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Introduction

While completing complex tasks in a dynamic 
environment, a single robot faces certain 

operational constraints. To improve the overall 
system performance and to reduce such limitations, 
the idea of multi-robot system (MRS) has been 
proposed (Khan et al., 2014). An MRS is composed 
of a set of self-organizing robots which seek to find 
an appropriate solution for a complex task in an 
autonomous manner. The robots in an MRS typically 
possess some degree of artificial intelligence and have 
local observations. They observe variations in the 
environment and in other robots, and take measures 
built on this knowledge.

Co-ordination and co-operation in an MRS may be 
described as “the group members accomplishing the 
tasks together in an organized manner to complete 
a global task either that cannot be completed by a 
single robot, or whose efficiency and performance 
can be improved by using more than one robot”. An 
individual robot in such a system not only completes 
its own task, but also looks for and communicates with 
other group members to identify if there are more 
essential and crucial tasks that need to be completed 
in a timely manner.

Numerous algorithms and architectures have been 
developed and analyzed for multi-robot co-operation 
(MRC) which include market-based approaches, 
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biology inspired methodologies, and behaviour-
based architectures. The development of artificial 
immune system (AIS) is comparatively advanced 
and is progressing swiftly. The AIS concept has been 
incorporated in several intelligent systems including 
computer security (Forrest et al., 1994), fault diagnosis 
(Ishida, 1993), and MRSs (Khan and De Silva, 2009; 
Gao and Luo, 2008).

The idiotypic network theory proposed by Jerne 
suggests that an immune system has antibodies that 
not only recognize the foreign invaders (antigens) 
but can also recognize other antibodies ( Jerne, 
1974; Farmer et al., 1986). This leads to an extremely 
effective and efficient immune system that consists of 
a network of different antibodies.
 
The mutual interaction of robots in a multi-robot 
framework (MRF) for accomplishing various tasks 
and their individual task performing capabilities often 
suffer from the challenges of communication among 
the robots and underutilizing the robot’s capabilities 
to achieve the optimal performance. This necessitates 
the need of a novel and more promising solution to 
this problem as compared to the existing approaches.

In this paper, the concepts of artificial immune 
system and fuzzy logic are utilized to develop a 
hybrid architecture for MRC. The idiotypic network 
theory and clonal selection theory are utilized to 
establish co-operation and coordination among a 
group of heterogeneous robots. Specifically, fuzzy 
logic is incorporated in the architecture to calculate 
the binding affinity and to select the best robot 
among the robotic team for the co-operative task 
accomplishment.
 
This paper is organized as follows. Section 2 presents 
a literature survey. The concept of immune system is 
introduced in Section 3. The proposed methodology 
for MRC is given in Section 4. Simulation results 
are discussed in Section 5, while the conclusion and 
future work are given in Section 6.

Related work
Research in the area of MRC is rapidly progressing 
and several algorithms and architectures have 
been developed. The existing techniques have both 
advantages and disadvantages. The progress made in 
the area of MRC is presented in this section.

A disseminated architecture for MRC scheme 
was proposed by Botelho and Alami (1999). The 
architecture for co-operative mechanism was based on 
contract net protocol. The allocation of tasks among 
different robots and their realization was discussed 
and a co-operative mechanism was established 
for dealing with future events that are possible but 
could not be predicted with certainty. Chaimowicz 
et al. (2001) developed a framework that was de-
centralized, and the robots always follow a single robot 
known as a leader. The robots coordinate with each 
other through communication. An additional feature 
was incorporated to change the leader robot during 
task performance. A software framework named as 
ALLIANCE for the MRC with the capabilities of 
robust control and fault tolerance was developed by 
Parker (1994). In that framework, the performance of 
robots in the team was improved through learning. A 
biology-inspired architecture for MRC was developed 
by Yingying et al. (2003). To solve the problems of 
optimization and distributed control for MRC, the 
proposed architecture applied the idea of the co-
operation of ants in acquiring their prey. The main 
problem addressed in the developed architecture was 
the number of robots required for the accomplishment 
of a particular task, which was solved by applying 
the concept of stigmergy from ant societies. Sariel 
and Balch (2006) proposed a control framework for 
multi-robot transportation known as DEMiR-CF. 
The developed architecture was intended for the 
execution and accomplishment of any difficult task. 
The approach integrated a co-operative framework for 
multi-robot task allotment and response to incidents. 
Auction-based task allocation approach for a multi-
robot cooperative system was developed by Gerkey 
and Mataric (2002). The approach was based on 
mediation process which incorporated contract net 
protocol. The approach was successfully implemented 
in the lightly and strongly integrated scenarios of 
multi-robot cooperation. Kuniyoshi et al. (1994) 
proposed a vision based approach for the MRC. The 
proposed control framework, called as collaboration 
by observation, had been successfully employed in 
real robots having actuators and sensors without the 
central control and communication. A multi-robot 
cooperative mechanism that was motivated by the 
biological immune system was presented in by Khan 
and De Silva (2013). The architecture was based on 
Jerne’s idiotypic network theory. The selection of most 
appropriate robot for a cooperative task was based on 
Formers mathematical model of idiotypic network 
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theory. A biology-inspired distributed system for 
MRC was proposed by Kube and Bonabeau (2000). 
The behaviour of ants was examined while they were 
transporting food to their nests and was applied in 
multi-robot cooperative systems. Ants reposition 
themselves if a deadlock is created while transporting 
food. Similarly, in the proposed architecture the 
robots repositioned themselves while performing a 
box pushing task when a deadlock was created. In our 
previous work a control framework was developed for 
the MRC based on the concept of artificial immune 
system (Khan et al., 2014). The architecture was 
effectively employed in a set of heterogeneous robots 
for transportation.

Immune system
Biological immune system: Biological Immune 
System (BIS) is a combination of organs, cells and 
tissues that work jointly to defend the body from the 
attacks of harmful intruders known as pathogens. 
Human body offers a perfect environment for several 
pathogens like bacteria, parasites and viruses that can 
produce illnesses. It is the duty of immune system to 
avoid the pathogens or diminish them. It can identify 
and memorize millions of invading pathogens. It 
comprises cells that produce secretions to discover and 
wipe out virtually any kind of attacking pathogens. 

The organs of an immune system are arranged all over 
the body. They are called lymph nodes. Lymph nodes 
home immune cells known as lymphocytes. The 
lymphocytes can be categorized as T-lymphocytes and 
B-lymphocytes. The lymphocytes work collectively 
and can affect the functions of each other. However, 
their functions are different in the immune system. 
T-lymphocytes are further divided into T helper cell 
and T killer cell. T helper cells communicate with 
other immune cells and coordinate the immune 
response. Some of the T helper cells activate B cells to 
generate antibodies (Kelly, 2007). B-lymphocytes on 
the other hand generate and release antibodies into 
the blood. The antibodies recognize and eliminate 
the foreign antigens that enter the body. Antibodies 
consist of four chains: two heavy chains and two 
light chains. The heavy and light chains are pooled 
to obtain a Y-shaped formation, as given in Figure 1. 
Each heavy chain and light chain can be characterized 
by two regions, variable and constant. The variable 
region, also called paratrope, is composed of the upper 
part of the heavy and light chains. The paratrope 
is different for every antibody and can recognize 

the antigen. The constant region is composed of 
the remaining of heavy and light chains, which is 
responsible for defining a suitable mechanism for 
the destruction of antigen. An antigen penetrates the 
blood stream and stimulates certain immune cells 
(whose paratrope matches the antigen’s epitope). 
The antibody’s paratrope on the surface of the cells is 
paired to the antigen’s epitope, and thus the antibody 
connects itself to antigen. The antibody alone destroys 
the antigen or with the assistance of another antibody 
while working cooperatively.

Figure 1: Antibody’s structure.

The antibody’s paratrope recognizes the epitope of an 
antigen with a specific binding affinity that depends 
on the matching potency amongst epitope and 
paratrope. A low affinity is generated if a paratrope of 
the antibody does not perfectly suit antigen’s epitope. 
The perfect matching results in greater affinity, and 
hence the response of the immune system is more 
effective towards the antigen. 

In addition to lymphocytes, an immune system stores 
plenty of phagocytes which capture and process 
the invading antigens. They attract the attention of 
matching lymphocytes by presenting the bits of the 
processed antigens to them. 

Jerne’s idiotypic network theory: The immune 
network theory proposed by Jerne (1974) states that 
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an immune system can activate and recognize its own 
elements even if the antigens are absent. As per this 
theory, every antibody in immune besides paratrope 
has also idiotope on its surface that is recognizable 
for another antibody’s paratrope, and thus can form a 
network of Figure 2.

Figure 2: Idiotypic network theory.

The antibody AB-II on B-lymphocyte II matches 
the epitope of an antigen, and AB-II matches the 
idiotope D-I of an antibody AB-I on B-lymphocyte 
I. For this reason, the idiotope D-I is said to be 
internal image of the antigen. Thus antibody AB-II 
is capable of recognizing the AB-I and antigen. If the 
antibody’s paratrope matches the idiotope of another 
antibody, it is triggered. On the contrary, when the 
idiotope of an antibody is known by the paratrope of 
another antibody, the antibody is inhibited. If a cell 
receptor identifies an antigen, it results in cell creation 
and system stimulation.

Bona (2018) discussed the idiotypic connection 
between the self and non-self antigens. In view of the 
extensive idiotype (ID) connectivity between self and 
non-self antigens, the deletion of such auto reactive 
clones would be impossible. The author proposed a 
model whereby autoimmunity was initiated by the 
normal operation of ID networks. It was observed 
that an anti-ID in one antigen system was potentially 
harmful autoantibody in another. Landmann et 
al. (2017) proposed a mathematical model for 
the idiotypic network that was self tolerating and 
autoimmune. A single node indicated B-lymphocytes 
clones and antibodies of the corresponding idiotype in 
the network and its encoding was done by a bit string 
in the network. The established links among the nodes 

were the representation of the clones that had idiotype 
with complementation. The survivability of a clone 
was dependent on the nodes in its neighborhood that 
must exist in moderate amount rather than in scarcity 
or in abundance. The network was powered by the 
flow of the lymphocytes that had idiotype generated 
in a random manner from the bone marrow.

Clonal selection theory
The successful identification of an antigen by a cell 
receptor causes the cell cloning, as shown in Figure 
3. As a result of this replication, a cell proliferates 
(divides) and matures into plasma cells. This increases 
the concentration of antibodies that recognize and 
eliminate the antigens of a given type. The immune 
system is therefore able to eliminate the recurring 
antigens at higher efficiency and speed. This more 
rapidly response is termed as secondary reaction. In 
addition, the high affinity cells that are aroused by the 
antigen are chosen to become memory cells. In future 
responses, these memory cells play a pre-eminent role 
against similar antigens (De Castro and Zuben, 2000; 
Coutinho, 1989).

Figure 3: Clonal selection theory.
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Several features of the adaptive immune system, 
such as diversity adequacy, discriminating between 
self and non-self and maintaining the memory of 
immunology, are explained by Yang et al. (2019) 
using the clonal selection algorithm (CSA). The 
CSA provides proliferation and elimination of 
the cells that possess high affinitive. The CSA also 
helped in the identification of cells with low affinity 
by making use of the change in their receptors. 
For this reason, such cells are less subjected to the 
change and editing in their affinity, and therefore 
only the cells with high affinity are selected most of 
the times while cells with low affinity are discarded. 
The artificial immune system that is inspired by the 
biological immune system of the human being is a 
computation model in various forms. The CSA, being 
it’s one of the forms, can be applied to solve a number 
of problems involving optimization. However, the 
complex optimization problems that involve CSA 
often have the issues of losing the diversity, unstable 
converging behaviour and the stagnation process 
(Zhang et al., 2019). These issues were overcome by 
proposing an improved version of the algorithm that 
utilized a diverse population and solved the problem 
of unstable converging behaviour. In addition, the 
searching ability was improved by introducing a 
mutation strategy that can be controlled adaptively.

Materials and Mathods

Multi-robot cooperation problem
The proposed framework is based on the concept of 
artificial immune system which mimics the function 
and structure of the human immune system to cope 
with the task accomplishment individually as well as 
collectively by the robots. The proposed framework 
for the MRC contains three kinds of robots: one type 
represents phagocytes known as P-robots, another 
type represents T cells (helper) known as T-robots, 
while the third one represents B cells known as 
B-robots. The purpose of P-robots is to search and 
scoute, and they are homogenous. Their job is to 
search for the duties in the environment and report 
it to B-robots. T-robots are also homogenous and are 
housed in charging stations (Lymph nodes). They are 
used to charge B-robots, thus ensuring uninterrupted 
operation of B-robots. B-robots performs both 
the task search and accomplishment, and they are 
heterogeneous.

Once a P-robot detects a task, it notifies the B-robots 

regarding the required capabilities and the location 
of the job, and then starts exploring the environment 
for another task. On the other hand if B-robot finds 
a task, it tries to accomplish it alone, given that it has 
the abilities to handle the task. However, if it is unable 
to accomplish the task alone, it will send a help signal 
to ask for the help of other B-robots. The robot that 
sends the help signal is called the initiating robot. The 
help signal comprises of data about the task location 
and the capabilities required to tackle the task. The 
B-robots in the search state will reply to the help call 
and will verify their abilities list to determine their 
suitability for the task. Those robots that can handle 
the task will determine their binding affinity. A robot 
in the team with highest binding affinity is chosen 
to help in accomplishing the task. The robot selected 
for the help is known as a helping robot which will 
co-ordinate with the initiating robot to work co-
operatively.

If a B-robot finds a task that it cannot handle due 
to insufficient capabilities, it will inform other robots 
in the search state about the task and its capability 
requirement. If all the B-robots in the explore state are 
not capable of handling the task, then the B-robots in 
the busy state will be informed. If a B-robot in the 
busy state can handle the task, it will respond to the 
signal and will accomplish the task after completing 
the present task. If the B-robots in the busy state are 
also unable to handle this task, then the initiating 
robot will recognize it as a new task. The initiating 
robot will then generate a specific response. In the 
specific response, the initiating robot manipulates 
its capabilities with its teammates, and generates a 
specific capability that can handle a complex task. The 
helping robot in the specific response is selected based 
on the binding affinity function. The robots after 
completing a task will save information about the 
task in their memory. They will also send a message 
to all the remaining B-robots to save information 
about this task. Next time when the same complex 
task is found, the B-robot will check its memory and 
will directly generate a specific response instead of 
searching for B-robots in the system. As a result, the 
task will be completed more efficiently and quickly. 
Figure 4 shows the complete framework of multi-
robot cooperation based on AIS.

While performing a task the batteries of robots will 
deplete. If the battery of a P-robot or a B-robot 
depletes below a specific threshold, it will go to the 
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charging base to restore its battery. However, if the 
battery of a B-robot depletes below the threshold 
while it is performing a task, it will send a signal to 
the T-robot for charging its battery. T-robot that 
has a mobile charger will reach the B-robot and will 
charge up the battery. The framework for charging the 
battery of a robot is shown in Figure 5.

Figure 4: Control framework for MRC.

Figure 5: Flowchart for battery charging of a robot.

Biological immune system and multi-robot cooperation 
analogy
The capacities of B-robot are equivalent to the 
antibody’s paratrope. The tasks in the environment 
are like antigens, and aspects of the task are equivalent 
to the antigen’s epitope. In the case of multi-robot 
system, the robots work in an unknown and dynamic 
environment that contains both dynamic and static 
obstacles. These obstacles are like self-antigens. In 
an immune system, the immune cell only destroys 
the non-self-antigens while leaving behind the self-
antigens. Analogously, in multi-robot cooperation, 
the robots avoid each other and obstacles, and seek to 
complete the tasks present in the environment.

Phagocytes and P-robots
 Phagocytes in an immune system take and process 
the antigens. They portray the epitopes of the treated 
antigens in such a way to attract the interest of the 
identical B cells. Similar to phagocytes, P-robots in 
multi-robot co-operation have a vision system. They 
explore the location for tasks and obtain information 
about them, e.g., the location of the task and its 
capability requirements. They share this information 
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with other B-robots (antibodies).

T (Helper) cells and T-robots
T cells in an immune system communicate with other 
immune cells and co-ordinate the immune response. 
Some of these cells activate B cells to generate 
antibodies. Analogous to T (helper) cells, T-robots in 
multi-robot cooperation have a mobile charger and 
they charge the batteries of B-robots whenever it is 
required.
 
B cells and B-Robots
In an immune system, a B cell squirts unique Y shaped 
structures called antibodies. The antibody contains 
both the light and heavy chains. A B-robot, similar to 
an antibody, has a set of light chains (LC1 and LC2) 
and a set of heavy chains (HC1 and HC2), as shown 
in Figure 6. The LC1 represents the form of robot at 
an instance. A robot may be in search or in working 
mode at a specific time. The light chain LC2 contains 
the general sensory data that includes the speed of 
robot, the orientation of robot relative to the task, the 
frequency of task accomplishment and the obstacles in 
front of robot. The heavy chain HC1 stores the skills 
of a robot including its software capacities, e.g., the 
vision system, and hardware capabilities, e.g., arms, 
wheels, bumpers and gripper. The heavy chain HC2 
is reserved for a specific response and it represents 
the capability requirement for a complex task that is 
accomplished through a specific response.

Lymph nodes and charging stations
Lymph nodes in an immune system resides 
lymphocytes. Similar to lymph nodes, charging bases 
are used in this research to charge the batteries of 
robots. In addition, T-robots are also housed in the 
charging stations.
 
Binding affinity function 
Binding affinity in the context of immune system is 
the strength with which the antigen’s epitope matches 
the antibody’s paratrope. In MRC, the concept of 
binding affinity is utilized for the selection of most 
skilled and appropriate robot to accomplish a given 
task. It is a function of gap between a robot and a 
certain task (Drt), the velocity of the robot (Ur), the 
charge in the battery of a robot (Br), obstacles between 
the robot and the task (Hrt), and the performance rate 
of the robot (Pr). 

Figure 6: Antibody’s (B-robot) light and heavy chains.

In this research work, Manhattan distance is used to 
determine the distance between a motivated robot 
and the job. Manhattan distance is resilient to noisy 
data and is more efficient in terms of computation.
 Manhattan distance is defined by.

Binding affinity is also dependent on the robot’s 
performance rate. If a task is successfully accomplished 
by a robot, its performance rate is enhanced.

Fuzzy logic-based approach
An unknown environment cannot be predicted 
accurately and thus cannot be modelled. The Fuzzy 
logic is very appropriate for such kind of environments 
because it does not require any modelling. A block 
diagram for fuzzy binding affinity is shown in Figure 
7. The key steps in calculating the binding affinity 
through fuzzy logic are fuzzification of the input 
variables, evaluation of the rules and defuzzification 
of the fuzzy output variable (Karray and De Silva, 
2004; Dubois and Prade, 1980). 

 
Figure 7: Block diagram of the proposed algorithm for fuzzy binding 
affinity.

The proposed algorithm takes the distance between 
the robot and the task (Drt), the velocity of robot (Urt), 
the charge in the battery of a robot (Br), obstacles 
between the robot and task  (Hrt) and the success rate 
of robot (Pr) as input variables. These inputs are then 
fuzzified in the fuzzy plane. Figures 8 and 9 show the 
associated membership functions with the input and 
output fuzzy sets, respectively.

The triangular membership functions were used 
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because they are computationally cheap as compared 
to other complex functions. In addition, it is observed 
that the results are not affected significantly by using 
the triangular membership functions as compared to 
complex functions.

Figure 8: Input membership functions:(a) Distance, (b) Battery, (c) 
Speed, (d) Obstacles, (e) Success rate.

A knowledge base containing a set of 243 rules 
evaluates the fuzzified inputs to measure the binding 
affinity in the fuzzy plane. A sample of the rule base is: 

If the Distance is ‘Low’ and the Battery is ‘High’ and 
the Velocity is ‘High’ and the Obstacles is ‘Low’ and 

the Success Rate is ‘High’ then the Binding Affinity 
is ‘High’.

Figure 9: Output Binding Affinity membership function.

The output of the fuzzy inference system is in the 
fuzzy plane. The defuzzification of the output variable 
is performed using the centroid method to obtain a 
crisp value of the binding affinity.

Network theory and multi-robot cooperation
Non-specific response: In non-specific response, 
upon identification of a topic, a B-robot tends for 
its accomplishment. If the robot is unable to execute 
the task, it will contact other B-robots and will co-
operate with them to complete the task. In the first 
step, the B-robot that initiates the task completion 
matches its capabilities with those of the robot whose 
capabilities are known to some extent. Figure 10 
depicts the matching of paratrope of the antibody 
(robots capabilities) with the task capabilities of the 
antigen.

Figure 10: Comparison of the paratrope of antibody (B-robot) with 
epitope of task. 

The comparison of the task capability requirements 
(epitope) and the robot’s capabilities (paratrope) is 
accomplished in all of the alignment. If the robot 
capabilities and the task capabilities match, the robot 
is stimulated and will proceed to complete the task.
 
The initiating robot transmits a help signal to B-robots 
that act as antibodies if it is unable to complete the 
task alone, which comprises of information related to 
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the task i.e., the location of the antigen and its epitope 
that appears to the robots in the idiotope form. In 
order to respond to the help, signal, the neighbour 
B-robots that are in the explore state are activated 
and their paratrope match with that of the robot that 
initiates the initiative as shown in Figure 11.

Figure 11: Matching of the antibody (B-robot) paratrope and 
idiotope.

B-robots that have all the completely capable take 
part in the simulation process and the rest go into 
the explore state are stimulated while the remaining 
B-robots will go for exploration and searching the 
environment for another task. 

Stimulation of the antibodies in an immune system 
happens when they come in direct contact with another 
antibody. However, in the present work of multi-
robot cooperation, the robots stimulate each other by 
mutual communication without physical contact. The 
binding affinity function is used to choose the most 
suitable robot during simulation. Every robot finds its 
binding affinity based on the data already captured 
and the robot that has the highest value of the affinity 
function is chosen for help. The helping and initiating 
robots mutually then communicate to perform the 
task. 

If a P-robot finds a task, it messages the B-robots 
related to the position and the capability needed for 
the completion of the task. All the B-robots compute 
their binding affinity and the robot with the highest 
value of this function accomplishes the task.
 
Specific response: To generate a specific response, 
different B-robots (antibodies) manipulate their 
capabilities to build a specific capability that can 
handle a complex task. For example, if a robot locates 
a task that requires both nudge and picks capabilities 
but there is no robot in the system that can both pick 
and push the object. Then two robots, one having the 
capability of nudge will combine with a robot having 
the capability of pick and will generate a specific 

response for object transportation. At first, when 
a B-robot locates the complex task that it cannot 
handle, it will communicate it to other B-robots. If no 
robot in the system has the required capabilities for 
task completion, a specific response is generated by 
the initiating robot. In the specific response, the robot 
makes two portions of the capability requirements 
of the task. The first portion contains the capabilities 
that the robot can handle, while the second portion 
contains the capabilities that the initiating robot needs 
for task accomplishment. The initiating robot matches 
its capabilities (paratrope) with the first portion of 
the capability requirement and is stimulated. For 
the second portion of the capability requirement, 
the robot seeks help and transmits a help message 
to other B-robots. The help signal communicates the 
idiotope of the initiating robot to other B-robots. The 
idiotope in the specific response contains the second 
portion of the capability requirements of the task that 
the initiating robot cannot handle, as shown in Figure 
12.

Figure 12: Response of the antibody to a complex antigen (task).

Those B-robots in the exploration mode and in the 
neighbourhood perform a capabilities comparison 
with the idiotope of the robots that initiated at 
first. The robots that have the essential capabilities 
are activated. The stimulated robots calculate their 
binding affinities and compare with each other. The 
best among them, which has the greatest binding 
affinity performs the helping process. The helping 
robot co-operates with the initiating robot to generate 
a specific response and complete the task.

Cloning: The clonal selection theory states that 
some of the B cells based on the total stimulation are 
selected and copies (cloning) of each selected B cell 
are created. In the present study, analogous to cloning, 
when B-robots complete a complex task through 
specific response, they memorize the capabilities 
of the task in the heavy chain HC2, as depicted in 
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Figure 13. They also communicate the capabilities 
of this task to other B-robots in the system, and the 
remaining robots also memorize the capabilities of 
this task in their HC2. Next time when this task is 
detected, the B-robot will match the capabilities of 
this task in its HC2 rather than checking the entire 
system for the required capabilities. In this manner, 
the robot will directly stimulate a quick secondary 
(specific) response to complete the task. 

Figure 13: Heavy chain HC2 showing capabilities of the task 
accomplished through a specific response.

Results and Discussion

A simulation study was conducted to show the 
effectiveness of the developed methodology. The Java 
programming was used for simulation. A number of 
robots with heterogeneous properties are deployed 
to perform the simulation. The robots were assigned 
tasks of transporting number of objects with different 
complexity levels to a pre-defined goal location, as 
shown in Figure 14. The simulation considered three 
forms of robots (P-robots, B-robots and T-robots), 
five different objects to be moved, static obstacles, and 
three charging bases. P-robots and T-robots cannot 
transport objects, but they were used to facilitate 
the B-robots. P-robots explore the environment for 
objects and upon detection of an object they send 
information to B-robots. T-robots were used to charge 
the depleted batteries of B-robots, thus ensuring 
uninterrupted operation of the B-robots. Two types 
of B-robots were used in this research: R-type and 
G-type. The R-type robots can transport only R-type 
objects, while the G-type robots can transport 
only G-type objects. In addition, different types of 
B-robots can manipulate their capabilities to generate 
another capability and transport a complex object as 
well. The robots are capable of avoiding the stationary 
and moving obstacles during task performance. 

In Figure 15, the time consumed by the robots and 
the effect of P-robots and T-robots are given. The 
average time taken to transport the objects when both 
P-robots and T-robots are used is much smaller than 
when only each (P or T) robots or none of them are 
used. It is quite justified because with more resources, 
higher performance can be achieved. It is observed 

that each round of simulation the time for the robots 
to perform tasks varies and is not constant. This is 
because the robots search for the object as their 
working environment is unfamiliar and dynamic. In 
addition, it is likely that robots suffer from stationary 
and movable obstacles during their task performance 
that ultimately cause overshooting. 

Figure 14: Simulation platform.

Figure 15: Time (stpes) spent in each run to complete the tasks.

Figure 16 shows the amount of total messages 
exchanged by the robots. In addition, the effect of 
P and T-robots is also investigated. It is observed 
that when only B-robots are used, the number of 
messages exchanged is lesser than when both P and 
T-robots are used. This is due to the fact that without 
P and T-robots, it is highly likely that detection and 
transportation of an object by a special B-robot will 
be accomplished without communicating with other 
robots. If its battery is depleted during transportation, 
it will proceed to the charging station for charging 
and then the task performance will be followed. 
On the other hand, if a P-robot notices an object 
it will send the information to the B-robots, and in 
order to find a specialized and most suitable robot, 
many communication messages will be exchanged. 
If T-robots (charging robots) are used, then the 
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communication burden will be further increased. This 
is because during transportation if the battery of a 
B-robot depletes, it will send a message to a nearby 
T-robot to charge its battery. As the location of the 
B-robot continuously changes during transportation, 
it continuously conveys its location data to the T-robot, 
and as a result many communication messages are 
exchanged.

Figure 16: Total messages exchanged during task accomplishment in 
each run.

Figure 17: Average time (steps) taken to complete the tasks as a 
function P-robots. 

Figure 17 shows the total time (steps) that robots take 
for task performance present in the environment as a 
function of P-robots. It is noted that as we improve 
the quantity of P-robots, the system efficiency with 
respect to time initially increases and then declines. 
The rise in the system performance is understandable 
since high performance is achieved with more 
resources. However, reduction in system performance 
may be related to obstacles among the robots 

themselves. Therefore, as the quantity of P-robots 
rises, the hurdles among robots increase the causes 
of delay. It is also clear that when no P-robot is there, 
more steps are involved which involves more time. 

Figure 18 shows the total count of exchanged 
messages during the accomplishment of the tasks 
as a function of P-robots. It is observed that the 
communication messages rise with the surge in 
the quantity of P-robots. This is because with more 
P-robots it is highly likely that a task will be detected 
by a P-robot. However, P-robots cannot perform 
tasks and they can only inform B-robots about the 
detected task. While choosing the best B-robot (to 
perform the task detected by a P-robot), large number 
of messages are exchanged that contribute to the 
communication burden. However, by increasing the 
number of P-robots up to a certain limit (three robots 
in the present case), the communication messages 
remain constant. This is because the tasks are always 
identified by P-robots if the robots count increases 
from this particular value (three). 

Figure 18: Average messages exchanged during tasks completion as 
a function of P-robots.

Figure 19 shows the step count taken for the sake 
of completing tasks as function of T-robots (charging 
robots). It is clear that increasing the T-robots count 
reduces the time required for the tasks completion. 
This is understandable because with more T-robots, 
a B-robot during transportation of a task can charge 
its battery with the help of T-robot (mobile charger). 
However, in case the count of T-robots is enhanced 
beyond a certain limit (three in the present case), the 
time required in completion of such tasks remains 
constant. This is because for this specific value (three), 
enough T-robots are available to charge the depleted 
batteries of all B-robots in the busy state. 
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Figure 19: Average time (steps) taken to complete the tasks as a 
function T-robots.
 
Figure 20 shows the impact of powering the T-robots 
on the burden of communication. It is observed 
that when the number of T-robots is increased, the 
communication messages also increased. This is 
because if the battery of a B-robot depletes during 
transportation it will send a message to a nearby 
T-robot to charge its battery and will continue 
its job. As the location of B-robot continuously 
changes during transportation, it continuously sends 
its location to the T-robot and as a result many 
communication messages are exchanged.

Figure 20: Average messages exchanged during tasks completion as 
a function of T-robots.

Conclusions and Recommendations

In this paper, MRC framework based on AIS and 
fuzzy logic was developed. The proposed architecture 
for MRC was established using the concept of general 
immune system and clonal selection algorithm. In 
addition, fuzzy logic was incorporated in the proposed 
architecture to select the most suitable robot among 
the team for a specific task accomplishment. The 

developed architecture is completely de-centralized 
and self-organized. To verify the effectiveness and 
feasibility of the developed control framework, a 
simulation study was conducted. Robots in the 
simulation study were assigned different tasks which 
constituted objects that had to be transported to 
an already defined locations. The simulation results 
revealed that the developed framework was effective 
and efficient in completing the given tasks in an 
unfamiliar and dynamic environment that contained 
both static and moving obstacles. The developed 
control framework can be conveniently implemented 
in physical robots working in a real physical 
environment.

Since the robots are powered by batteries that 
drain quickly, future investigation may add wireless 
charging of the batteries of these robots using energy 
harvesting techniques so that the network can be 
operated persistently. In addition, those tasks that 
robots cannot perform should be added intelligently 
to the system memory and a mechanism for providing 
solutions to such tasks will enhance the efficiency of 
the network to a next higher level.

Novelty Statement

In this research, the concept of biological immune 
system, idiotypic network theory and clonal selection 
theory are applied in multi-robot cooperation.
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