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INTRODUCTION

Japanese quail have been used to improve the meat 
production. Different studies for improving the growth 

rate and egg production have been performed for Japanese 
quail to compensate apart of shortage in animal protein 
(Aggrey et al., 2003). 

Many studies in animal and poultry areas such as quail need 

the measurement of variables of choice to give a suitable 
characterization of animals or experimental groups, so 
multivariate methods are applied (Ribeiro et al., 2018). 
Principal component analysis is a multivariate statistical 
method of data analysis. It is similar to exploratory factor 
analysis. It is known as variable-reduction technique 
which aims to decrease a large group of variables into a 
small artificial ones known as principle components. These 
components are uncorrelated and represent most of the 

Research Article

Abstract | It is known that biostatistics has a great role in many fields such as veterinary medicine and animal sciences. 
Animals and birds are major sources for human feeding (protein source) then, statistical analysis of animal characteristics 
is of great importance. The objective of this paper was to explain and apply an important statistical method called 
principle component analysis to extract new carcass trait components of Japanese quail from old variables. The idea of 
this method is that it forms a new variable (linear combinations of them) by reduction the dimension of the data for a 
large number of old variables. A total of 720 values of data were used to represent the variables under study for three 
different lines of Japanese quail. These variables were (live, slaughter, dressing, carcass, heart, liver, gizzard, and spleen) 
weight. SPSS packages used for calculation descriptive statistics, correlations and principal component reduction 
method. The results showed that Bartletts test of sphericity is highly significant (P = 0.000 **) for the three lines. 
Three principle components were able to explain 82.193% (53.927, 15.188, 13.078 for PC1, PC2, PC3 respectively) 
of the total variance in the eight variables of the high body weight line, two principle components were able to explain 
76.429 % (62.504% and 13.925% for PC1 and PC2, respectively) of the total variance in the eight variables of the 
low body weight line and three principle components were able to explain 78.669% (42.363%, 22.478% and 13.827% 
for PC1, PC2, PC3 respectively) of the total variance in the eight variables in the random bred control line. Principal 
component analysis is an efficient method in determining carcass traits features and decreasing the messy in such type 
of biological data. This technique and its related techniques play an important role in many statistical methods like 
principal component regression.

Keywords  | Carcass traits, Eigen-values, Japanese quail, Principal component analysis, Scree plot

Fatma Desouki Mohammed Abdallah

Evaluation of Carcass Characteristics of Japanese Quail Using 
Principal Component Analysis (PCA)

Received | December 16, 2021; Accepted | January 29, 2022; Published | March 10, 2022  
*Correspondence | Fatma Desouki Mohammed Abdallah, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, 
Egypt; Email: moibho_stat2021@yahoo.com
Citation | Abdallah FDM (2022). Evaluation of carcass characteristics of Japanese quail using principal component analysis (PCA). Adv. Anim. Vet. Sci. 
10(4):771-778. 
DOI | https://dx.doi.org/10.17582/journal.aavs/2022/10.4.771.778
ISSN (Online) | 2307-8316

Copyright:  2022 by the authors. Licensee ResearchersLinks Ltd, England, UK.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.
org/licenses/by/4.0/).

Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, Egypt.

https://dx.doi.org/10.17582/journal.aavs/2022/10.4.771.778
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
crossmark.crossref.org/dialog/?doi=10.17582/journal.aavs/2022/10.4.771.778&domain=pdf&date_stamp=2008-08-14


Advances in Animal and Veterinary Sciences

April 2022 | Volume 10 | Issue 4 | Page 772

variance in the old variables (Bishop et al., 2010). It is firstly 
known through Karl Pearson followed by Hotelling who 
predicted different components of different traits of egg 
production and carcass traits (Shaker and Aziz, 2017; 
Ukwu et al., 2017). In animal science, it is widely used in 
many species as follows: In horses, morphometric traits are 
studied by Pinto et al. (2005). In chicken, different traits 
studied by Yamaki et al. (2009). Leite et al. (2009) studied 
eleven quail carcass traits and the results were that only four 
traits were convenient in his study. Performance traits in 
Angus cattle are studied by (Pinto et al., 2013). It is found 
that four principal components of fifteen traits explained 
80% of total variance. The relationship between slaughter 
weight and carcass characteristics is useful in expecting of 
other body characteristics (Philip and Udeh, 2021).

The significance and advantages of this technique are: less 
complexity of the data, no repetition and it concentrate on 
the great variance in the data, and ignore smaller ones so 
provide restructure of data and decrease messy data (Phillips 
et al., 2005). Also, there is no need to difficult calculations 
and this method gives graphical representation of the most 
common patterns in the data set without any information 
about groups in the process of reduction (Sodhi and Lal, 
2013). Dimension and synchronized dimension reduction 
method help in finding variables that are characteristic of 
a group of samples. But its disadvantages are difficulty in 
evaluating covariance matrix (Phillips et al., 2005) and 
no accuracy as other reduction method in case of smaller 
sample size (Sodhi and Lal, 2013). 

The objective of the study was to describe the carcass traits 
using PCA and to predict new carcass measurements 
derived from this analysis. It lowers a larger set of traits into 
a smaller set of new traits, known as principle components, 
which represent most of the variance in the main traits.

MATERIALS AND METHODS

Source of data
Data for this study were obtained from a thesis at the 
Department of Animal Wealth Development, Faculty of 
Veterinary Medicine, Zagazig University, Egypt. A total of 
720 data values of carcass traits of three lines of Japanese 
quail were used. The main author for this thesis gave its 
signed agreement for extracting his data.

These data included three lines of Japanese quail (high 
body weight, low body weight and random bred control). A 
sample of thirty birds of each line is selected randomly for 
this study for measuring different carcass traits (Roushdy, 
2014). The online sample size calculator is used to calculate 
sample size depending on standared deviation, confidence 
interval, population size and Z scores table.

A sample of 30 birds is randomly selected for each line for 
eight variales. Then, the total values of data 30 value × 8 
variables × 3 lines = 720 data value.

The variables under study (carcass traits) which were 
measured (gm) as follows:
• Live body weight (gm).
• Body weight at slaughter age (after bleeding) (gm). 
• Dressing weight (after bleeding and plucking) (gm).
• Eviscerated carcass weights (empty carcass weight) 

(gm). 
• Weight of the edible giblets (heart, liver, spleen and 

empty gizzard) (gm). 

These carcass traits were measured in the third generation 
of selection, at 4th week of age, the birds were randomly 
selected, weighed and then slaughtered, plucked and then 
carcass was eviscerated. 

StatiStical analySiS
Shapiro-Wilk test of normality for variables was the first 
step in the analysis process before applying PCA. It tests if 
the data follow the normal distribution or not. 

Model aSSuMption
Before applying PCA, it is important to check four 
assumptions of it.
1. This technique includes multiple variables. They 

are interval- ratio level measurement and ordinal 
variables are very commonly used. 

2. Achieving normality and linearity (linear relationship 
between all variables) depending on scatterplot matrix. 
If this assumption is not achieved, transformations are 
applied for interval- ratio level measurement only not 
with of ordinal data.

3. The sample must be adequate; the number of values is 
at least of 150 cells or cases (5 to 10 cells for each trait) 
to be the lowest sample size can be used. The Kaiser-
Meyer-Olkin (KMO) used to evaluate if the sample is 
adequate or not for all data values and for each variable 
individually.

4. Fitness of data for reduction. Correlations between 
variables should be adequate to reduce them into 
a smaller number of components. Bartlett’s test of 
sphericity is used for this purpose. 

5. Absence of outliers is important to avoid its effect on 
the results. 

MatheMatical Model of pca
Generally, PCA model is pci=ai1x1+ai2x2+ ……+ aipxp. Then, 

y1 or pc1=a11x1+a12x2+ ……+ a1pxp
y2 or pc2=a21x1+a22x2+……+ a2pxp
yp or pcp=ap1x1+ap2x2+..….+ appxp

Where; ai1, ai2, aip are considered the pc coefficients (Everitt 
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et al., 2001).

Bartlett’S teSt of Sphericity
This method tests the hypothesis of no relation between 
variables. Significant level (P < 0.05) indicates suitability 
of variables and the analysis can be done.

H0 = R = I
H1= R ≠ I

R= is the correlation matrix
I = is the identity (zero) matrix

Where;
n: sample size; p: total number of eigenvalues; k: number 
of eigenvalues previously tested; v: represents degrees of 
freedom with χ2 test statistic, and equals (p - k - 1) (p - k + 
2)/2 as explained in (Gouda, 2019).

KaSiSer Meyer olKin MeaSure of SaMpling 
adequacy (MSa)
It measures if the sample adequate or not for a variable 
Xi. It is the ratio of numerator (sum of squared simple 
correlation coefficients between factors) and denominator 
(sum of squared simple correlation coefficients between 
factors plus partial correlation coefficients of these factors) 
as in the following equation:

Where; rij is the correlation matrix and u= uij is the partial 
covariance matrix. MSA measure ranges from 0 to 1, so 
Kaiser said that KMO of 0.9 considered wonderful, above 
0.8 as meritorious, above 0.7 as moderate, above 0.6 as 
average, above 0.5 as powerless, and below 0.5 as rejected 
(Gouda, 2019).

Descriptive statistics and other calculations of the carcass 
traits of each line were calculated using SPSS 21 (2017).

Pearson correlation coefficients among the variables were 
calculated for each line of Japanese quail and the correlation 
matrix is calculated as the first step for PCA. Bartlett’s 
test of sphericity applied to test the identity of correlation 
matrix (each variable correlated with itself ) or a correlation 
matrix full of zero. Kaiser- Meyer-Olkin (KMO) is used to 
measure sampling adequacy and the fitness of the data set 
to PCA. A KMO measure of 0.60 and above is considered 
appropriate (Eyduran et al., 2010). 

eigenvalueS
It is a value that explains the amount of variance of the 

data and its spread on the line (a measure of explained 
variance). The eigenvector of the largest eigenvalue is the 
principal component. 

Any factor has eigenvalues more than 1.0, considered an 
indicator for a factor to be helpful. The eigenvalue less than 
1.0, give an indication that the factor gives less information.

RESULTS AND DISCUSSION

Shapiro-Wilk test of normality for carcass traits was 
non-significant (P value ≥ 0.05) which revealed that the 
variables are normally distributed and there no need for 
transformations.

Descriptive statistics of the carcass traits of each line 
(mean, standard deviation and coefficients of variation) are 
presented in Table 1.

Table 1: Descriptive statistics for body weight and carcass 
traits in different lines of Japanese quail.
Traits Mean Standard 

deviation
Coefficient of 
variation

High body weight
Live wt. 167.97 31.08 18.51
Slaughter wt. 162.50 30.63 18.85
Dressing wt. 140.57 26.84 19.09
Carcass wt. 107.57 23.09 21.47
Liver wt. 5.27 1.07 20.30
Gizzard wt. 4.38 1.15 26.26
Heart wt. 1.393 0.34 24.46
Spleen wt. 0.27 0.11 40.74
Low body weight
Live wt. 152.57 28.42 18.63
Slaughter wt. 147.25 28.11 19.08
Dressing wt. 126.66 25.05 19.78
Carcass wt. 94.67 21.79 23.01
Liver wt. 5.04 0.87 17.26
Gizzard wt. 4.12 1.01 24.51
Heart wt. 1.21 0.32 26.45
Spleen wt. 0.17 0.11 64.71
Random bred control
Live wt. 157.41 30.49 19.37
Slaughter wt. 151.88 30.22 19.89
Dressing wt. 131.58 26.98 20.50
Carcass wt. 98.58 21.90 22.21
Liver wt. 5.19 1.09 21.00
Gizzard wt. 4.41 1.48 33.78
Heart wt. 1.25 0.34 27.2
Spleen wt. 0.31 0.12 38.71
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The correlation coefficients of carcass traits of Japanese 
quail for different lines were presented in Table 2. The 
values of correlation coefficient between different traits 
were moderate to high, and there were few traits showed 
weak coefficients. These data are suitable for reduction 
process. These results were in agreement with (Akinsola 
et al., 2014) who applied principal component analysis on 
body weight and body measurements in rabbits.

The results of Kaiser-Meyer-Olkin (KMO) and Bartlett’s 
test of sphericity were showed in Table 3. The KMO values 
were 0.611, 0.743, and 0.588 for high body weight, low 
body weight, and random bred control line, respectively. 
Hair et al. (2010) mentioned that the lowest accepted value 
for the test was 0.5. Bartlett’s test indicated that the data 
were suitable for the analysis where P-values < 0.001 were 
highly significant. This result is in agreement with (Shaker 
et al., 2019).

The communalities represent estimates of the variance 
in each trait accounted for by the components as in 
Table 4. It explained the communalities, where the initial 

communalities represent the correlation between the 
variable and all other variables before rotation. If many 
communalities are less than 0.30, the results become bad 
because of small sample size. The results showed that all 
communalities are of good values as follows: It ranged 
0.497 (dressing wt)-0.990 (slaughter wt), 0.663 (spleen 
wt)- 0.854 (carcass wt) and 0.537 (dressing wt)-0.975 
(slaughter wt), in high body weight, low body weight and 
random bred control, respectively. The lowest communality 
was for dressing wt (0.497) in high body weight line. It was 
weak in explaining the total variation in the carcass traits 
of high body weight line.

Table 5 showed that the total variance is divided among 
the eight possible factors. The total variance explained by 
the three produced components in high body weight line 
was (82.193%). This total variance is divided into 53.927% 
for the first principal component, 15.188% for the second 
component and the third one was 13.078%. Eigenvalues 
were 4.314, 1.215 and 1.046 for the first principal 
component (PC1), the second (PC2) and the third (PC3), 
respectively.

Table 2: Correlation matrix between traits of each line.
Lines Live wt Slaughter wt Dressing wt Carcass wt Liver wt Gizzard wt Heart wt Spleen wt
High body 
weight

Live wt. 1.000
Slaughter wt. 0.999 1.000
Dressing wt. 0.497 0.514 1.000
Carcass wt. 0.554 0.559 0.604 1.000
Liver wt. 0.275 0.278 0.433 0.662 1.000
Gizzard wt. 0.510 0.506 0.271 0.525 0.701 1.000
Heart wt. 0.579 0.579 0.517 0.833 0.527 0.280 1.000
Spleen wt. -0.198 -0.205 -0.158 -0.308 -0.033 -0.020 -0.390 1.000

Low body 
weight

Live wt. 1.000
Slaughter wt. 0.999 1.000
Dressing wt. 0.647 0.658 1.000
Carcass wt. 0.689 0.690 0.684 1.000
Liver wt. 0.378 0.378 0.441 0.681 1.000
Gizzard wt. 0.432 0.425 0.317 0.529 0.562 1.000
Heart wt. 0.698 0.699 0.617 0.827 0.547 0.175 1.000
Spleen wt. 0.591 0.595 0.683 0.629 0.254 0.235 0.537 1.000

Random 
bred control

Live wt. 1.000
Slaughter wt. 0.998 1.000
Dressing wt. 0.374 0.387 1.000
Carcass wt. 0.345 0.332 0.556 1.000
Liver wt. 0.013 -0.013 0.271 0.690 1.000
Gizzard wt. 0.048 0.044 0.332 0.418 0.387 1.000
Heart wt. 0.339 0.353 0.487 0.757 0.444 0.234 1.000
Spleen wt. -0.197 -0.217 -0.111 -0.171 0.014 0.144 -0.385 1.000
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Table 3: Kaiser-Meyer-Olkin measure of sampling 
adequacy (KMO) and Bartlett’s test of sphericity between 
different lines.
 High 

body 
weight

Low 
body 
weight

Random 
bred 
control

Kaiser Meyer Olkin measure of 
sampling adequacy

0.611 0.743 0.588

Bartlett's 
test of sphe-
ricity

Approx. Chi-Square 289.458 299.834 222.813
df 28 28 28
P-value 0.000** 0.000** 0.000**

***P < 0.001= Chi-square value was highly significant.

The total variance explained by the two extracted 
components of low body weight line was 76.429% which 
divided into (62.504% for the first principal component 
and 13.925% for the second component). Eigenvalues 
were 5.000 and 1.114 for the first principal component 
(PC1), and the second (PC2), respectively.

The total variance explained by the three extracted 
components was 78.669% for random bred control line. 

It divided into 42.363% for the first principal component, 
22.478% for the second component and 13.827% for the 
third component. Their Eigenvalues were 3.389, 1.798, 
and 1.106 for the first principal component (PC1), the 
second (PC2) and the third (PC3) respectively. Any 
Eigenvalues lower than 1 means that the factor gives 
less information than explained one as it is a measure of 
explained variance.

Table 4: Communalities of all traits in each line.
High body 
weight

Low body 
weight

Random bred 
control

Initial Extrac-
tion

Initial Extrac-
tion

Initial Extrac-
tion

Live wt. 1.000 0.988 1.000 0.818 1.000 0.963
Slaugt wt. 1.000 0.990 1.000 0.824 1.000 0.975
Dress wt. 1.000 0.497 1.000 0.694 1.000 0.537
Carcas wt. 1.000 0.870 1.000 0.854 1.000 0.871
Liver wt. 1.000 0.925 1.000 0.791 1.000 0.705
Gizzard wt. 1.000 0.760 1.000 0.752 1.000 0.625
Heart wt. 1.000 0.810 1.000 0.718 1.000 0.797
Spleen wt. 1.000 0.736 1.000 0.663 1.000 0.820

Table 5: Total variance explained by extracted component scores.
High body weight Low body weight Random bred control

Compo-
nent

Initial eigenvalues Initial eigenvalues Initial eigenvalues
Total % of variance Cumulative % Total % of variance Cumulative % Total % of variance Cumulative %

1 4.314 53.927 53.927 5.000 62.504 62.504 3.389 42.363 42.363
2 1.215 15.188 69.115 1.114 13.925 76.429 1.798 22.478 64.841
3 1.046 13.078 82.193 0.714 8.925 85.354 1.106 13.827 78.669
4 0.717 8.965 91.158 0.584 7.301 92.655 0.649 8.107 86.775
5 0.458 5.728 96.886 0.314 3.921 96.576 0.558 6.974 93.750
6 0.175 2.185 99.071 0.203 2.536 99.112 0.351 4.385 98.135
7 0.074 0.923 99.994 0.070 0.879 99.991 0.148 1.850 99.984
8 0.001 0.006 100.000 0.001 0.009 100.000 0.001 0.016 100.000

Table 6: Component matrix and rotated component matrix (loadings) by varimax rotation method.
High body weight Low body weight Random bred control

Component matrix Rotated component 
matrix

Component 
matrix

Rotated 
component 
matrix

Component matrix Rotated component 
matrix

Component Component Component Component Component Component
1 2 3 1 2 3 1 2 1 2 1 2 3 1 2 3

Live wt 0.823 -0.217 0.513 0.962 0.199 0.154 0.883 -0.196 0.864 0.268 0.668 -0.663 0.279 0.089 0.973 -0.090
Slaughter wt 0.827 -0.221 0.506 0.961 0.201 0.163 0.885 -.0203 0.869 0.262 0.668 -0.678 0.262 0.080 0.978 -0.111
Dressing wt 0.699 -0.061 -0.064 0.433 0.426 0.358 0.812 -0.184 0.797 0.243 0.715 0.054 0.150 0.584 0.443 -0.002
Carcass wt 0.882 0.040 -0.300 0.361 0.694 0.508 0.913 0.144 0.722 0.578 0.867 0.334 -0.086 0.884 0.246 -0.169
Liver wt 0.680 0.583 -0.350 0.051 0.956 0.092 0.649 0.608 0.262 0.850 0.549 0.633 -0.062 0.827 -0.146 0.014
Gizzard wt 0.665 0.546 0.140 0.397 0.752 -0.193 0.545 0.675 0.138 0.856 0.426 0.519 0.417 0.649 0.040 0.450
Heart wt 0.822 -0.218 -0.295 0.392 0.476 0.656 0.833 -0.152 0.799 0.281 0.808 0.121 -0.360 0.710 0.260 -0.475
Spleen wt -0.323 0.654 0.451 -0.066 0.089 -0.851 0.729 -0.362 0.813 0.047 -0.312 0.316 0.789 -0.060 -0.115 0.896
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Figure 1 showed different scree plots of the number 
of extracted component for each line, the extracted 
component was with eigenvalue more than 1 at points of 
inflexion. High body weight line had three components, 
low body weight line had two components, and random 
bred control line had three components. 

Table 6 showed rotated component matrix which explains 
the loading degree (correlation between the components 
and the traits) in the three lines. In the high body weight 
line, PC1 had high loadings on live weight (0.962), and 
slaughter weight (0.961). PC2 had high loadings on liver 
weight (0.956), gizzard weight (0.752) and carcass weight 
(0.694). PC3 had high negative loadings for spleen weight 
(-0.851), and heart weight (0.656).

For low body weight line, PC1 had high loadings 

(correlation) on slaughter weight (0.869), live weight 
(0.864), spleen weight (0.813), heart weight (0.799), 
dressing weight (0.797), and carcass weight (0.722).

PC2 had high loadings on gizzard weight (0.856), liver 
weight (0.850) and carcass weight (0.578).

For random bred control line, PC1 had high correlation 
with carcass weight (0.884), liver weight (0.827), heart 
(0.710), gizzard (0.649) and dressing weight (0.584). PC2 
had high correlation with slaughter weight and live weight 
(0.978, 0.978), respectively. PC3 had high correlation with 
spleen weight (0.896).

Figure 2 showed the extracted components in each line 
and the loadings or the variables that correlated to each 
principal component after varimax rotation.

Figure 1: Scree plot of the eigenvalues against the number of extracted components for the three lines.
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Figure 2: Component plot in rotated space with varimax rotation method.

CONCLUSION AND 
RECOMMENDATIONS

Depending on the results of this study, the conclusion is 
that three PC were extracted from eight variables of the 
high body weight line, two PC were extracted from eight 
variables of the low body weight line and three PC were 
extracted from eight variables of random bred control line.

The extracted components could be used as selection 
criteria for improving next generations. The components 
could also be used as factor scores for predicting the carcass 
characters in quail and this improving the production.
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