) × BW), 
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NPR = (SBR − FCG), and ROI = (NPR/FCG) × 100 (El-
Aziz et al., 2019).

statistical analyses
The experimental data were used in the analysis of variance 
(ANOVA) for a completely randomized design. When the 
ANOVA showed significant differences using the method 
described by Steel and Torrie (1992), Tukey’s honestly 
significant test was applied in accordance with the R Core 
Team’s description of R program version 3.5.1 (R Core 
Team, 2018). The following statistical model was used for 
the experiment: Yij = µ + Ti + eij where µ = general mean, Ti 
= effect of treatment (i = control and supplementation of 
TABP at 10, 30, and 50 g/kg with probiotics 2 g/kg), and 
eij = random error associated with Yij observation.

RESULTS AND DISCUSSION

apparent nutrient digestiBility
Broilers fed with diets containing 10, 30, and 50 g/kg TABP 
supplements with 2 g/kg probiotics had higher digestibility 
of DM, CP, EE, and CF than the control group (p < 0.05). 
In broiler diets, the increase in TABP supplementation (10, 
30, and 50 g/kg) with 2 g/kg probiotics resulted in a linear 

increase in DM digestibility (p < 0.05) and a quadratic 
increase in CP, EE, and CF digestibility (p < 0.05) (Table 2).

cecal MicroBiota and volatile fatty acid
Broilers fed with 10, 30, and 50 g/kg TABP in combination 
with 2 g/kg probiotics had higher levels of LAB and 
Enterococcus sp. in the cecum than the control group (p < 
0.01). Supplementing diets with 10, 30, and 50 g/kg TABP 
in combination with 2 g/kg probiotics containing LAB in 
cecum resulted in a quadratic increase (p < 0.01), whereas 
the presence of Enterococcus sp. in the cecum resulted in a 
linear increase (p < 0.01). Additionally, broilers fed with 
10, 30, and 50 g/kg TABP in combination with 2 g/kg 
probiotics had lower levels of Salmonella spp. and E. coli 
in the cecum than the control group (p < 0.01). As shown 
in Table 3, the supplement diets with 10, 30, and 50 g/kg 
TABP in combination with 2 g/kg probiotics containing 
Salmonella spp. and E. coli in cecum resulted in a quadratic 
decrease (p < 0.01). Furthermore, this study showed that 
broilers fed with diets containing 10, 30, and 50 g/kg 
TABP in combination with 2 g/kg probiotics had higher 
levels of VFA, acetic acid, propionic acid, and butyric acid 
in the gut than control broilers (p < 0.01) and showed a 
quadratic increase in these volatile fatty acids (p < 0.01).

Table 2: Effects of TABP and probiotics supplementation in broiler diets on apparent nutrient digestibility.
Apparent nutrient 
digestibility (%)

Control Level of TABP with 0.2% probiotics 
supplementation in diets (g/kg)

SEM P-
value

Trend 
analysis

10 30 50 
Dry matter 83.77c 85.72ab 84.88b 87.31a 0.49 0.02 L
Crude protein 80.44c 89.48a 87.04ab 86.10b 1.02 0.02 Q2
Ether extract 92.28c 94.13ab 95.06a 93.88b 1.74 0.03 Q2
Organic matter 86.78 88.13 86.99 86.10 0.63 0.52 NS
Gross energy 87.44 89.48 90.04 89.10 0.63 0.06 NS
Crude fiber 77.89c 87.36ab 90.55a 87.83ab 0.27 0.01 Q2

a,b Mean with symbol with in same row differ significantly different (P<0.05); SEM: Standard error of mean, NS: Not significantly 
different (P>0.05); L: Linear.

Table 3: Effects of TABP and probiotics supplementation in broiler diets on cecal microbiota and volatile fatty acids 
content.
Cecal microbiology and 
volatile fatty acids

Control Level of TABP with 0.2% probiotics 
supplementation in diets (g/kg)

SEM P-value Trend analysis

10 30 50 
Cecal microbiology (Log 10 CFU/ml)
 Lactic acid bacteria* 11.35B 12.10A 12.00A 12.08A 0.16 <0.01 Q2
 Enterococci sp. 6.70C 7.01B 7.18AB 7.44A 0.13 <0.01 L
 E. coli. 8.17A 7.57B 7.34BC 7.15C 0.11 <0.01 Q2
 Samonella spp. 3.73A 3.26B 3.19B 3.20B 0.09 <0.01 Q2
Volatile fatty acids: VFA (µmol/ml)
 Total VFA 71.22B 88.97A 87.26A 84.76A 4.30 <0.01 Q2
 Acetic acid 48.64B 55.83A 56.27A 54.02A 2.88 <0.01 Q2
 Propionic aid 9.05B 10.43A 10.48A 10.50A 0.37 <0.01 Q2
 Butyric acid 9.50B 10.86A 10.91A 10.95A 0.38 <0.01 Q2

* Lactobacillus and Bifidobacteria; A,B Mean with symbol with in same row differ significantly different (P<0.01); SEM: Standard error 
of mean; NS: Not significantly different (P>0.05); L: Linear; Q2: Quadratic.
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sMall-intestine histoMorphology
The supplementation of 10 and 30 g/kg TABP in 
combination with 2 g/kg probiotics in broiler diet increased 
the duodenum villus height (p < 0.01). Nonetheless, the 
increased TABP supplementation in combination with 2 
g/kg probiotics resulted in a positive quadratic trend (p 
< 0.01) in duodenal villus height, villus surface area, and 
cryptal depth (p < 0.01). Furthermore, broilers fed with 
diets containing 10, 30, and 50 g/kg TABP in combination 
with 2 g/kg probiotics had increased villus height, villus 
width, villus surface area, and cryptal depth of the jejunum 
(p < 0.01). The increase of jejunum histomorphology 
values showed a positive quadratic trend corresponding 
to levels of TABP supplementation (p < 0.01). This study 
also revealed that broilers that received 10 and 30 g/kg 
TABP in combination with 2 g/kg total probiotics had 
higher villus height, surface area of the villus, and crypt 
of Lieberkühn depth of ileum than the control broilers 
(p < 0.01). Supplementing diets with 10, 30, and 50 g/
kg TABP in combination with 2 g/kg probiotics resulted 
in a quadratic increase of the villus height and crypt of 
Lieberkühn depth of ileum (p < 0.01), whereas the villus 
surface area of ileum showed a cubic increase (p < 0.01) 
(Table 4).

productive perforMance and econoMic Benefit 
return
This study discovered that broilers fed with diets containing 
10, 30, and 50 g/kg TABP in combination with 2 g/kg 

probiotics during the 22–35- and 0–35-day periods had 
higher ADFI, and ADG than broilers in the control group 
(p < 0.05). In addition, during the 22–35- and 0–35-day 
periods, ADFI increased linearly (p < 0.05) in response 
to the supplementation of 10, 30, and 50 g/kg TABP in 
combination with 2 g/kg probiotics. The ADG increased 
quadratically (p < 0.05) in response to the supplementation 
of 10, 30, and 50 g/kg TABP in combination with 2 g/kg 
probiotics. The data in Table 5 show no significant effects 
on viability rate and PI among treatment groups across all 
rearing periods (p > 0.05). The level of TABP with 2 g/
kg probiotics in broiler diets had no effect on any of the 
economic benefit return indicators, including FCG, SBR, 
NPR, and ROI (p > 0.05).

This study demonstrated the efficacy of synbiotics 
derived from TABP supplementation with 2 g/kg total 
probiotics in broiler diet on positively contributes to the 
improvement of feed utilization efficiency by increasing 
digestibility, improving intestinal ecology, and developing 
intestinal morphology, which results in improved broiler 
growth performance. Furthermore, broilers fed TABP 
synbiotics plus 2 g/kg total probiotics in broiler diets 
had higher digestibility of DM, CP, EE, and CF than 
control group broilers. A scientifically credible reason 
has been linked to explaining these results from a report 
by Huang et al. (2015), who described the constituents 
of high levels of FOS and inulin in asparagus. These 
structures are classified as prebiotics because they must

Table 4: Effects of TABP and probiotics supplementation in broiler diets on small intestinal histomorphology.
Small intestinal 
histomorphology

Control Level of TABP with 0.2% probiotics 
supplementation in diets (g/kg)

SEM P-value Trend 
analysis

10 30 50 
Duodenum
Villus height (mm) 1.42C 1.64AB 1.75A 1.52BC 0.08 <0.01 Q2
Villus wide (mm) 0.14 0.13 0.14 0.15 0.01 0.16 NS
VSA (mm2) 0.61B 0.71AB 0.79A 0.71AB 0.04 <0.01 Q2
Cryptal depth (mm) 0.22B 0.24AB 0.25A 0.23AB 0.01 <0.01 Q2
VH: CD 6.56 6.93 6.99 6.64 0.46 0.47 NS
Jejunum
Villus height (mm) 1.11B 1.31A 1.27A 1.27A 0.05 <0.01 Q2
Villus wide (mm) 0.14B 0.17A 0.17A 0.17A 0.01 <0.01 Q2
VSA (mm2) 0.47B 0.69A 0.68A 0.66A 0.06 <0.01 Q2
Cryptal depth (mm) 0.21B 0.24A 0.25A 0.25A 0.01 <0.01 Q2
VH: CD 5.29 5.50 5.07 5.17 0.29 0.24 NS
Ileum
Villus height (mm) 0.76C 0.84AB 0.86A 0.82B 0.02 <0.01 Q2
 Villus wide (mm) 0.13 0.14 0.14 0.13 0.01 0.97 NS
 VSA (mm2) 0.24B 0.44A 0.37A 0.34AB 0.05 <0.01 C
 Cryptal depth (mm) 0.15B 0.17A 0.17A 0.17A 0.01 <0.01 Q2
 VH: CD 5.29 5.02 5.12 4.99 0.20 0.24 NS

A,B Mean with symbol with in same row differ significantly different (P<0.05); SEM: Standard error of mean; NS: Not significantly 
different (P>0.05); L: Linear; Q2: Quadratic; C: Cubic; VSA: Villus surface area; VH:CD = Villus height: Cryptal depth.
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Table 5: Effects of TABP and probiotics supplementation in broiler diets on productive performance and economic 
benefit return.
Performance and economic 
benefit return

Control Level of TABP with 0.2% probiotics supple-
mentation in diets (g/kg)

SEM P-value Trend 
analysis

10 30 50 
Average daily feed intake (g/bird/day)
 0-21 day 61.68 59.84 62.10 65.19 0.61 0.08 NS
 22-35 day 179.72b 200.57a 205.69a 208.07a 2.91 0.03 L
 0-35 day 108.89b 116.13ab 119.54a 122.34a 1.43 0.04 L
Average daily gain (g/bird/day)
 0-21 day 41.30 40.18 40.63 39.22 0.49 0.54 NS
 22-35 day 77.61b 94.41a 91.54a 89.77a 1.41 0.01 Q2
 0-35 day 55.82b 61.87a 60.99a 59.44ab 0.58 0.02 Q2
Feed conversion ratio (Feed/Gain)
 0-21 day 1.49B 1.49B 1.53B 1.66A 0.01 <0.01 Q2
 22-35 day 2.33 2.13 2.25 2.32 0.05 0.56 NS
 0-35 day 1.95 1.88 1.96 2.06 0.03 0.20 NS
Viability (%)
 0-21 day 98.33 98.33 100.00 98.33 0.72 0.81 NS
 22-35 day 91.23 98.25 92.98 94.64 1.70 0.54 NS
 0-35 day 89.47 96.49 92.98 92.98 1.52 0.49 NS
Productive index
 0-21 day 271.47 265.30 265.79 232.16 3.42 0.07 NS
 22-35 day 204.43 292.43 254.64 244.83 10.64 0.10 NS
 0-35 day 256.60 318.63 290.56 268.58 8.35 0.12 NS
Economic benefit return*
 FCG (USD) 2.14 2.19 2.32 2.35 0.90 0.09 NS
 SBR (USD) 2.26 2.41 2.44 2.35 0.71 0.09 NS
 NPR (USD) 0.12 0.21 0.12 0.01 0.98 0.20 NS
 ROI (%) 5.88 9.78 5.25 0.19 1.45 0.22 NS

1 USD=31.41 THB; *FCG: Feed cost per gain; SBR: Salable bird return; NRP: Net profits return per bird and ROI: Return of 
investment. a,b Mean with symbol with in same row differ significantly different (P<0.05), SEM: Standard error of mean; NS: Not 
significantly different (P>0.05); L: Linear; Q2: Quadratic.

be neither hydrolyzed or absorbed in the superior part of gut 
and thus serve as selective precursors for supports growth 
and/or metabolic activity of members of the gut microbial 
community that could be considered beneficial of broilers 
(Guaragnia et al., 2020) as well as stimulates luminal or 
other systemic physiological responses that are beneficial 
to broilers (Ricke et al., 2020). When prebiotics (FOS 
and inulin in asparagus) enter the lower gut of broilers, 
fermentation influences the proliferation and survival 
of beneficial bacteria in the gut while also promoting 
probiotic growth (Terpou et al., 2019); two types of LAB 
(Bifidobacterium and Lactobacillus) produce bacteriocin, 
which inhibits the growth of pathogenic bacteria (Alavi 
et al., 2012).  According to Al-Khalaifa et al. (2019), 
probiotics are live microorganisms, such as Lactobacillus, 
Bifidobacterium, and yeast that benefit the improvement 
of the intestinal microbial balance and contributes to 

the increased digestion of FOS and inulin prebiotics in 
monogastric animals; digestive enzymes in the primary 
gastrointestinal tract cannot digest probiotics (Davani-
Davari et al, 2019). Probiotics specifically increase the 
digestibility of carbohydrates and fibers in cecum, which 
contains a large number of microorganisms and is where the 
primary fermentation process in chicken occurs ( Józefiak et 
al., 2008). The increased nutritional digestibility of broiler 
chickens in this trial provides clear data on the benefits 
of using synbiotics with a combination of probiotics and 
prebiotics. This trial’s findings are consistent with those of 
previous studies on the use of synbiotics, prebiotics, and 
probiotics, all of which play an important role in improving 
nutrient digestibility in broiler diets (Yun et al., 2017). 
Apata (2008) observed that probiotic-treated broilers had 
higher DM digestibility compared with the controls. In 
addition, Huang et al. (2005) claimed that supplementing 
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with prebiotics and probiotics improves nutrient digestion 
and absorption, which can improve chicken performance. 
Meng et al. (2010) demonstrated that supplementing 
prebiotics derived from oligosaccharides increased the 
digestibility of DM and CP in broiler diets while also 
increasing apparent metabolizable energy corrected for 
nitrogen (AMEn) values (Al-Sagan et al., 2017). Despite 
the fact that TABP supplementation at 10-30 g/kg 
showed good nutrient digestibility. However, increasing 
TABP supplementation (10, 30, and 50 g/kg) with 2 g/
kg probiotics resulted in a quadratic increase in CP, EE, 
and CF digestibility, which could be attributed to higher 
fiber levels in the diet resulting in decreased digestibility. 
Possible explanations include insoluble fibers making up a 
large portion of endosperm cell walls, preventing digestive 
enzymes from accessing nutrients within the cell. Soluble 
fibers, on the other hand, tend to cause viscous conditions 
in the digestive tract, which can impair digestion and 
nutrient absorption ( Jha and Mishra, 2021). 

This study discovered that TABP combined with 
probiotics can increase the VFA production and 
number of beneficial microorganisms, such as LAB and 
Enterococcus sp., in the cecum of broilers; while decreasing 
the number of Salmonella spp. and E. coli, when compared 
to the control group. Józefiak et al. (2008) reported that 
prebiotics, such as beta-glucan and inulin, can increase 
LAB. However, the function of probiotics or beneficial 
microorganisms in the large intestine plays an important 
role in the entire fermentation process of FOS and 
inulin, producing gases, lactic acid, and short-chain 
fatty acids (acetic acid, propionic acid, and butyric acid), 
which are the result of oligosaccharide fermentation of 
microorganisms in the pathway bottom food (Nabizadeh, 
2012). Furthermore, Bifidobacterium and Lactobacillus can 
produce organic acids, such as lactic acid and acetic acid, 
and this phenomenon may inhibit several pathogenic 
bacteria, such as Salmonella spp. and E. coli, and reduce 
colonization in the gastrointestinal tract (Kridtayopas et 
al., 2019). These short-chain VFAs are necessary for the 
physiological processes of the intestinal microflora and 
are beneficial for improving gut health and modulating 
microbial ecology (Silva et al., 2020). They cause an acidic 
environment that is unsuitable for the growth and division 
of harmful bacteria, and the increases in fermentation 
activity and VFA content have been linked to increased 
acidity, which inhibits pathogenic effects and increases 
nutrient digestibility (Krysiak et al., 2021). Buclaw 
(2016) report described the ability of Bifidobacterium 
and Lactobacillus spp. to produce natural broad-spectrum 
antibiotics, such as lactocin, helveticin, curvacin, nisin, and 
ifidocin. Furthermore, FOS supplementation may cause 
bacteria to produce bacteriocin. Broilers fed with FOS 
prebiotic supplementation promoted the colonization of 

specific beneficial bacteria for broilers and other bacteria. 
Janthinobacterium (produce antibacterial and antifungal 
compounds), Paludibacter (propionate-producing bacteria), 
and Butyrivibrio and Coprococcus (butyrate-producing 
bacteria) are found in small amounts in the epithelial 
walls of ilium, leading to increased intestinal immunity 
and mucosal absorption area (Shang et al., 2018). This 
phenomenon may inhibit the growth of several pathogenic 
bacteria and reduce the colonization of others, such as 
Salmonella and Campylobacter (Sekelja et al., 2012). The 
increase in VFA contributed to a decrease in pathogenic 
microorganisms in caecum; the increase in VFA may be 
caused by inulin, polysaccharides, and oligosaccharides 
(Ahmed et al., 2018). FOS can help and maintain a 
healthy digestive environment by increasing the number 
of Bifidobacterium or decreasing the number of E. coli 
in the gastrointestinal tract (Wang et al., 2020). Several 
potential mechanisms for prebiotic health benefits against 
altering the gut microbiota have been proposed, including 
competitive exclusion of pathogens (Sekelja et al., 2012), 
antimicrobial factor production (Munoz et al., 2012), 
stimulation of specific immune system in animals (Babu 
et al., 2012), and development of intestinal morphology 
(Pourabedin and Zhao, 2015). Furthermore, the findings 
of this trial are consistent with those of previous research 
demonstrating the capability of synbiotics, prebiotics, 
and probiotics to increase the total VFA content, which 
improve intestinal ecology (Ahmed et al., 2018; Samanta 
et al., 2012). Synbiotics stimulated the growth of total 
and beneficial bacteria, such as LAB, Enterobacteriaceae 
Bifidobacterium  and Lactobacilli (Al-Sultan et al., 2016; 
Choi et al., 2015). Furthermore, synbiotics inhibit the 
growth of pathogenic microorganisms, such as Salmonella 
spp., coliform bacteria, Clostridia perfringens, and E. coli 
(Choi et al., 2015; Çalik et al., 2017a). Moreover, synbiotic 
supplementation followed by probiotic supplementation 
enhanced microbial ecology and small intestinal 
morphology and more than prebiotic, and control groups 
(Al-Sultan et al., 2016).  Nopparatmaitree et al. (2022) 
previously demonstrated that TABP alone could increase 
beneficial bacteria such as LAB, Bifidobacterium and 
Lactobacilli while decreasing harmful bacteria in broilers. 
Likewise, Nopparatmaitree et al. (2021) demonstrated an 
interaction effect of probiotics and TABP in laying hen 
diets on increasing beneficial bacteria as well as reducing 
harmful bacteria, such as E. coli and Salmonella spp. As a 
result, the findings of this experiment will be extremely 
useful in providing additional guidance on the use of 
TABP in combination with probiotics in broiler diets.

The current study also highlighted that supplementing 
synbiotics from TABP with 2 g/kg total probiotics in 
broiler diets increased the villus height, villus width, villus 
surface area, and cryptal depth of the jejunum compared 
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with the control group of broilers. Previous research has 
suggested that short-chain fatty acids can be used as a 
source of energy to promote development and the integrity 
of the intestinal mucosa. In this experiment, the apparent 
results of short-chain fatty acid content originated from 
the development of synbiotic-stimulated fermentation in 
combination with probiotics. The increase in the number 
of beneficial microorganisms can also reduce the number 
of harmful microorganisms, which directly affects villus 
damage because several harmful microorganisms release 
toxins, such as the botulinum toxin from Clostridium 
botulinum that destroy villus cells (Ahmed et al., 2018). 
The report described the main mechanism of prebiotics 
regarding immunity and the selective growth of lactic acid-
producing bacteria, which result in increased concentrations 
of short-chain fatty acids, such as acetic acid, propionic 
acid, and butyric acid, which are important as a source 
of energy for colon cells and stimulating the intestines 
(Alloui et al., 2013). Butyric acid was used as an energy 
source for gut microbes, acetic acid as a precursor in fat 
and cholesterol synthesis, and propionic acid as a precursor 
in the gluconeogenesis process and reduced fatty acid and 
lipid synthesis (Eeckhau et al., 2011). Butyric acid, on the 
other hand, is not only important for energizing epithelial 
cells but also counteracts and responds to cytokine-
induced inflammation. This compound also indirectly 
lowers the pH of the cecum, preventing pathogen growth 
and increasing mineral uptake (Pourabedin and Zhao, 
2015). The findings also explain the effect of synbiotics 
in broiler diets on the development of intestinal mucosal 
structure and the elevation of duodenum villus, jejunum 
villus (Choi et al., 2015), and ileum villus (Calik et al., 
2017b), with the experimental findings similar to those 
of Rehman et al. (2007); Beski and Al-Sardary (2015). 
Moreover, increases were observed in the depth of the 
duodenum’s crypt of Lieberkühn, jejunum (Calik et 
al., 2017b), ileum (Al-Sultan et al., 2016), and villus 
height to crypt of Lieberkühn depth ratio (Al-Sultan et 
al., 2016; Çalik et al., 2017a), improving the health and 
strength of the gastrointestinal tract (Roberfroid, 2005). 
The aforementioned evidence explains the scientific 
reasons for the use of synbiotics, which can improve 
intestinal ecology and promote intestinal morphological 
development. Increased feed utilization efficiency from 
TABP supplementation improved chicken growth, which 
resulted in a decrease in FCR over a period of 0-21 days as 
well as an increase in ADG over a period of 22-35 days and 
0-35 days. Several previous researches have yielded similar 
results to this study on the use of synbiotics to increase 
broiler productivity, which increases the ADG of broilers 
in the starter (Murarolli et al., 2014; Shehata et al., 2019), 
finisher (Çalik et al., 2017a), and overall period (Dizaji et 
al., 2012; Ghasemi and Taherpor, 2013) as well as improves 
the FCR in the starter (Murarolli et al., 2014; Shehata et 

al., 2019), finisher (Çalik et al., 2017a) and overall periods 
(Al-Sultan et al., 2016; Dizaji et al., 2012; Ghasemi and 
Taherpour, 2013). The findings of this study show that 
synbiotics have the remarkable potential to combine the 
properties of probiotics and prebiotics as feed additives. 
This result supported previous research by Al-Sultan et al. 
(2016), who discovered that synbiotic supplemented groups 
had higher slaughter weight, body weight gain, and FCR 
than prebiotic supplemented groups. Tayeri et al. (2018) 
when compared to the control and antibiotic treatments, 
the probiotic, prebiotic, and synbiotic treatments increased 
weight gain (64, 66, 73, 70, and 74 g/d, respectively), while 
the synbiotic treatment decreased FCR.

This experiment used broilers raised in an open house in 
a tropical climate, which resulted in a higher than normal 
ambient temperature. The upper limit of the heating 
zone reduces production efficiency, reduces intestinal 
integrity and immune function, and results in losses in the 
chicken production process (Lara and Rostagno, 2013). A 
previous study by Hu et al. (2022) found that synbiotics 
supplementation reduces the negative effect of heat 
stress on broilers by improving productivity performance.  
Despite the statistical significance was not obtained, 
this experiment’s results revealed an improvement of the 
survival rate and productive index. As a consequence, 
TABP supplementation has a potential to diminish feed 
costs per gain while increase net profit return and return 
on investment. These results of broiler performance and 
economic benefit return are essential indicators for the 
industry.

CONCLUSIONS AND 
RECOMMENDATIONS

Supplementation of synbiotics from TABP with probiotics 
in broiler diets can improve the AND of dry matter, 
ether extract, crude fiber, and crude protein and increase 
the production of short-chain VFAs in the lower gut, 
promoting the proliferation of LAB and Enterococcus sp. 
and decreasing the number of Salmonella sp. and E. coli. 
Furthermore, these synbiotics increase the villus height, 
villus surface area, and depth of the crypt of Lieberkühn 
of the duodenum, jejunum, and ileum and feed intake 
and broiler growth rate. This experiment demonstrated 
that the minimum supplementation of synbiotics from 
10 g/kg TABP in combination with 2 g/kg of probiotics 
in diets has potential as a functional feedstuff for broilers 
to improve the apparent nutrient digestibility, gut ecology, 
and performance of broilers.
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