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Introduction

In our past research, we have considered various 
ways for reliably employing TT architectures using 

low-cost embedded components (Pont, 2001, 2003; 
Pont and Banner, 2004; Ayavoo et al., 2005; Amir and 
Pont, 2010; Amir et al., 2010). Both single and multi-
processor designs were a part of this work. In the 
case of multi-processor designs, we have sought to 
demonstrate that “Shared-Clock” (SC) architecture 
provides a simple, flexible platform for many systems 
(Pont, 2001). In such designs, the Controller Area 
Network (CAN) protocol introduced by Robert 
Bosch GmbH in the 1980s (Bosch, 1991) provides 
high reliability communications at low cost (Farsi 
and Barbosa, 2000; Fredriksson, 1994; Thomesse, 
1998; Sevillano et al., 1998). Since the CAN protocol 
has become widely used in many sectors, such as 
automotive and automation (Farsi and Barbosa, 

2000; Fredriksson, 1994; Thomesse, 1998; Sevillano 
et al., 1998; Pazul, 1999; Zuberi and Shin, 1995; 
Misbahuddin and Al-Holou, 2003), most modern 
microprocessor families now have members with 
single and multiple on-chip support for this protocol 
e.g., (Philips, 1996, 2004; Siemens, 1997; Infineon, 
2004; NXP, 2020).

The SC protocols work on a Master-Slave(s) 
arrangement. Originally we introduced two SC 
protocols in 2001 (Pont, 2001). They are best known 
as (“TTC-SC1” and “TTC-SC2”), where TTC-SC 
means “Time Triggered Cooperative Shared Clock”. 
In later papers we introduced four new protocols 
(“TTC-SC3”, “TTC-SC4”, “TTC-SC5” and “TTC-
SC6”) which were a better match for the needs of 
some applications (Ayavoo et al., 2005; Amir and 
Pont, 2010; Amir et al., 2010). All implementations 
from TTC-SC1 till TTC-SC4 were based on CAN 
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bus topology. We have also introduced a “Dual CAN” 
bus topology based SC design for utilization in high-
reliability applications (Short and Pont, 2007). TTC-
SC5 and TTC-SC6 on the other hand were deployed 
using a CAN based star topology in order to enhance 
the capabilities of SC architectures. The star topologies 
which were designed for such implementations were 
produced using the multi-CAN support offered on 
the Master node microcontrollers (NXP, 2020). 
Star-based topologies are felt to offer a number of 
advantages for high-reliability embedded systems 
e.g., (Manuel et al., 2006; FlexRay, 2004; TTA, 2003; 
Manuel et al., 2005). 

In the case of time-triggered designs, they also offer 
the possibility that we can use the star configuration 
to create a very flexible design in which periodic tasks 
operate at a range of independent “Tick rates” (with 
a different rate supported on each arm of the star), as 
shown in Figure 1 and (Amir and Pont, 2010). This 
type of configuration has the potential to address 
some of the limitations of single-processor TTC 
designs, and is difficult to achieve in a design based 
on a single bus. Star topologies in SC environments 
also have the capability of satisfying the CAN fault-
model through an arrangement as shown in Figure 2 
and (Amir and Pont, 2010).

Figure 1: TTC-SC5 CAN-based star topology (Differentialtick 
rate).

In this paper, we present a possible combination of 
the individual properties of TTC-SC5 and TTC-
SC6 in a single hybrid protocol known as TTC-SC7. 

The paper is organised as follows: In the following 
section, we present the internal strategy of our TTC-
SC5 protocol. The section after that highlights the 
techniques used in TTC-SC6 architecture. In the 
second last section, we propose the amalgamation of 
TTC-SC5 and TTC-SC6 into TTC-SC7and finally, 
we present our conclusions.

Figure 2: TTC-SC6 (Single Tick rate) for CAN fault-model.

TTC-SC5 protocol
In this section, we highlight all the features of TTC-
SC5 algorithm and give a description of ways in 
which this protocol achieved them.

Figure 3: TTC-SC5 single rate Tick transmission strategy.

Tick transmission (Single rate) strategy
In TTC-SC5, the Master node (NXP, 2020) has got 
four separate CAN interfaces connecting four Slave 
nodes through CAN cables. The Master node here is 
configured to send a Tick message and receive an Ack 
message on each of the four CAN links. This means 
that if the overall Tick interval (duration between two 
successive timer interrupts on the Master node) of 
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the network is kept at 1 msec., during that 1msecthe 
Master node have to send each Slave an individual 
Tick message and receive an Ack message back 
from each Slave (see Figure 3). The overall number 
of messages in 1 msec. in this case is eight. During 
the next Tick interval, the Master node checks the 
Ack messages received earlier before sending out 
four new Tick messages. This cycle keeps repeating 
itself after initialization. Due to the use of a Star 
topology no TDMA sequencing as in bus-based 
protocols is required. In this algorithm both the Tick 
and Ack messages carry data. The reception of Ack 
messages are also used for error detection in Slaves. 
In previous bus-based SC designs to make the Tick 
and Ack messages identifiable on the bus, a particular 
Slave ID was to be inserted in them. In TTC-SC5 
as the Master node is connected to the Slaves in a 
Star topology it does not have to cycle through the 
Slave IDs. In this case the Tick messages generate 
interrupts on the Slaves thus causing the Slave nodes 
to generate Ack messages with or without a Slave 
ID inside the Tick message in the first place. So in 
TTC-SC5 environment, an insertion of a Slave ID in 
the Tick message is not essential and this makes the 
protocol less complex. The Tick and Ack messages 
can be naturally identified by the Master and Slaves 
due to the use of separate CAN links of the Star 
topology. The Tick transmission in TTC-SC5 can be 
best understood from Listing 1.

Tick transmission (Differential rate) strategy
TTC-SC5 also offers the possibility that we can use 
the star configuration to create a very flexible design in 
which periodic tasks operate at a range of independent 
“Tick rates” (with a different rate supported on each 
arm of the star). This type of configuration has the 
potential to address some of the limitations of single-
processor TTC designs, and is difficult to achieve on a 
bus-based design. TTC-SC5 achieves this behaviour 
by making use of the Star-based topology. In previous 
bus-based designs the Master node used to send Tick 
messages from its scheduler’s “Update function”. In 
TTC-SC5, the Tick message transmission functions 
can be added as tasks to the Master scheduler as 
shown in Listing 2. 

In Listing 2, the initial delay for all the added tasks 
is kept at 0. While the TICK PERIOD on each of 
the four arms of the star can be set according to the 
scheduling needs of the task-set running on four 
Slave nodes. Remember that each Slave is connected 

to the Master via an independent CAN link. In this 
way Tick message transmission can be scheduled to 
support a different Tick rate on each arm of the star 
network. In this approach the Master scheduler runs 
at a fundamental Tick rate (1 msec.) and sends Tick 
messages on each arm of the star with rates that are 
multiples of the fundamental Tick rate. Please note 
that each added task in Listing 2 corresponds to an 
individual CAN interface on the Master node.

Listing 1: Routine for single Tick rate in TTC-SC5.

Listing 2: Routine for different Tick rates on individual arms of the 
star topology.
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Listing 3: Routine for fault-confinement in TTC-SC6.

TTC-SC6 protocol
In this section, we highlight all the features of TTC-
SC5 protocol and give a description of ways in which 
this protocol achieved them.

Tick transmission strategy
TTC-SC6 can incorporate both single rate and 
differential rate Tick transmission strategies but the 

initial implementation uses single Tick rate. In TTC-
SC6 differential tick rate mechanism is achieved with 
no scheduler overhead increase from TTC-SC5.

Addressing the CAN and TTC-SC6 fault-model
The related fault-model with TTC-SC6 architecture 
and its confinement are given in Table 1. The 
provisions in TTC-SC6 for tackling such a fault-
model are inserted directly into the “Scheduler 
Update” function as shown in Listing 3. This shows 
that without assigning additional hardware or 
software resources, fault confinement can be achieved 
cost-effectively from within the protocol itself. The 
main reason for such fault confinement is the fact that 
this SC protocol is deployed using a CAN-based star 
topology (Listing 3).

Proposed TTC-SC7 hybrid protocol
We present an amalgamation of TTC-SC5 and 
TTC-SC6protocols in this section. Here, we show a 
possibility of having a single protocol as a result.

Tick transmission strategies
The Tick transmission strategy used in any SC 
protocol depends upon the application that it caters 
for. The proposed TTC-SC7 protocol can be used 
with the option of both single and differential Tick 
rates. As both the strategies have been used previously 
in TTC-SC5, so there is no reason why they cannot 
be used in the same manner inside the TTC-SC7 
hybrid protocol.

Table 1: Fault-model for CAN and associated TTC-SC6 protocol.
Fault-Model (CAN and TTC-SC6)
Origin Fault Description Confinement in TTC-SC6
CAN hard-
ware

Node stuck at fault (Master/
Slave)

Stuck at dominant bit Port disablement (Silent or babbling removal)
Stuck at recessive bit Port disablement (Silent or babbling removal)

Network partitioning fault (Single or multiple link severing) Port(s) disablement (not effecting other nodes)
Shorted medium fault (Single or multiple links) Port(s) disablement (not effecting other nodes)

Network 
node

Master hardware reset (accidental or due to power fluctua-
tion)

The Slaves go into safe state and wait for Master to 
resume communication

Slave(s) hardware reset (accidental or due to power fluctua-
tion)

The Master node tries to reconnect to the effected 
Slave(s). If unsuccessful then that Slave(s) is isolated 
from the rest of the network (Port(s) disablement)

Data corruption due to Master or Slaves hardware Port(s) disablement (not effecting other nodes)
Scheduler Software problem on the Master or Slave nodes in sending 

Tick or Acknowledgement messages
Port(s) disablement (not effecting other nodes)

Data corruption on CAN links of the star topology due to 
external or internal factors. Data corruption will prevent the 
schedulers from interpreting the data correctly.

The Master node tries to reconnect to the effected 
Slave(s). If unsuccessful then that Slave(s) is isolated 
from the rest of the network (Port(s) disablement)

Single point 
of failure

Master node failure (Single point of failure hypothesis) Backup Master takes over the network
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Addressing the overall SC fault-model
The fault confinement mechanism in TTC-SC6 
for tackling CAN and SC protocol based faults was 
made a part of the scheduler. The mechanism was 
made effective due the fact that the protocol was 
deployed using a CAN based star topology. TTC-
SC7 is also proposed for the same architecture, so 
the provisions for fault-confinement can be easily 
inserted on a scheduler level. In addition to that, 
the TTC-SC7 protocol is been also equipped with 
fault-tolerance capabilities as shown in Figure 4 
through pseudo code. SWT in Figure 4 stands for 
“System’s Wait Time” which is used for checking 
whether a fault is intermittent or permanent. In case 
of an intermittent fault, TTC-SC7 waits to see if 
the fault will go away (Note: duration of SWT is 
in the hands of the system’s designer). If the wait 
exceeds the SWT then TTC-SC7 engages a non-
faulty peripheral node through its redundancy 
management algorithm.

 

Increase Tick/global time count 

Timer interrupt happened 

Start 

No 

Yes 
CAN1 interface 

disabled 

Slave1 Ack 
error 

Yes 

Count_1 = SWT 

Yes 

No 

CAN2interface 
disabled 

Slave2 Ack 
error 

Yes 

Count_2 = SWT 

Yes 

Count_1 = 0 Count_2 = 0 

No No 

Disable CAN1 

Send Tick on 
CAN1 

Send Tick on 
CAN2 

Count_1++ 

Send Tick on 
CAN1 

Count_2++ 

Send Tick on 
CAN2 

Disable CAN2, clear the Master 
task array and ON the check 

engine light 

No No 

Check engine 

Turn on Check engine light 

Yes 

No 

Yes 
CAN3interface 

disabled 

Slave3 Ack 
error 

Yes 

Count_3 = SWT 

Yes 

No 

CAN4interface 
disabled 

Slave4 Ack 
error 

Yes 

Count_4 = SWT 

Yes 

Count_3 = 0 Count_4 = 0 

No No 

Disable CAN3 

Send Tick on 
CAN3 

Send Tick on 
CAN4 

Count_3++ 

Send Tick on 
CAN3 

Count_4++ 

Send Tick on 
CAN4 

Disable CAN4, clear the Master 
task array and ON the check 

engine light 

No No 

Turn on Check engine light 

Yes 

Wait for the next timer interrupt End 

Figure 4: Pseudocode for the Port Guardian mechanism in TTC-
SC7 protocol.

It is pivotal to note here that all characteristics of 
TTC-SC5 and TTC-SC6 are interchangeable as 
shown in Figure 5 and such characteristics can be 
amalgamated in order to create a protocol such as 
TTC-SC7 with all individual properties.

Figure 5: Creating TTC-SC7 by amalgamating TTC-SC5 and 
TTC-SC6.

Conclusions and Recommendations

Both TTC-SC5 and TTC-SC6 evolved due to the 
experience gained with the previous four bus-based 
SC algorithms through implementing them through 
the RapidiTTy software plat form (RapidiTTy, 
2020). In their own capacity they can be deployed for 
specific applications like enhancing flexibly and fault-
confinement. 

But if certain applications in embedded systems 
require the properties of TTC-SC5 and TTC-SC6 
in a combine manner then both mentioned protocols 
can be completely integrated with considerable ease 
and simplicity. The result of such an amalgamation is 
the proposed TTC-SC7 protocol shown in Figure 5.

Novelty Statement

The proposed protocol i.e. TTC-SC7 provides 
flexibility and fault-management in Time-Triggered 
applications through a single platform.
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