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INTRODUCTION

Somatic cells present in ovary, which called pregranulosa 
cells, surround the oogonia to form primordial follicle 

(Figure 1). The formation of primordial follicles occurs 
when germ cell nests break apart and individual oocytes 
become surrounded by pregranulosa cells (O’Connell and 
Pepling 2021). It has been found that somatic cells initiate 
primordial follicle activation and govern the development 
of dormant oocytes (Zhang et al., 2014). Primordial folli-

cles, upon activation, grow and develop to reach the pre-
antral and antral follicle stages (Wu et al., 2021). During 
growth and development of the ovarian follicle from pri-
mordial follicles to antral stages, oocytes grow, granulosa 
cells  proliferate and theca cells differentiate (Richards and 
Pangas 2010). Growth of preantral follicles is gonadotro-
pin-independent whereas growth of antral follicles is gon-
adotropin-dependent follicles (Figure 2).

Most of knowledge regarding factors affecting cumulus 
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Figure 1: Differentiation, proliferation and development 
of ovarian structures during fetal life

Figure 2: Growth of preantral gonadotropin-independent 
follicles and antral gonadotropin-dependent follicles after 
birth. 
FSH, Follicle stimulating hormone
LH; Luteinizing hormone
GDF9; Growth differentiation factor 9
bFGF; basic fibroblast growth factor
BMP15; bone morphogenetic protein 15

cells gene expressions and follicular fluid stems from stud-
ies in ruminant, swine and rodent ovarian follicles (Mo-
hammed 2008; Mohammed and Kassab 2014; Moham-
med et al., 2005, 2011, 2012, 2019a,b; Bunel et al., 2020; 
Pournaghi et al., 2021; Ko et al., 2021). The roles of cu-
mulus cells and follicular fluid on maturation of intact and 
reconstructed oocytes and further developmental compe-
tence of embryos will be compiled and discussed in this 
review. Furthermore, a more detailed understanding the 
factors affecting role of cumulus cells and their gene ex-
pression is still required. 

development of ovaRian follicles
Multiple extrafollicular and intrafollicular factors affecting 
survival, activation, and growth of ovarian follicles from 
the smallest primordial follicles to the largest preovulatory 
follicles. They are stage-specific growth and hormonal fac-
tors. Tang et al. (2012) found that growth factors (GDF-9, 
bFGF known also as FGF or FGF-β) enhance in vitro 
FSH effects on the survival, activation, and growth of 

cattle primordial follicles. The follicle lasts from primordial 
follicle to preovulatory follicle stage about 6 months or 
longer in cattle and human (van den Hurk and Santos, 
2009; Baerwald and Pierson 2020).

Follicle development occur through initial  and  cyclic  re-
cruitments (McGee and  Hsueh 2000). Initial recruitment 
describes dormant primordial follicles recruitment con-
tinuously into the growing follicle pool whereas cyclic re-
cruitment describes antral follicles recruitment each repro-
ductive cycle. Multiple waves of antral ovarian follicular 
development were reported in several studies during es-
trous cycle (2, 3 & 4 waves) (Gordon 2003; Cavalieri et al., 
2018; Baerwald and Pierson, 2020). There is a pool of early 
antral follicles at the onset of follicular phase from which 
the ovulatory follicle(s) is selected continuously. In recent 
years, interest has grown in the use of aspirated oocytes 
from ovarian follicles during prepubertal and first stage of 
pregnancy for in vitro embryo production (Mohammed 
2014 a,b, Ferré et al., 2020; Tian et al., 2021) to take ad-
vantage of genetically superior species and to shorten the 
interval between generations in different species. 

Follicle stimulating hormone (FSH) and luteinizing hor-
mone (LH) regulate follicular wave development where 
FSH is preceded follicular wave emergence (Webb et al., 
2003; Baby and Bartlewski, 2011) whereas granulosa cells 
acquire LH receptors around the time of follicular selec-
tion in both theca and granulosa cells ) and increase as fol-
licle grow (Campbell et al., 1995, 2003; Webb et al., 2003; 
Baird and Mitchell, 2013). Diameter of gonadotrophin 
dependent follicle is 3-4 mm whereas diameter of folli-
cles which their granulosa cells acquire LH receptors is 
9-10 mm (Campbell et al., 1995; Gordon, 2003; Miller et 
al., 1999; Webb et al., 2003). Follicle sizes and their con-
taining follicular fluid composition are affected by follicles 
development and/or nutritional level during estrous cycle 
(Mohammed and Kassab 2014; Mohammed et al., 2011, 
2012a; Senosy et al., 2017, 2018).

cumulus cells
Cumulus cells are a cluster of cells that surround and com-
municate with the oocyte through gap and intermediate 
junctions. It has been thought that the communication be-
tween the oocytes and cumulus cells through gap junctions 
is absolutely necessary for oocytes’ growth and maturation 
and further embryonic development (Fig. 3 & 4). Salhab 
et al. (2011) investigated kinetics of gene expression and 
signaling in bovine cumulus cells during in vitro matura-
tion in different media in relation to oocyte developmen-
tal competence, cumulus apoptosis and progesterone se-
cretion. They found in cumulus cells that the factors and 
signaling pathways are potentially involved in controlling 
different stages of oocyte nuclear maturation and their de
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Figure 3: Ovarian follicle structures of mice; secondary 
follicles (A), graaffian follicles (B) and cumulus-enclosed 
germinal vesicle oocytes (Mohammed AA)

Figure 4: Mice denuded germinal vesicle oocytes (A) and 
cumulus-enclosed germinal vesicle oocytes (B)

velopmental competence to embryos.

Communication of cumulus cells with the germinal ves-
icle oocytes or addition of cumulus cells to maturation 
media during oocytes maturation in vitro effects on matu-
ration rates and developmental competence of the result-
ing embryos (Mohammed 2006, 2008; Mohammed et al., 
2005, 2008, 2010, 2019b, 2020; Lee et al., 2018). Cumulus 
cells is essential for transfer of some nutrients as amino 
acids to the oocytes. Amino acids (AAs) are uptake first 
by cumulus cells and transfer thereafter via gap junctions 
to the oocytes. There are several roles of AAs in cytoplast 
of oocyte and the resulting embryo as energy sources and 
protein synthesis (Rieger et al., 1992), intracellular buffers 
(Edwards et al., 1998), antioxidant compounds (Guérin et 
al., 2001), heavy metal chelators (Bavister 1995) and os-
molytes (Dawson et al. 1998).
               
The secretion of intra-follicular cells is called follicular flu-
id (FF), which is a semi-viscous and yellow liquid filled 
the follicular antrum and surround the oocyte. The com-
ponents of FF are mainly synthesized from secretion of 
granulosa cells and from blood plasma transudate. Com-
position of FF changes during estrous or menstrual cycles 
upon follicular development (Mohammed et al., 2019b). 
The fluid is rich in a polysaccharide molecule called hya-

luronic acid or hyaluronan (HA). Amino acids concentra-
tions in follicular fluid were associated with morphological 
quality of cumulus-oocyte complexes (COCs) and with 
post-fertilization embryo development to the blastocyst 
stage (Sinclair et al., 2008). It has been found that addition 
of specific amino acids in culture media facilitates embryo 
hatching in some species (Liu and Foote 1995; Pinyopum-
mintr et al., 1996), helping to alleviate cultured-induced ar-
rest through maternal zygotic transition (Lee et al., 2014). 
Therefore, cumulus cells or their follicular fluid secretions 
can improve cytoplasmic maturation of oocytes (Moham-
med et al., 2005; Ikeda and Yamada, 2014, Mohammed et 
al., 2019b).

factoRs affecting functions of cumulus cells
There are several factors affecting functions of cumulus 
cells and consequently oocyte maturation and embryo 
development (Table 1) (Zabihi et al., 2021; Martínez-
Quezada et al., 2021). Kumar et al. (2020) evaluated 
the effect of FGF2 on bubaline oocyte maturation and 
cumulus cell expansion and developmental potential of the 
resulting zygotes. They found that FGF2  transcript was 
higher in good quality oocytes and cumulus cells than any 
other grades of oocytes. Gutiérrez-Añez et al. (2021) found 
enhancement the developmental competence of oocytes 
upon ovum pick-up in treated prepubertal and adult dairy 
cattle with melatonin.  Saini et al. (2022) demonstrates that 
50 μM folic acid supplementation to maturation medium 
in vitro resulted in improvement of oocyte maturation and 
blastocyst rate, reduction in intracellular ROS levels, in 
addition to upregulation of the expression of FOLR1 and 
folate metabolism enzyme, MTR. Liu et al. (2021) studied 
the possibility of using mitochondrial DNA copy number 
of cumulus cells as a biomarker of the potential of embryo 
implantation. They found that mitochondrial DNA is not 
linked to embryo implantation in prognosis IVF patients.

Ko et al. (2021) suggested through in vitro cultured of 
human granulosa cells that insulin might gave a negative 
effect on regulation of GnRH and FSH by attenuating 
GnRH and FSH action in the phosphorylation of ERK1/2 
versus a positive effect on LH regulation by potentiating LH 
action in the phosphorylation of ERK1/2. This indicates 
clearly the important role of insulin in human reproductive 
function through granulosa cells. Gene expression in 
cumulus cells were investigated in several studies. de 
Senna Costa et al. (2022) explored if leptin influences the 
caprine oocyte maturation of oocytes and gene expression 
in cumulus cells. The results demonstrate improvement 
of oocyte nuclear maturation and PPARγ  and BAX  gene 
expression in cumulus cells upon leptin treatment. Wolff et 
al. (2022) indicate that the mRNA expression in cumulus 
granulosa cells of LHCG, FSH and androgen receptors, 
aromatase and anti-Müllerian hormone (AMH) differ 
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in normal matured compared to gonadotrophin stimu-
lated follicles. These results confirm some gonadotrophin 
stimulation effects on ovarian follicle function. Bunel et 
al. (2020) investigated inhibition of LH secretion using 
cetrorelix on cumulus cell gene expression in cattle. They 
suggested the inhibition of LH secretion might decrease 
growth and survival of follicles, which confirm the hypoth-
esis of LH importance for final follicle maturation stage. 
Pournaghi et al. (2021) investigated the effects of mela-
tonin on the exosome release from bovine cumulus cells. 
The results indicated the increase of unsaturated fatty acids 
due to melatonin treatment showing exosomal dynamic 
changes of bovine cumulus cells. 

oocyte matuRation
Oocyte maturation either in vivo or in vitro is the most 
important step for further embryo development in mam-
mals (Mohammed et al., 2005; Yousefian et al., 2021). The 
maturation phase of oocytes in vitro requires relatively less 
time where it lasts 24 hr. in human and ruminant oocytes. 
Nuclear and cytoplasmic changes occur during oocyte 
maturation, which are important for successful fertiliza-
tion and further embryo development (Mohammed et al., 
2008; 2010; 2019a, b; Moulavi and Hosseini 2019; Saini 
et al., 2022). Species and feeding, follicular wave, follicle 
size, follicular and luteal stages are some of the factors af-
fecting the quality of oocytes and maturation rate in vivo 
and in vitro (Mohammed et al., 2005, 2012a, 2020, 2021). 
The maturation media and their supplementations (hor-
mones, FF, BSA, glutamine, amino acids…etc.) and incu-
bation culture conditions (oxygen, CO2, humidity, light) in 
vitro were indicated to affect maturation, fertilization and 
further embryo development (Mohammed et al., 2005; 
Yousefian et al., 2021; Kang et al., 2021; Zabihi et al., 2021; 
Chelenga et al., 2022). 

Our study and others indicated that oocyte quality, follicu-
lar fluid supplementation, co-culture cumulus cells affected 
oocyte maturation rate and timing of embryo cleavages in 
addition to blastocyst rate and hatching (Mohammed et 
al., 2005, 2008; Ge et al., 2008). Furthermore, nutrition 
and feed additive has been indicated to influence on folli-
cle and embryonic development (Mohammed 2018, 2019; 
Mohammed and Attaai 2011; Mohammed and Farghaly 
2018; Mohammed and Al-Hozab 2020; Mohammed et 
al., 2012a,b, 2019a, 2020, 2021; Liang et al., 2012; Moulavi 
and Hosseini 2019;  Ali et al., 2021; Pournaghi et al., 2021; 
Gutiérrez-Añez et al., 2021; Saini et al., 2022). 

cumulus enclosed aRtificial oocytes “gametes”
There are our unique studies (Mohammed 2006; Moham-
med et al., 2008, 2010,  2019a) concerning complete and 
selective enucleation of cumulus-enclosed germinal vesicle 
oocytes to confirm the role of cumulus cells on oocyte mat-

uration and embryo development (Figure 5). Our interest-
ing results indicated helpful and potential roles of cumu-
lus cells in supporting the developmental competence of 
the resulting embryos over somatic or embryonic nuclear 
transfer. 

Figure 5: Complete and selective enucleation of denuded 
and cumulus-enclosed germinal vesicle oocytes; complete 
enucleation with removal the whole nucleus (A,B) and 
selective enucleation leaving the nuclear sap and nucleolus 
in the cytoplast (C,D).

Because of low embryo development, pregnancy rate 
and delivery over somatic/ embryonic nuclear transfer to 
oocytes, interest has been grown to use germinal vesicle 
(GV) cytoplast as recipient. It has been suggested that ear-
lier somatic/embryonic nuclear transfer to GV cytoplast 
compared to MII cytoplast might be helpful for cell re-
programming of the introduced nuclei. The reconstructed 
oocytes seem to be an interesting model for studying the 
mechanisms of meiotic maturation, treatment of reproduc-
tive disorders or embryonic and somatic cloning. 

Chang et al. (2005) reported that the developmental in-
competency of denuded mouse oocytes undergoing matu-
ration in vitro is ooplasmic in nature and is associated with 
aberrant Oct-4 expression. Thus, for better understanding, 
the background of difficulties in co-operation between for-
eign nucleus and cytoplasm in GV reconstructed oocytes, 
the development of new micromanipulation techniques 
and/or new culture systems of GV oocytes are required, 
which might also help to overcome the low efficiency of 
nuclear transfer through improvement of cellular repro-
gramming and developmental competence of resulting 
embryos. Therefore, the adapted micromanipulation tech-
niques of complete and selective in addition to nucleolus 
transfer enabled to confirm the roles of cumulus cells, nu-
clear material and nucleolus on oocyte maturation and 
development of the resulting embryo (Fulka et al., 2004; 
Mohammed et al., 2008, 2010,  2019a; Benc et al., 2019).

Moreover, meiotic maturation of intact or enucleated GV 
oocytes reconstructed with male germ cells in cases of male 
infertility might enable creating the new type of oocytes 
carrying the male haploid genome of the introduced germ 
cells over maturation. So far, only a few trials concerning 
the meiotic maturation of enucleated GV oocytes recon-
structed with embryonic/somatic nuclei were undertaken 
whereas in vitro fertilization of such matured oocytes has 
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Table 1: Factors affecting function of cumulus cells
Treatments Effect References
Gonadotrophin Gonadotrophin reduced concentrations of follicular fluid hormones and dis-

rupts their quantitative association with mRNA cumulus cell
Wolff et al., 2022

LH LH is important for final follicle maturation stage through its influence on 
the cumulus cells.

Bunel et al., 2020

Insulin Insulin has a negative effect on regulation of GnRH and FSH versus a 
positive effect on LH regulation 

Ko et al., 2021

Melatonin Melatonin increased of unsaturated fatty acids due to melatonin treatment 
of bovine cumulus cells

Pournaghi et al., 2021
Gutiérrez-Añez et al., 2021

Leptin Improvement of PPARγ and BAX gene expression in cumulus cells over 
leptin treatment

de Senna Costa et al., 2022

9-cis-retinoic acid 9-cis-RA has beneficial effect on cytoplasmic and nuclear maturation Liang et al., 2012
Astaxanthin Astaxanthin supplementation promoted blastocyst yield of oocytes Chelenga et al., 2022
Folate Folate supplementation during oocyte maturation positively impacted the 

folate-methionine metabolism in pre-implantation embryos
Saini et al., 2022

Resveratrol Resveratrol improved expansion of cumulus cells and developmental com-
petence of ovine oocytes

Zabihi et al., 2021

Perfluorohexane 
sulfonate

Perfluorohexane sulfonate caused ytotoxicity and inhibition of oocyte mat-
uration

Martínez-Quezada et al., 
2021

been studied in our study (Mohammed et al., 2008, 2010,  
2019a).

CONCLUSION 

Regulating ovarian follicles development in mammals is 
considered the determinant of the reproductive perfor-
mances. Regulation extends through in vitro culture sys-
tems including additives to media in addition to co-culture 
cumulus cells and their secretions; follicular fluid. The roles 
of cumulus cells clarify through gene expressions, oocyte 
maturation and development of the resulting embryo. The 
positive effects of cumulus cell on oocyte maturation and 
embryo development would be helpful in assisted repro-
ductive techniques nowadays for treatment of infertility, 
enhancement of meat and milk production and saving en-
dangered species through in vitro manipulations of folli-
cles and oocytes. Further investigations are warranted to 
fully understand the factors maximize the potential roles 
of cumulus cells. 
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