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INTRODUCTION

Computational Fluid Dynamics (CFD) is appre-
hended as an effective tool for performing numerical
simulations in applied sciences and engineering for
problems related to fluid flow phenomena. CFD serves
in reducing, and some times completely eliminating, a
large number of expensive laboratory or physical ex-
periments while designing and developing a new prod-
uct. Most CFD problems of practical interest involve
one or more partial differential equations governing
some fluid flow phenomena subject to some assumed
or measured boundary conditions, with the physical
geometry being approximated by structured/unstruc-
tured grids. These problems require the use of some
numerical methods for their solution. Often such a
numerical method starts with converting the partial
differential equations of the problem into a discretized
form using a discretization method, usually a Finite
Volume Method (FVM), Finite Element Method (FEM),
Finite Difference Method (FDM) or a Hybrid FEM/
FVM/FDM method like Discontinuous Galerkin (DG)
Method. The discretized form is integrated in time
explicitly or implicitly for obtaining a steady state
solution.

The discontinuous Galerkin (DG) methods are
emerging as a new class of methods in the field of
numerical solution of partial differential equations
representing conservation laws1-13. These methods are
gaining popularity in solving the problems of fluid
dynamics11-19, acoustics6,20, electromagnetism4, etc.
These methods enjoy the advantage of Finite Element
Methods of high order accuracy and that of Finite
Volume Methods of conserving field variables1,4,13.
Therefore they have been successfully employed in
the simulation of wave phenomena by solving Ri-
emann problems at element interfaces arising from
discontinuous nature of the solution at the interfaces.
Growing popularity of these methods owes to its at-
tractive features including: 1) These methods have
good conservation, stability, and convergence prop-
erties; 2) Order of approximation may be extended as
desired; 3) They are applicable on arbitrary grids (con-
forming/non-conforming/hybrid), thus having the abil-
ity of dealing with complex rather arbitrarily shaped
geometries; 4) Since the polynomial approximation is
taken independently on each element with minimal
inter-element communication, they can be parallelized
easily; 5) adaptive strategies using hp-refinement (i.e.,
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refining the grid by decreasing element sizes, h-refine-
ment, and increasing order of approximating polyno-
mials, p-refinement) can easily be integrated into these
methods because of the removal of continuity restric-
tion at element interfaces. In spite of all these fea-
tures and the fact that there have been considerable
developments in theoretical and numerical analysis of
these methods, there are certain limitations in these
methods that need to be addressed to make them a
competent choice for fluid flow problems of practical
and industrial interest. These limitations include effi-
cient discretization of diffusion terms, effective con-
trol of blow up because of strong discontinuities, and
development of efficient and accurate time integra-
tors. Another main hurdle in adopting these methods
for practical engineering applications is the lack of
efficient solvers because of its high CPU and memory
requirements13.

Recently, a new DG formulation based on a
Taylor series basis has been demonstrated to suc-
cessfully approximate the solution of compressible
inviscid fluid flow equations on arbitrary grids13.
Unlike the traditional DG methods, where either stan-
dard Lagrange finite element or hierarchical node-based
basis functions are used to represent numerical poly-
nomial solutions in each element, this DG method
represents the numerical polynomial solutions
using a Taylor series expansion at the centroid of
the cell. This way, the new formulation has several
distinct, desirable, and attractive features in-
cluding:

1) It has the ability to be implemented on arbitrary
grids because of same polynomial solution for
any shape of elements.

2) In it the hierarchic nature of the basis function
makes it easy to implement p-refinement and p-
multigrid strategies.

3) In it the availability of cell-averaged variables
and their derivates facilitates implementation of
very efficient limiters for eliminating the oscilla-
tions in the solution around the discontinuities.

4) In it the decoupling of cell-averaged variable
equations from their derivates facilitates
development of fast low storage implicit
schemes.

These features can help in overcoming some of
the disadvantages of the DG method.

Along with developing efficient numerical algo-
rithms for a CFD application, an important need is to
implement the complete application in some high per-
formance computing (HPC) environment. In fact, a
key factor for enormous growth in CFD applicability
has been the rapid developments in HPC capabilities
during the past two decades. The most commonly
used and recognized form of obtaining a HPC based
solution is to perform parallelization of the applica-
tion, so that a number of processing elements (or
simply processors) work together on different parts of
the problem or domain to reduce the overall time re-
quired to solve the problem. From hardware perspec-
tive, HPC may be realized on a variety of distributed
memory architectures, shared memory architectures,
and hybrid architectures. From software perspective,
HPC rely on utilizing efficient compilers, fast
mathematical kernels and sophisticated paralleli-
zation libraries for an underlying architecture.
Further, tuning the application with reference to an
underlying architecture may also result in very fast
solutions.

In this work an efficient parallel CFD solver is
presented in which the discontinuous Galerkin method
based on a Taylor basis13 is used as the discretization
method for the Euler equations governing compress-
ible fluid flow phenomena. The explicit time integra-
tion solution is obtained using a Range-Kutta (RK)
method for up to third order of approximation (P2
approximation). For parallelization of the discontinu-
ous Galerkin method, domain decomposition approach
with SPMD (Single Program Multiple Data) message-
passing programming model is employed. For this,
Message Passing Interface (MPI) library is used. MPI
has emerged as a de-facto standard for portable and
scalable parallel programming for distributed memory
parallel architectures. Several free and commercial MPI
implementations are available. These implementations
include both general and system/vendor specific. PC
Clusters, sometimes referred to as Beowulf clusters,
offer a very cost effective solution for distributed
memory, high performance parallel computing. They
are established using commodity off-the-shelf (COTS)
hardware components and interconnected via Ethernet
switch21,22. In this paper, the accuracy and perfor-
mance of the developed MPI based parallel solution
have been demonstrated on such a cluster. For very
fast inter-processor communication a specialized net-
work technology, like Infiniband or Myrinet, may also
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ture that couples the N degrees of freedom of each
component of the unknown vector only within We. As
a result, the inverse of the mass matrix M can be
easily computed by hand considering one element at
a time in advance. It is stable for any mesh to perform
the inversion of the mass matrix13.

Explicit Time Integration

The semi-discrete system can be integrated in
time using explicit methods.  In this work, the follow-
ing explicit three stage third-order TVD Runge–Kutta
method1,2 is used to march the solution in time:
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This scheme is stable (linearly) for a Courant number
less than or equal to 1/(2p+1).

PARALLELIZATION

As the discontinuous Galerkin method is highly
parallelizable, the main enabling mechanism for its
suitability for implementation on parallel computers is
the local nature of DG discretization, allowing for the
formulation of very compact numerical schemes. This
is due to the fact that the solution representation in
an element is purposefully kept independent of the
solutions in other elements, so that the inter-element
communication is needed to be carried out only with
adjacent elements (those sharing a common face). Thus
for parallel implementation of the discontinuous
Galerkin method the computational domain is parti-
tioned among the available processors and only the
information at the partition boundary faces, i.e., faces
having its left and right elements on different proces-
sors, is needed to be exchanged between the corre-
sponding neighboring processors. For such parallel
solutions distributed memory architectures with mes-
sage passing programming paradigm are natural to
consider. That’s why it is quite common that the
numerical simulations in CFD are accomplished on
clusters of PC components because of their cost ef-
fectiveness and easy availability as the distributed
memory architectures with message passing program-
ming paradigm. The clusters compliment rather than
compete with the more sophisticated parallel comput-

ing architectures. Emergence of multi-core CPUs of-
fers another parallel computing platform, even within
a PC or laptop. Today dual-core, quad-core and six-
core CPUs are commonly available and they may ef-
ficiently run up to two, four and six processes respec-
tively, of a parallel program. Therefore the multi socket
PCs can run up to 24 processes, although the amount
of performance (speedup) gained by the use of a
multi-core CPU is strongly dependent on the algo-
rithm and implementation. For CFD applications the
memory bandwidth is turned out to be the perfor-
mance determining factor27, setting an upper bound
on speedup, especially on many-core systems.

In general, performance of a parallel program in
a distributed memory environment with a given data
size depends on many factors including,

• CPUs, their number and speed

• memory capacity and bandwidth, caching ef-
fects

• communication network (its data transfer rate
and latency)

• communication to computation ratio.

Performance of a parallel program may be mea-
sured by computing certain performance metrics, for
example, execution time, relative speedup, and rela-
tive efficiency. In this work, the ‘relative speedup’
and ‘relative efficiency’ are simply called as ‘speedup’
and ‘efficiency’ respectively. Execution time is the
elapsed wall clock time from the start of execution of
first process of a parallel program to the end of execu-
tion of its last process. It includes both computation
and communication time. Relative speedup, Sp of a
parallel program is the ratio of elapsed time, t1, taken
by one processor to solve the problem to the elapsed
time, tp, taken by p processors to solve the problem,
i.e., Sp = t1/tp. The relative efficiency, E is defined as
E = Sp/p. Generally, in practice, speedup remains less
than p and efficiency lies between 0 and 1. In an ideal
case, tp = t1/p so that Sp = p and E = 1. Sometimes in
practice Sp > p is observed, which is called as super-
linear speedup. It is mainly due to the cache effi-
ciency with smaller data sizes on the p processors as
compare to serial single processor case. An important
feature of a parallel program is its scalability.
Scalability of a parallel program is a measure of its
ability that its efficiency is maintained at a certain
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level if both the parallel processing resources and
problem size are increased in proportion to each
other28. Scalability with respect to speedup, for the
test cases is presented in the next section. The
scalability analysis performed indicates that how the
performance metric, speedup, of the parallel code
varies with the increase in number of processors for
a fixed problem size.

Domain Decomposition

For a good scalability of a domain decomposi-
tion based parallel SPMD solution, a well load-bal-
anced and communication-efficient partitioning is
quite necessary29. Poor load balances often result in
idle time at the synchronization points, and a commu-
nication-inefficient partitioning results in larger data
sizes to be communicated among the processes; hence
increasing the communication burden. Although the
two objectives are not perfectly compatible, a suffi-
ciently well load-balanced and communication-efficient
domain partitioning could be obtained by METIS30

software package. For this purpose its standalone
program partdmesh has been used to partition the
unstructured mesh in the preprocessing step.
partdmesh performs the partitioning with an objective
of minimizing the total communication volume (i.e., to
minimize the interface degrees of freedom). This pro-
gram first converts the unstructured mesh into a dual
graph, in which the vertices represent the grid ele-
ments. Then the dual graph is partitioned, by the k-
metis program in METIS, into k parts of approximately
the same size using the multilevel k-way partitioning
algorithm31.

The Parallel Algorithm

Most computational work of the discontinuous
Galerkin scheme, like any explicit scheme for CFD, is
performed within the subroutine that computes the
residual R in the right hand side (including the nu-
merical fluxes). The parallel performance of such a
scheme is bounded either by memory bandwidth or
by the number of basic operations that can be per-
formed in a single clock cycle29.

The parallel implementation is obtained without
compromising the serial algorithm. Moreover the MPI
communications may be overlapped with the compu-
tations hence significantly reduce the overhead in-
curred due to parallelization. This is commonly
achieved by initiating non-blocking sending and re-

ceiving operations so that the computations remain
continue meanwhile the communication is completed.
Such a scenario is usually referred to as hiding com-
munication behind computation. This is easier to
achieve in explicit time marching schemes32. Following
is the algorithm used to compute the right hand side
(RHS) residual (including flux computations) on each
processor having a subdomain after domain partition-
ing. The word “local” refers to what is owned by
‘this’ processor with respect to its subdomain:

INITIATE Non-blocking Communication to RECEIVE
data from neighboring processors

INITIATE Non-blocking Communication to SEND
data to neighboring processors

START LOOP 1 (over the local faces lying on the
grid Boundary)

Compute RHS from Boundary face contributions, us-
ing local data

END LOOP 1

START LOOP 2 (over the local elements)

Compute RHS from domain contributions, using lo-
cal data

END LOOP 2

START LOOP 3 (over the local internal faces)

IF (both left and right elements are local) THEN

Compute RHS from Internal face contributions using
local data

ENDIF

END LOOP 3

WAIT for the completion of non blocking communi-
cations initiated above

START LOOP 4 (over the local faces having one
side element non-local)

Compute RHS from Internal face contributions using
local data and the received data

END LOOP 4

Depending upon the sophistication of MPI
implementation used, the communication may already
be completed before reaching the WAIT point, for the
problems with sufficiently large data sizes, i.e., those
with higher computation-to-communication ratio, at
each processor. In the explicit scheme the above al-
gorithm is called in every stage of the RK method.
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NUMERICAL RESULTS

The numerical results, in this work, are com-
puted on a Linux cluster having hundreds of nodes
interconnected via gigabit Ethernet (1000 baseT). The
cluster had a heterogeneous architecture with a mix of
nodes, each having 2 dualcore or quadcore CPUs of
varying speeds and/or memory subsystem character-
istics. It is worth to mention that the cluster is shared
among hundreds of users at the same time so even if
some nodes runs processes of only a specific job
request, the network bandwidth cannot be guaranteed
to be dedicated solely for that job. That’s why quite
varying execution timings may be observed with the
same problem size on different occasions. For obtain-
ing some justified parallel performance measures of
the code on such a heterogeneous and shared clus-
ter, special care has been taken to compute the result
on nodes with similar architecture and CPUs for a
particular test case with specific problem size. For
example for a problem A with data size K, all the
results from 1 to 16 processors are obtained on the
similar nodes, preferably within a single blade server
chassis. The performance measurements of the paral-
lel code with the test cases selected have mostly been
performed on 4-nodes such that each node has two
Xeon 5520 quadcore processors (i.e., 8 cores on a
node).  The software setup used includes 64-bit com-
pilers and MPICH implementation of MPI library. All
the floating point operations are performed in double
precision. Moreover one-to-one mapping of MPI pro-
cesses and physical CPU cores is assumed as the job
scheduling software on cluster assumes so. Thus the

words ‘process’, ‘processor’ and ‘CPU core’ are used
to refer to the same entity.

It has already been verified that a formal
order of convergence rate of the DG method based
on a Taylor basis can be achieved for the following
test cases on hybrid grids13. Further the superior
accuracy of second order DG method using a
Taylor basis, over the second order finite volume
method has already been demonstrated13. Note that
for all the following problems the slip boundary
conditions are used for solid walls and the character-
istic boundary conditions are imposed on the far-
field boundaries. The detailed implementations of
the boundary conditions can be found in the
Reference18.

Subsonic flow past a circular cylinder

This well-known test case involves the solution
of inviscid subsonic flow past a circular cylinder at a
Mach number of 0.38. The numerical solutions of this
problem are computed using the parallel DG(P0),
DG(P1), and DG(P2) methods (i.e., the discontinuous
Galerkin methods of first, second and third order of
accuracy, respectively) on a triangular element mesh
consisting of 8192 elements, 4224 grid points, and 256
boundary points. A sketch of the complete physical
domain showing its size (in units of length), along
with the triangular mesh is given in Figure 2. Parti-
tioning of this mesh using METIS for 16 processes is
depicted in Figure 3. The resulting contour plots for
the three approximation orders are compared for the
respective serial and parallel codes in Figure 4(a-c)

Figure 2: Subsonic flow past a circular cylinder problem; Triangular mesh used to obtain the solution (central
region focused in the right one). The governing equations are dimensionless; there could be any unit
of measurement. Here the computational domain extends to 40 times the chord length of the cylinder.
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and Figure 5. The results computed, using the parallel
DG code, are in full agreement with those obtained
with the respective serial DG code13. Hence, the con-
vergence and accuracy is not compromised at all in
our parallel version of the DG method.

Recall that a 4-node-cluster setup of dual Xeon-
5520 processors (having 32 CPU-cores in total) is
used for the measurement of parallel performance of
the code. For demonstration of parallel scalability, a
relatively larger mesh of just over 45 thousand ele-
ments is considered. The larger mesh is used so that
a reasonable work load would be allocated to each of
the parallel processes. Parallel scalability up to 16
processes on the 4 nodes of the Ethernet based clus-
ter with the DG(P1) method are shown in Figure 6. A
speedup of 7.52 is observed when the code is ex-
ecuted on 8 processors/cores (i.e., 7.52/(8´100) = 94%
per processor efficiency). The obtained speedup value
of 7.52 with 8 processes may be regarded as near-
linear (or near-ideal) speedup as it is close the linear
(or ideal) speedup value of 8. Further a good speedup
of 12.15 on 16 processors/cores is observed (i.e., about
76% per processor efficiency). Generally the speedup
decreases with the increase in number of processes,
because more parallel processes involve extra net-
work congestion and other parallel overheads. More-
over, a reason for the slightly over-dropped speedup
for 12 and 16 processors cases is the “network inter-
face congestion”. In the case of 4 processes, only
one process is mapped on each node of the 4-node
cluster. Note that, in Figure 6, a speedup value of
greater than 4 is observed on 4 processors. This re-
flects over 100% per processor efficiency, and is called
as super-linear speedup. The super-linear speedup

might be observed for certain test cases, usually due
to the cache effects, because the distribution of the
chunks of the problem data among the processes on
different nodes causes largest percentage of local
data to fit into the available cache. This decreases the
cache-miss ratio and results in better performance. On
the other hand, for more than 4 processes, more than
1 process is mapped per node. Thus, in the case of
16 processes, 4 processes are mapped on each node.
More than one processes mapped on a node strive for
their turn to communicate through the network inter-
face of that node. Thus the network interface
bandwidth is shared among a number of pro-
cesses. This causes “network interface conges-
tion” and, hence, resulting in the drop of parallel
efficiency.

Transonic flow past a NACA0012 airfoil

This well-known test case involves solution of
inviscid transonic flow past a NACA0012 airfoil at a
Mach number of 0.8, and an angle of attack 1.25o.
There exists a strong shock on the upper surface and
a weak shock on the lower surface of the airfoil. The
numerical solutions of this problem are computed
using the parallel DG method on a triangular element
mesh consisting of 1999 elements, 1048 grid points,
and 97 boundary points. A sketch of the complete
physical domain showing its size (in units of length),
along with the triangular mesh is given in Figure 7.
The mesh decomposed into 16 parts using METIS is
shown in Figure 8.  The computed pressure and Mach
number contours using the parallel DG(P2) method
with 16 processes and the respective serial code are
compared in Figure 9 and Figure 10 respectively. Again
there is complete agreement between the results

Figure 3: Subsonic flow past a circular cylinder problem; Triangular mesh partitioned for 16 processes (central
region focused in the right one).
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Figure 4: Subsonic flow past a circular cylinder problem; Comparison of pressure contours obtained using the
parallel DG method (left) and the serial DG method (right), (a) P0 approximation case, (b) P1 approxi-
mation case, (c) P2 approximation case. The corresponding profiles are identical. The contour levels
vary between a minimum value 4.3 and a maximum value 5.1 in (a), a minimum value 4.0 and a maximum
value 5.0 in (b), and a minimum value 3.2 and a maximum value 5.4 in (c).
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obtained using the parallel and serial version of the
DG method.

For demonstration of parallel scalability, a rela-
tively larger mesh of just over 22 thousand elements
is considered. Parallel scalability up to 16 processes
on the 4-nodes of the Ethernet based cluster with the
DG(P1) method are shown in Figure 11. A near linear
(or near ideal) speedup value of 7.6 is observed with
8 processes (i.e., over 95% per processor efficiency).
A good speedup of 11.7 on 16 processors is ob-

served. The reasons for super-linear speedup with 4
processes on the 4-nodes and for the drop in speedup
on 16 processors are the same as described earlier in
section 5.1.

Subsonic flow past a three-element airfoil

In this test case a subsonic flow past three-
element airfoil is presented. The results are computed
at a Mach number of 0.2, and an angle of attack 16o.
The numerical solutions of this problem are computed

Figure 5: Subsonic flow past a circular cylinder problem; Comparison of Mach number contours obtained using
the parallel DG method (left) and the serial DG method (right) with P2 approximation. Both plots are
identical. The contour levels vary between a minimum value 0.05 and a maximum value 0.9.

Figure 6: Subsonic flow past a circular cylinder problem; Scalability: speedup versus number of processes.
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Figure 7: Transonic flow past NACA0012 airfoil problem; Triangular mesh used to obtain the solution (central
region focused in the right one). The governing equations are dimensionless; there could be any unit
of measurement. Here the computational domain extends to 40 times the chord length of the airfoil.

Figure 8: Transonic flow past NACA0012 airfoil problem; Triangular mesh partitioned for 16 processes (central
region focused in the right one).

Figure 9: Transonic flow past NACA0012 airfoil problem; Comparison of pressure contours obtained using the
parallel DG method (left) and the serial DG method (right) with P2 approximation. Both plots are
identical. The contour levels vary between a minimum value 0.5 and a maximum value 1.65.
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using the parallel DG method on a triangular element
mesh consisting of 4768 elements, 2531 grid points,
and 298 boundary points. A sketch of the complete
physical domain showing its size (in units of length),
along with the triangular mesh is given in Figure 12.
The mesh decomposed into 8 parts using METIS is
shown in Figure 13. The computed pressure and Mach
number contours using the parallel DG(P2) method
with 16 processes and the respective serial code are
compared in Figure 14 and Figure 15, respectively.

Again there is complete agreement between the re-
sults obtained by using the parallel and serial version
of the DG method.

For the measurement of parallel performance of
the code on this test case, the numerical solutions are
computed on a triangular element mesh consisting of
19244 elements, 9922 grid points, and 604 boundary
points. The parallel scalability up to 16 processes on
the 4 nodes of the Ethernet based cluster with the

Figure 10: Transonic flow past NACA0012 airfoil problem; Comparison of Mach number contours obtained
using the parallel DG method (left) and the serial DG method (right) with P2 approximation. Both plots
are identical. The contour levels vary between a minimum value 0.05 and a maximum value 1.55.

Figure 11: Transonic flow past NACA0012 airfoil problem; Scalability: speedup versus number of processes.
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Figure 12: Subsonic flow past a 3-element airfoil problem; Triangular mesh used to obtain the solution (central
region focused in the right one). The governing equations are dimensionless; there could be any unit
of measurement.

Figure 13: Subsonic flow past a 3-element airfoil problem; Triangular mesh partitioned for 16 processes (central
region focused in the right one).

Figure 14: Subsonic flow past a 3-element airfoil problem; Comparison of pressure contours obtained using the
parallel DG method (left) and the serial DG method (right) with P2 approximation. Both plots are
identical. The contour levels vary between a minimum value 11.0 and a maximum value 18.5.
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DG(P1) method is shown in Figure 16. A super linear
speedup is observed up to 8 processors (i.e., over
100% per processor efficiency). In this test case, the
mesh size used is smaller than those used in the
previous test cases. The reason for better perfor-
mance than previous test cases might be that the
relatively smaller data sizes allocated to each process
result in fitting of larger part of the local data into the
available cache. A good speedup of 12.63 on 16 pro-
cessors is observed. The reason for drop in speedup

on 16 processors is the same as described earlier in
section 5.1.

At the last, the convergence behavior of the
parallel DG and the serial DG codes is demonstrated
to be identical. To test the convergence history, the
plots of the logarithm of the relative L2 norm of the
density residual versus the number of time steps for
the above three numerical examples are shown in
Figure 17. The comparison shows that after any num-

Figure 16: Subsonic flow past a 3-element airfoil problem; Scalability: speedup versus number of processes.

Figure 15: Subsonic flow past a 3-element airfoil problem; Comparison of Mach number contours obtained
using the parallel DG method (left) and the serial DG method (right) with P2 approximation. Both plots
are identical. The contour levels vary between a minimum value 0.02 and a maximum value 0.9.
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ber of time steps the convergence level achieved by
the parallel DG code is the same as achieved by the
serial DG code, hence the convergence of the serial
DG algorithm is not compromised at all in the parallel
algorithm.

CONCLUSION

In this work, a serial DG method (presented in
Reference 13) is parallelized by designing and imple-
menting a parallel algorithm/version of the method for

distributed memory parallel computers using MPI
library. The well known concept of hiding communi-
cation behind computations (i.e., overlapping of com-
munication with computation) is also incorporated in
the parallel algorithm for reducing the effects of par-
allel overheads. The “accuracy” and “convergence”
of the parallel code are demonstrated to be identical
to those exhibited by the serial DG method. Hence,
the parallelization has been performed without com-
promising the serial algorithm. The “scalability” of
the developed parallel algorithm is also demonstrated

Figure 17: Comparison of convergence histories; Log(residual-norm) versus time steps, (a) for the parallel DG
code, (b) for the serial DG code.
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on an Ethernet based cluster. Future work should
include parallel performance profiling and tuning, ex-
tension of the parallel solution for implicit schemes
and developing a multi-level grid acceleration provi-
sion, as well.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Gary W.
Howell (Applications Scientist for High Performance
Computing, NCSU) for his valuable support in using
the henry2 cluster system at NCSU. The first author
also thanks Higher Education Commission (HEC),
Pakistan for providing travel grant.

REFERENCES

1. Cockburn, B., Karniadakis, G.E., and Shu, C.W.
(Eds.), 2000. Discontinuous Galerkin Methods,
Theory, Computation, and Applications, Lec-
ture Notes in Computational Science and
Engineering, Springer-Verlag, New York,
Vol. 11.

2. Cockburn, B., and Shu, C.W., 1998. The Runge-
Kutta discontinuous Galerkin method for con-
servation laws V: multidimensional system.
Journal of Computational Physics, Vol. 141,
199-224.

3. Arnold, D.N., Brezzi, F., Cockburn, B., and
Marini, D., 2001. Unified Analysis of discon-
tinuous Galerkin methods for elliptic problems.
SIAM Journal on Numerical Analysis, Vol. 39
(5), 1749-1779.

4. Hesthaven, J.S., and Warburton, T., 2008. Nodal
Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications. Texts in Applied
Mathematics, Vol. 56, Springer, New York.

5. Peraire, J., and Persson, P.O., 2008. The com-
pact discontinuous Galerkin method for ellip-
tic problems. SIAM Journal on Scientific Com-
puting, Vol. 30, 1806-1824.

6. Atkins, H.L., and Shu, C.W., 1998. Quadrature
free implementation of discontinuous Galerkin
method for hyperbolic equations. AIAA Jour-
nal, Vol. 36(5), 775-782.

7. Rasetarinera, P., and Hussaini, M.Y., 2001. An
efficient implicit discontinuous spectral Galer-
kin method. Journal of Computational Physics,
Vol. 172, 718-738.

8. Dumbser, M., Balsara, D.S., Toro, E.F., and
Munz, C.D., 2008. A unified framework for the
construction of one-step finite volume and dis-
continuous Galerkin schemes on unstructured
meshes. Journal of Computational Physics, Vol.
227, 8209-8253.

9. Van-Leer, B., and Nomura, S., 2005. Discon-
tinuous Galerkin method for diffusion. 43rd
AIAA Aerospace Sciences Meeting, AIAA-
2005-5108.

10. Cockburn, B., and Shu, C.W., 2001. The local
discontinuous Galerkin method for time-depen-
dent convection-diffusion system. SIAM Jour-
nal on Numerical Analysis, Vol. 16.

11. Bassi, F., and Rebay, S., 2005. Discontinuous
Galerkin solution of the Reynolds-averaged
Navier-Stokes and k-ù turbulence model equa-
tions. Journal of Computational Physics, Vol.
34, 507-540.

12. Luo, H., Ali, A., Nourgaliev, R., and Mousseau,
V.A., 2010. Reconstructed discontinuous Galer-
kin method for the compressible flows on arbi-
trary grids. 48th AIAA Aerospace Sciences Meet-
ing, AIAA-2010-0366.

13. Luo, H., Baum, J.D., and Löhner, R., 2008. A
discontinuous Galerkin method using Taylor
basis for the compressible flows on arbitrary
grids. Journal of Computational Physics, Vol.
227(20), 8875-8893.

14. Baumann, C.E., and Oden, J.T., 1999. A discon-
tinuous hp finite element method for the Euler
and the Navier–Stokes equations. International
Journal of Numerical Methods in Fluids, Vol.
31, 79-95.

15. Bassi, F., and Rebay, S., 1997. High-order ac-
curate discontinuous finite element solution of
the 2D Euler equations. Journal of Computa-
tional Physics, Vol. 138, 251-285.

16. Bassi, F., and Rebay, S., 1997. A high-order
accurate discontinuous Galerkin finite element
method for the numerical solution of the com-
pressible Navier–Stokes equations. Journal of
Computational Physics, 131, 267-279.

17. Fidkowski, K.J., Oliver, T.A., Lu, J., and
Darmofal, D.L., 2005. p-Multigrid solution of
high-order discontinuous Galerkin discretiza-



76

J. eng. & appl. sci. Vol. 29 No. 1  January - June 2010 ISSN 1023-862X

tions of the compressible Navier–Stokes equa-
tions. Journal of Computational Physics, Vol.
207(1), 92-113.

18. Luo, H., Baum, J.D., and Löhner, R., 2008. On
the computation of steady-state compressible
flows using a discontinuous Galerkin method.
International Journal for Numerical Methods
in Engineering, Vol. 73(5), 597-623.

19. Luo, H., Baum, J.D., and Löhner, R., 2008. A
fast, p-multigrid discontinuous Galerkin method
for compressible flows at all speeds. AIAA Jour-
nal, Vol. 46(3), 635-652.

20. Toulopoulos, I., and Ekaterinaris, J.A., 2006.
High-order discontinuous Galerkin discriti-
zations for computational aeroacoustics in
complex domains. AIAA Journal, Vol. 44 (3),
502-511.

21. Sterling, T., Becker, D.J., and Savarese, D.F.,
1999. How to Build a Beowulf: A Guide to the
Implementation and Application of PC Clus-
ters, The MIT Press, Cambridge, MA.

22. Lucke, R.W., 2004. Building Clustered Linux
Systems, Prentice Hall PTR, Indianapolis, IN.

23. Toro, E.F., Spruce, M., and Speares, W., 1994.
Restoration of the contact surface in the
HLL-Riemann solver. Shock Waves, Vol. 4,
25-34.

24. Batten, P., Leschziner, M.A., and Goldberg,
U.C., 1997. Average-state Jacobians and im-
plicit methods for compressible viscous and
turbulent flows.  Journal of Computational
Physics, Vol. 137, 38-78.

25. Luo, H., Baum, J.D., and Löhner, R., 2005. High-
Reynolds number viscous flow computations
using an unstructured-grid method. Journal of
Aircraft, Vol. 42 (2), 483-492.

26 Luo, H., Baum, J.D., and Löhner, R., 2005. Ex-
tension of HLLC scheme for flows at all speeds.
AIAA Journal, Vol. 43(6).

27. Gropp, W.D., Kaushik, D.K., Keyes, D.E., and
Smith, B.F., 1999. Toward realistic performance
bounds for implicit CFD codes. In Keyes, D.K.,
Ecer, A., Periaux, J., Satofuka, N., and Fox, P.
(Eds.), Proceedings of Parallel CFD’99,
Elsevier, 233-240.

28. Grama, A., Gupta, A., Karypis, G., and Kumar,
V., 2003. Introduction to Parallel Computing,
2nd ed., Addison-Wesley, Boston, MA.

29. Gropp, W.D., Kaushik, D.K., Keyes, D.E., and
Smith, B.F., 2001. High performance parallel
implicit CFD. Parallel Computing, Vol. 27,
337-362.

30. Karypis, G., and Kumar, V., 1999. A fast and
high quality scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing,
Vol. 20, 359-392.

31. Karypis, G., and Kumar, V., 1998. Multilevel k-
way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Comput-
ing, Vol. 48(1), 96-129.

32. Baggag, A., Atkins, H., and Keyes, D., 1999.
Parallel implementation of the discontinuous
Galerkin method”. NASA ICASE Technical
Report No. 99-35.


