
June 2020 | Volume 39 | Issue 1 | Page 35

Journal of Engineering and Applied Sciences

Research Article

Introduction

In our past research, we have considered various
ways for reliably employing TT architectures using

low-cost embedded components (Pont, 2001, 2003;
Pont and Banner, 2004; Ayavoo et al., 2005; Amir and
Pont, 2010; Amir et al., 2010). Both single and multi-
processor designs were a part of this work. In the
case of multi-processor designs, we have sought to
demonstrate that “Shared-Clock” (SC) architecture
provides a simple, flexible platform for many systems
(Pont, 2001). In such designs, the Controller Area
Network (CAN) protocol introduced by Robert
Bosch GmbH in the 1980s (Bosch, 1991) provides
high reliability communications at low cost (Farsi
and Barbosa, 2000; Fredriksson, 1994; Thomesse,
1998; Sevillano et al., 1998). Since the CAN protocol
has become widely used in many sectors, such as
automotive and automation (Farsi and Barbosa,

2000; Fredriksson, 1994; Thomesse, 1998; Sevillano
et al., 1998; Pazul, 1999; Zuberi and Shin, 1995;
Misbahuddin and Al-Holou, 2003), most modern
microprocessor families now have members with
single and multiple on-chip support for this protocol
e.g., (Philips, 1996, 2004; Siemens, 1997; Infineon,
2004; NXP, 2020).

The SC protocols work on a Master-Slave(s)
arrangement. Originally we introduced two SC
protocols in 2001 (Pont, 2001). They are best known
as (“TTC-SC1” and “TTC-SC2”), where TTC-SC
means “Time Triggered Cooperative Shared Clock”.
In later papers we introduced four new protocols
(“TTC-SC3”, “TTC-SC4”, “TTC-SC5” and “TTC-
SC6”) which were a better match for the needs of
some applications (Ayavoo et al., 2005; Amir and
Pont, 2010; Amir et al., 2010). All implementations
from TTC-SC1 till TTC-SC4 were based on CAN

Abstract: In recent past, to rectify certain limitations of bus-based “Shared-Clock” (SC) architectures we have
developed two new SC protocols based on star topology. In both bus and star-based designs, the Controller
Area Network (CAN) protocol was used for network communications. Previously we have demonstrated
that both new protocols in their individual capacities have the potential for addressing issues relating to
Time-Triggered Cooperative (TTC) scheduling, Time Triggered bus-based CAN networks and the Single
Point of Failure (SPF) hypothesis in star networks. In this paper, we present a mechanism for integrating the
properties of both protocols in one. We present an amalgamation of protocols that result in a new protocol
which addresses all the above stated issues on a single platform.

Muhammad Amir1*, Syed Waqar Shah1, Salman Ilahi1 and Michael J. Pont2

1Department of Electrical Engineering, UET, Peshawar, Khyber Pakhtunkhwa, Pakistan; 2SafettySystemsTM Ltd, Registered
Office, 15 Nether End, Great Dalby, LE14 2EY, UK.

Received: January 10, 2020; Accepted: May 20, 2020; Published: June 20, 2020
*Correspondence: Muhammad Amir, Department of Electrical Engineering, UET, Peshawar, Khyber Pakhtunkhwa, Pakistan; Email: amir@
nwfpuet.edu.pk
Citation: Amir, M., S.W. Shah, S. Ilahi and M.J. Pont. 2020. Integrating TTC-SC5 and TTC-SC6 “Shared-Clock” protocols. Journal of
Engineering and Applied Sciences, 39(1): 35-40.
DOI: http://dx.doi.org/10.17582/journal.jeas/39.1.35.40
Keywords: Shared-Clock protocols, Controller Area Network (CAN), Differential tick rate, Fault-management, Industrial automation

Integrating TTC-SC5 and TTC-SC6 “Shared-Clock” Protocols

http://dx.doi.org/10.17582/journal.jeas/39.1.35.40
http://crossmark.crossref.org/dialog/?doi=10.17582/journal.jeas/39.1.35.40&domain=pdf&date_stamp=2008-08-14

June 2020 | Volume 39 | Issue 1 | Page 36

Journal of Engineering and Applied Sciences
bus topology. We have also introduced a “Dual CAN”
bus topology based SC design for utilization in high-
reliability applications (Short and Pont, 2007). TTC-
SC5 and TTC-SC6 on the other hand were deployed
using a CAN based star topology in order to enhance
the capabilities of SC architectures. The star topologies
which were designed for such implementations were
produced using the multi-CAN support offered on
the Master node microcontrollers (NXP, 2020).
Star-based topologies are felt to offer a number of
advantages for high-reliability embedded systems
e.g., (Manuel et al., 2006; FlexRay, 2004; TTA, 2003;
Manuel et al., 2005).

In the case of time-triggered designs, they also offer
the possibility that we can use the star configuration
to create a very flexible design in which periodic tasks
operate at a range of independent “Tick rates” (with
a different rate supported on each arm of the star), as
shown in Figure 1 and (Amir and Pont, 2010). This
type of configuration has the potential to address
some of the limitations of single-processor TTC
designs, and is difficult to achieve in a design based
on a single bus. Star topologies in SC environments
also have the capability of satisfying the CAN fault-
model through an arrangement as shown in Figure 2
and (Amir and Pont, 2010).

Figure 1: TTC-SC5 CAN-based star topology (Differentialtick
rate).

In this paper, we present a possible combination of
the individual properties of TTC-SC5 and TTC-
SC6 in a single hybrid protocol known as TTC-SC7.

The paper is organised as follows: In the following
section, we present the internal strategy of our TTC-
SC5 protocol. The section after that highlights the
techniques used in TTC-SC6 architecture. In the
second last section, we propose the amalgamation of
TTC-SC5 and TTC-SC6 into TTC-SC7and finally,
we present our conclusions.

Figure 2: TTC-SC6 (Single Tick rate) for CAN fault-model.

TTC-SC5 protocol
In this section, we highlight all the features of TTC-
SC5 algorithm and give a description of ways in
which this protocol achieved them.

Figure 3: TTC-SC5 single rate Tick transmission strategy.

Tick transmission (Single rate) strategy
In TTC-SC5, the Master node (NXP, 2020) has got
four separate CAN interfaces connecting four Slave
nodes through CAN cables. The Master node here is
configured to send a Tick message and receive an Ack
message on each of the four CAN links. This means
that if the overall Tick interval (duration between two
successive timer interrupts on the Master node) of

June 2020 | Volume 39 | Issue 1 | Page 37

Journal of Engineering and Applied Sciences
the network is kept at 1 msec., during that 1msecthe
Master node have to send each Slave an individual
Tick message and receive an Ack message back
from each Slave (see Figure 3). The overall number
of messages in 1 msec. in this case is eight. During
the next Tick interval, the Master node checks the
Ack messages received earlier before sending out
four new Tick messages. This cycle keeps repeating
itself after initialization. Due to the use of a Star
topology no TDMA sequencing as in bus-based
protocols is required. In this algorithm both the Tick
and Ack messages carry data. The reception of Ack
messages are also used for error detection in Slaves.
In previous bus-based SC designs to make the Tick
and Ack messages identifiable on the bus, a particular
Slave ID was to be inserted in them. In TTC-SC5
as the Master node is connected to the Slaves in a
Star topology it does not have to cycle through the
Slave IDs. In this case the Tick messages generate
interrupts on the Slaves thus causing the Slave nodes
to generate Ack messages with or without a Slave
ID inside the Tick message in the first place. So in
TTC-SC5 environment, an insertion of a Slave ID in
the Tick message is not essential and this makes the
protocol less complex. The Tick and Ack messages
can be naturally identified by the Master and Slaves
due to the use of separate CAN links of the Star
topology. The Tick transmission in TTC-SC5 can be
best understood from Listing 1.

Tick transmission (Differential rate) strategy
TTC-SC5 also offers the possibility that we can use
the star configuration to create a very flexible design in
which periodic tasks operate at a range of independent
“Tick rates” (with a different rate supported on each
arm of the star). This type of configuration has the
potential to address some of the limitations of single-
processor TTC designs, and is difficult to achieve on a
bus-based design. TTC-SC5 achieves this behaviour
by making use of the Star-based topology. In previous
bus-based designs the Master node used to send Tick
messages from its scheduler’s “Update function”. In
TTC-SC5, the Tick message transmission functions
can be added as tasks to the Master scheduler as
shown in Listing 2.

In Listing 2, the initial delay for all the added tasks
is kept at 0. While the TICK PERIOD on each of
the four arms of the star can be set according to the
scheduling needs of the task-set running on four
Slave nodes. Remember that each Slave is connected

to the Master via an independent CAN link. In this
way Tick message transmission can be scheduled to
support a different Tick rate on each arm of the star
network. In this approach the Master scheduler runs
at a fundamental Tick rate (1 msec.) and sends Tick
messages on each arm of the star with rates that are
multiples of the fundamental Tick rate. Please note
that each added task in Listing 2 corresponds to an
individual CAN interface on the Master node.

Listing 1: Routine for single Tick rate in TTC-SC5.

Listing 2: Routine for different Tick rates on individual arms of the
star topology.

June 2020 | Volume 39 | Issue 1 | Page 38

Journal of Engineering and Applied Sciences

Listing 3: Routine for fault-confinement in TTC-SC6.

TTC-SC6 protocol
In this section, we highlight all the features of TTC-
SC5 protocol and give a description of ways in which
this protocol achieved them.

Tick transmission strategy
TTC-SC6 can incorporate both single rate and
differential rate Tick transmission strategies but the

initial implementation uses single Tick rate. In TTC-
SC6 differential tick rate mechanism is achieved with
no scheduler overhead increase from TTC-SC5.

Addressing the CAN and TTC-SC6 fault-model
The related fault-model with TTC-SC6 architecture
and its confinement are given in Table 1. The
provisions in TTC-SC6 for tackling such a fault-
model are inserted directly into the “Scheduler
Update” function as shown in Listing 3. This shows
that without assigning additional hardware or
software resources, fault confinement can be achieved
cost-effectively from within the protocol itself. The
main reason for such fault confinement is the fact that
this SC protocol is deployed using a CAN-based star
topology (Listing 3).

Proposed TTC-SC7 hybrid protocol
We present an amalgamation of TTC-SC5 and
TTC-SC6protocols in this section. Here, we show a
possibility of having a single protocol as a result.

Tick transmission strategies
The Tick transmission strategy used in any SC
protocol depends upon the application that it caters
for. The proposed TTC-SC7 protocol can be used
with the option of both single and differential Tick
rates. As both the strategies have been used previously
in TTC-SC5, so there is no reason why they cannot
be used in the same manner inside the TTC-SC7
hybrid protocol.

Table 1: Fault-model for CAN and associated TTC-SC6 protocol.
Fault-Model (CAN and TTC-SC6)
Origin Fault Description Confinement in TTC-SC6
CAN hard-
ware

Node stuck at fault (Master/
Slave)

Stuck at dominant bit Port disablement (Silent or babbling removal)
Stuck at recessive bit Port disablement (Silent or babbling removal)

Network partitioning fault (Single or multiple link severing) Port(s) disablement (not effecting other nodes)
Shorted medium fault (Single or multiple links) Port(s) disablement (not effecting other nodes)

Network
node

Master hardware reset (accidental or due to power fluctua-
tion)

The Slaves go into safe state and wait for Master to
resume communication

Slave(s) hardware reset (accidental or due to power fluctua-
tion)

The Master node tries to reconnect to the effected
Slave(s). If unsuccessful then that Slave(s) is isolated
from the rest of the network (Port(s) disablement)

Data corruption due to Master or Slaves hardware Port(s) disablement (not effecting other nodes)
Scheduler Software problem on the Master or Slave nodes in sending

Tick or Acknowledgement messages
Port(s) disablement (not effecting other nodes)

Data corruption on CAN links of the star topology due to
external or internal factors. Data corruption will prevent the
schedulers from interpreting the data correctly.

The Master node tries to reconnect to the effected
Slave(s). If unsuccessful then that Slave(s) is isolated
from the rest of the network (Port(s) disablement)

Single point
of failure

Master node failure (Single point of failure hypothesis) Backup Master takes over the network

June 2020 | Volume 39 | Issue 1 | Page 39

Journal of Engineering and Applied Sciences
Addressing the overall SC fault-model
The fault confinement mechanism in TTC-SC6
for tackling CAN and SC protocol based faults was
made a part of the scheduler. The mechanism was
made effective due the fact that the protocol was
deployed using a CAN based star topology. TTC-
SC7 is also proposed for the same architecture, so
the provisions for fault-confinement can be easily
inserted on a scheduler level. In addition to that,
the TTC-SC7 protocol is been also equipped with
fault-tolerance capabilities as shown in Figure 4
through pseudo code. SWT in Figure 4 stands for
“System’s Wait Time” which is used for checking
whether a fault is intermittent or permanent. In case
of an intermittent fault, TTC-SC7 waits to see if
the fault will go away (Note: duration of SWT is
in the hands of the system’s designer). If the wait
exceeds the SWT then TTC-SC7 engages a non-
faulty peripheral node through its redundancy
management algorithm.

Increase Tick/global time count

Timer interrupt happened

Start

No

Yes
CAN1 interface

disabled

Slave1 Ack
error

Yes

Count_1 = SWT

Yes

No

CAN2interface
disabled

Slave2 Ack
error

Yes

Count_2 = SWT

Yes

Count_1 = 0 Count_2 = 0

No No

Disable CAN1

Send Tick on
CAN1

Send Tick on
CAN2

Count_1++

Send Tick on
CAN1

Count_2++

Send Tick on
CAN2

Disable CAN2, clear the Master
task array and ON the check

engine light

No No

Check engine

Turn on Check engine light

Yes

No

Yes
CAN3interface

disabled

Slave3 Ack
error

Yes

Count_3 = SWT

Yes

No

CAN4interface
disabled

Slave4 Ack
error

Yes

Count_4 = SWT

Yes

Count_3 = 0 Count_4 = 0

No No

Disable CAN3

Send Tick on
CAN3

Send Tick on
CAN4

Count_3++

Send Tick on
CAN3

Count_4++

Send Tick on
CAN4

Disable CAN4, clear the Master
task array and ON the check

engine light

No No

Turn on Check engine light

Yes

Wait for the next timer interrupt End

Figure 4: Pseudocode for the Port Guardian mechanism in TTC-
SC7 protocol.

It is pivotal to note here that all characteristics of
TTC-SC5 and TTC-SC6 are interchangeable as
shown in Figure 5 and such characteristics can be
amalgamated in order to create a protocol such as
TTC-SC7 with all individual properties.

Figure 5: Creating TTC-SC7 by amalgamating TTC-SC5 and
TTC-SC6.

Conclusions and Recommendations

Both TTC-SC5 and TTC-SC6 evolved due to the
experience gained with the previous four bus-based
SC algorithms through implementing them through
the RapidiTTy software plat form (RapidiTTy,
2020). In their own capacity they can be deployed for
specific applications like enhancing flexibly and fault-
confinement.

But if certain applications in embedded systems
require the properties of TTC-SC5 and TTC-SC6
in a combine manner then both mentioned protocols
can be completely integrated with considerable ease
and simplicity. The result of such an amalgamation is
the proposed TTC-SC7 protocol shown in Figure 5.

Novelty Statement

The proposed protocol i.e. TTC-SC7 provides
flexibility and fault-management in Time-Triggered
applications through a single platform.

Author’s Contribution

The design of TTC-SC5 & TTC-SC6 Shared-Clock
protocols was carried out by Muhammad Amir.
The idea of integrating these two protocols came
from Syed Waqar Shah. The verification of software
efficiency/optimization was done by Salman Ilahi and
finally, the feasibility of the overall proposed design
was validated by Michael J. Pont

June 2020 | Volume 39 | Issue 1 | Page 40

Journal of Engineering and Applied Sciences
Conflict of interest
The authors have declared no conflict of interest.

References

Amir, M. and M.J. Pont. 2010. A time-triggered
communication protocol for CAN-based
networks with a fault-tolerant star topology.
Proceedings of international symposium on
advanced topics on embedded systems and
applications (ESA2010), in conjunction with
IEEE international conference on embedded
software and systems, Bradford, UK.

Amir, M., D. Ayavoo and M.J. Pont. 2010. A novel
shared-clock protocol for fault-confinement
in can-based distributed systems. Proceedings
of the 5th IEEE system of systems conference,
Loughborough, UK.

Ayavoo, D., M.J. Pont, M.J. Short and S. Parker.
2005. Two novel shared-clock scheduling
algorithms for use with CAN-based distributed
systems. Proceedings of the 2nd UK Embedded
Forum, Birmingham, UK, pp. 246-261.

Bosch, R.G., 1991. CAN specification version 2.0.
Robert Bosch GmbH, Postfach 50, D-7000
Stuttgart 1, Germany.

Farsi, M. and M. Barbosa. 2000. CAN open
implementations: Applications to industrial
networks. Exeter: Research Studies Press Ltd.

Flex-Ray, 2004. FlexRay communication system
protocol specification version 2.0. FlexRay
Consortium.

Fredriksson, L.B., 1994. Controller area networks
and the protocol CAN for machine control
systems. Mechatronics, 4(2): 159-192. https://
doi.org/10.1016/0957-4158(94)90041-8

NXP, 2020. http://www.nxp.comaccessed on
14/11/2020 at 23:00 PST.

https://rapiditty-lite.software.informer.com/
download/ accessed on 14/11/2020 at 23: 00
PST.

Infineon, 2004. Connecting C166 and C500
microcontroller to CAN. Infineon Technologies.

Manuel, B., P. Julián, N. Guillermo and A. Luís.
2006. An active star topology for improving
fault confinement in CAN networks. IEEE
Trans. Industr. Inform., 2(2): 78-85. https://
doi.org/10.1109/TII.2006.875505

Manuel, B., A. Luís and P. Julián. 2005. ReCAN

centrate: A replicated star topology for CAN
networks. 0-7803-9402-X/05/$20.00©2005
IEEE, Vol. 2.

Misbahuddin, S. and N. Al-Holou. 2003. Efficient
data communication techniques for Controller
Area Network (CAN) protocol. ACS/IEEE
Int. Conf. Comput. Syst. Appl., Tunis, Tunisia.

Pazul, K. 1999. Controller Area Network (CAN)
basics. Microchip Technology Inc.

Philips, 1996. PCA82C250/251 CAN transceiver.
Philips semiconductors.

Philips, 2004. SJA1000 stand-alone CAN
controller.

Pont, M.J., 2001. Patterns for time-triggered
embedded systems: Building reliable
applications with the 8051 family of
microcontrollers. Harlow: Addison Wesley/
ACM Press.

Pont, M.J., 2003. Supporting the development
of time-triggered co-operatively scheduled
(TTCS) embedded software using design
patterns. Informatica, 27(1): 81-88.

Pont, M.J. and M.P. Banner. 2004. Designing
embedded systems using patterns: A case study.
J. Syst. Softw., 71(3): 201-213. https://doi.
org/10.1016/S0164-1212(03)00006-2

Sevillano, J.L., A. Pascual, G. Jimenez and B.
Civit. 1998. Analysis of channel utilization for
Controller Area Networks. Comput. Commun.,
21(16): 1446-1451. https://doi.org/10.1016/
S0140-3664(98)00166-2

Short, M.J. and M.J. Pont. 2007. Fault-tolerant
time-triggered communication using CAN.
IEEE Trans. Ind. Inf., 3(2): 131-142. https://
doi.org/10.1109/TII.2007.898477

Siemens, 1997. Proceedings of the European
pattern languages of programming conference.

Thomesse, J.P., 1998. A review of the field buses.
Ann. Rev. Contr., pp. 35-45. https://doi.
org/10.1016/S1367-5788(98)00003-0

TTA-Group, 2003. Time-triggered protocol
TTP/C High-Level Specification Doc.
Protocol Ver. 1.1, 1.4.3 ed. Vienna, Austria,
TTTECH.

Zuberi, K.M. and K.G. Shin. 1995. Non-preemptive
scheduling of messages on controller area
network for real-time control applications. Proc.
1st IEEE Real-Time Technol. Appl. Symp.,
Chicago, USA, pp. 240-249.

https://doi.org/10.1016/0957-4158(94)90041-8
https://doi.org/10.1016/0957-4158(94)90041-8
http://www.nxp.comaccessed
https://rapiditty-lite.software.informer.com/download/
https://rapiditty-lite.software.informer.com/download/
https://doi.org/10.1109/TII.2006.875505
https://doi.org/10.1109/TII.2006.875505
https://doi.org/10.1016/S0164-1212(03)00006-2
https://doi.org/10.1016/S0164-1212(03)00006-2
https://doi.org/10.1016/S0140-3664(98)00166-2
https://doi.org/10.1016/S0140-3664(98)00166-2
https://doi.org/10.1109/TII.2007.898477
https://doi.org/10.1109/TII.2007.898477
https://doi.org/10.1016/S1367-5788(98)00003-0
https://doi.org/10.1016/S1367-5788(98)00003-0

