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Introduction 

Vaccines are highly effective in preventing the 
spread of infectious diseases, saving countless 

lives each year (Pollard and Bijker, 2021). Moreover, 
vaccines have been extensively implemented in recent 
decades, eliminating life-threatening viral diseases, 
including smallpox, and significantly reducing the 
incidence of polio, measles, and other infectious 
diseases. The World Health Organization reported 
that vaccination annually prevents at least 2 million 
deaths from measles, influenza, and pertussis (Sahin 

et al., 2014; Chaudhary et al., 2021). However, 
conventional vaccines have limitations for disease 
prevention and treatment, including time-consuming 
and complex processes (i.e., live, inactivated, dendritic 
cell vaccines), the risk of escape mutants and limited 
T-cell response (i.e., peptide vaccines), risk of 
integration and anti-DNA autoantibodies formation 
(i.e., DNA vaccines), which limit their usage for 
human vaccinations. All these drawbacks necessitate 
to think better for the next generation of vaccines with 
suitable format that shows promise in preventing and 
treating infectious diseases (Wang et al., 2021).
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Since the emergence of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), messenger 
RNA (mRNA) vaccination has surged and has been 
found to provide outstanding immune responses for 
curbing the contemporary COVID-19 (Sahin et al., 
2020; Baden et al., 2021). The mRNA vaccines are 
single nucleotide sequences that serve as a template 
for efficient protein translation without the fear 
of possible integration (Pardi et al., 2018). mRNA 
vaccines typically utilize the body’s cells to naturally 
induce innate and adaptive immunity. This vaccine 
production technology allows for proper post-
translational modifications and full functionality of 
protein products, ensuring proper translation folding 
and assembly of multimeric and versatile proteins that 
cannot be produced in common bioreactors. mRNA 
also permits the transfer of the produced products 
into both intracellular and transmembrane trafficking 
pathways to their suitable cellular locations to enhance 
the target immune response accordingly (Heil et al., 
2013; Kowalski et al., 2019; Jackson et al., 2020). 
From a commercial perspective, mRNA vaccines 
offer rapid development and large-scale production 
through a cell-free process. This advantage is due to 
the highly productive transcription reaction in vitro, 
which is also extremely cost-effective (Karikó et al., 
2008; Thess et al., 2015; Guan and Rosenecker, 2017). 

It is important to note that while mRNA vaccines 
have shown great promise, they are still in their 
infancy compared to conventional vaccines due to 
their poor stability and immunogenicity, which limit 
their usage in vivo (Kauffman et al., 2016; Maruggi et 
al., 2019; Pollard and Bijker, 2021; Wang et al., 2021). 
Therefore, further research and development on the 
delivery and immunogenicity of mRNA vaccines 
would allow for their widespread use in vivo, especially 
in life-threatening diseases.

It is evident that mRNA vaccines hold great promise 
in preventing viral diseases caused by agents such 
as SARS-CoV-2, influenza viruses, and other life-
threatening viral models. This review will discuss 
the main modifications made to mRNA vaccines to 
improve their efficiency and delivery methods and 
the recent progress of mRNA vaccination to viral 
diseases. Modifications to the methylated cap, the 
mRNA’s coding and non-coding parts, the poly(A)-
tail, and the advanced delivery methods to increase 
stability will be described. These data could ultimately 
pave the way to curb viral infectious diseases.

Key components for maximum mRNA vaccine production
Cap structure
Once the mRNA is transcribed, a cap structure is 
attached to the 5′ end. The cap structure plays a crucial 
role in the mRNA stability of the transcripts, which 
supports further RNA regulatory steps, including 
mRNA translation, splicing, and transportation 
in the cell (Roundtree et al., 2017). The typical 
eukaryotic cap structure (commonly named as 
cap0) is composed of a modified nucleobase (i.e., 
methylated guanosine at N7 position; m7G cap); 
this modified nucleobase attached to the adjacent 
nucleobases (1+) with 5′-5′ triphosphate linkage 
(Ogino and Green, 2019). It is important to note that 
modified nucleobases, especially m7G cap structure 
in the mRNA, support differentiation between self 
and nonself RNA (exogenous RNAs, including viral 
RNA). Innate immune sensors, including Pattern 
Recognition Receptors (PRRs) such as RIG-I (not 
identified in chickens) and MDA5, usually sense 
the 5′ diphosphorylated and triphosphorylated 
transcripts (uncapped transcripts), which support 
RNA degradation in type I interferon pathway 
(Ivashkiv and Donlin, 2014; Santhakumar et al., 
2017). Therefore, the presence of a cap structure is 
pivotal to be included in the mRNA vaccine.

From the commercial perspective, mRNA vaccine 
capping can be generated using either recombinant 
vaccinia to generate the wild-type eukaryotic cap 
structure (Kyrieleis et al., 2015) or through the 
introduction of an artificially synthesized cap (i.e., 
chemically synthesized cap analogue structures), 
including Anti-Reverse Cap Analog (ARCA) 
and Clean-Cap®, which provide enhanced half-
lifetime and translation efficiency (Sahin et al., 2014; 
Chaudhary et al., 2021). Interestingly, the advantage 
of using the cap analogues was leveraged in the 
major mRNA vaccines used to compact COVID-19, 
including BNT162b1 and BNT162b2 (BioNTech/
Pfizer) (Sahin et al., 2020).

5′ and 3′ untranslated regions
Although the upstream and downstream sequences of 
coding regions are non-coding sequences (i.e., are not 
translated into proteins), the 5′ and 3′ untranslated 
regions (UTR) have pivotal roles for efficient 
translation and stability, respectively (Mignone et 
al., 2002). The most common mRNA vaccines are 
designed with 5′ UTR to contain the eukaryotic 
Kozak (CA/GCCAUGG, the underlined sequence 



July 2022 | Volume 10 | Issue 2 | Page 10

Journal of Virological Sciences
is the start codon), which is usually associated with 
enhanced translation initiation (Simonetti et al., 2020). 
Similarly, the 3′ UTR is usually designed to contain 
a long half-lifetime eukaryotic β-globulin mRNA 
that increases the stability of the in-vitro transcribed-
mRNA (IVT-mRNA) (Linares-Fernández et al., 
2021).

Coding region
From the facts described earlier, there is no doubt 
that the coding sequence of the designated ORF 
itself significantly impacts the translation efficiency. 
Using the most common (i.e., do not use rare) 
codons has the privilege of a maximum translation 
resulting from optimal RNA structure and folding. 
The most likely strategy is using the codon of highly 
expressing mammalian genes (Mauro and Chappell, 
2014). Learning for the lesson of COVID-19 
vaccination, incorporating N1- methyl pseudouridine 
or pseudouridine instead of uracil has been noticed to 
enhance translation capacity and stability (Karikó et 
al., 2008), which will be described later in this review.

Poly (A) tail
Adding poly A tail is one of the most common 
modifications added co-transcriptionally in the 
nucleus. The poly-A tail size ranges from 20-250 
nucleotides in the mammalian transcriptome. The 
primary function is to protect the mRNA from the 
degradation processes, and the length of the poly-A 
tail acts as a timer for mRNA stability; the lengthy 
tail is associated with improved stability (Eckmann 
et al., 2011). Typically, the poly-A tail is added to 
IVT-mRNA by linking the A string using poly-A 
polymerase or by adding poly T sequence to the 
template DNA backbone (Eckmann et al., 2011).

mRNA vaccine delivery approaches in vivo
For mRNA to function appropriately, it is essential to 
avoid degradation by nucleases outside the cell, remain 
intact, and enter it. However, since individual nucleic 
acid molecules are not efficiently taken up by cells, 
different techniques have been proposed for mRNA 
delivery using viral and non-viral delivery systems. 
Non-viral delivery systems for mRNA can be divided 
into mRNA delivery encapsulated in liposomes 
(the most common method of delivery of mRNA 
vaccines so far) or various polycationic polymers and 
mechanical mRNA delivery across the cell membrane 
using electroporation, gene guns, ultrasound, or high-
pressure injection, which can be used both in vivo and 

in vitro (Pardi et al., 2018).

Lipid nanoparticles (LNPs, Liposomes)
The lipid nanoparticles are usually comprised of 
four main components; the ionizable cationic lipid, 
lipid-conjugated poly-ethylene glycol (PEGylated 
lipid), cholesterol, and phospholipids that compose 
the two lipid bilayers (Hou et al., 2021). The primary 
way mRNA delivery systems enter the cell is through 
endocytosis. This involves intricate processes that 
determine the intracellular location of mRNA. When 
the cell membrane invaginates, mRNAs get inside the 
endosomes. These endosomes then mature and fuse 
with lysosomes, which contain hydrolytic enzymes 
and create an acidic environment that may destroy the 
delivery system and liberate nucleic acid. Therefore, 
the delivery system components should provide an 
optimal time interval between the mRNA exit from 
the endosomes and the nucleic acid degradation 
(Sahin et al., 2014). It is essential to mention that the 
approved vaccines against COVID-19 that deliver the 
mRNA encoding the SARS-CoV-2 Spike -protein 
(and others, see Table 1) usually use LNPs, including 
BNT162b2 (BioN-Tech/Pfizer) and mRNA-1273 
(Moderna) vaccines (Sahin et al., 2020; Baden et al., 
2021); however, the ratio between each component of 
the LNPs differ between different vaccines and the 
producing company. 

Polymers
Although polymeric materials are an excellent method 
of delivering nucleic acid into the cells, they are not 
as widely used for nucleic acid delivery as lipids 
because they are hard to degrade in vivo. Therefore, 
scientists strive to find an alternate example of 
polymers for vaccine delivery; chief among those is 
chitosan. Chitosan is a versatile biopolymer derived 
from chitin. It contains chemical groups that can be 
modified for a wide range of potential applications. 
Chitosan nanoparticles have a positive surface charge 
and mucoadhesive properties, allowing them to attach 
to mucous membranes, release drugs, and support 
further biodegradation (Mohammed et al., 2017).

Physical/mechanical delivery methods
Various physical manipulations are also adopted to 
deliver nucleic acids into cells, such as electroporation, 
ultrasound, and gene guns. Electroporation is the 
most effective mRNA delivery method, preventing 
unwanted immune responses and reducing cellular 
toxicity (Hashimoto and Takemoto, 2015). 
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Table 1: Preclinical and clinical trials for mRNA vaccines against viral diseases. 
S. 
No.

Virus model mRNA Antigen Delivery 
method

Preclinical 
and clinical 
phases

Reference

1 SARS-CoV-2 mRNA-1273 Full-length Prefusion S 
protein

Lipid 
Nanoparticle 
(LNP)

Phase III/
complete

(Baden et al., 2021)

BNT162b1, 
BNT162b2

PBD of S protein LNP Phase III/
complete

(Mulligan et al., 2020)

2 Zika virus mRNA-1325 Glycoproteins of ZIKV -(unknown) Phase I (Richner et al., 2017)
mRNA-1893 Glycoproteins of ZIKV LNP Phase II

3 HIV AGS-004 HIV-1 Surface antigen Dendritic cell Phase II (Pardi et al., 2019)
4 Influenza viruses VAL-506440 Membrane-bound form of the 

hemagglutinin glycoprotein
LNP Phase I (Chaudhary et al., 2021)

VAL-339851 HA LNP Phase I (Chaudhary et al., 2021)
mRNA-1010-
1020-1030

- - Phase I (Chaudhary et al., 2021)

5 Cytomegalovirus mRNA-1647, 
mRNA-1443

gB LNP Phase I (Nelson et al., 2020)

6 Respiratory syncytial 
virus

mRNA-1345 F protein - Phase II/III (Espeseth et al., 2020)

7 Rabies CV7202 Glycoproteins of Rabies virus LNP Phase I (Schnee et al., 2016)
8 Human metapneumo-

virus and parainfluenza 
virus type 3

mRNA-1653 Full-length membrane-bound 
fusion proteins of hMPV and 
PIV3

LNP Phase I (Chaudhary et al., 2021)

9 Pseudorabies virus gD LNP Mice ( Jiang et al., 2020)
10 Chikungunya virus Structural proteins

(C-E3-E2-6K-E1)
LNP Mice (Chaudhary et al., 2021)

11 Hepatitis C virus E1 and modified E2 LNP Mice ( Jiang et al., 2020)
12 Nipah virus Hendra virus glycoproteins LNP Syrian 

Hamsters
(Lo et al., 2020)

13 Powassan virus prM and E LNP Mice (VanBlargan et al., 2018)
14 Herpes simplex type 1 gC2, gD2, gE2 LNP Mice (LaTourette et al., 2020)
15 Varicella-zoster gE LNP Non-human 

primates
(Monslow et al., 2020)

16 Dengue Virus NS LNP Mice (Roth et al., 2019)

Although the recent progress in mRNA delivery is 
slow, the contemporary pandemic would be a good 
chance for innovation of further vaccine delivery 
methods. Moreover, combining different mRNA 
delivery systems may be the most efficient approach. 
Further research is needed to optimize mRNA 
delivery.

Recent progress of mRNA vaccines against viral diseases
mRNA therapeutics are currently being developed 
for various applications, and vaccines for infectious 
diseases represent one of the most advanced uses. 
In preclinical trials and clinical use, most mRNA 
vaccines are administered by injecting the skin, muscle, 
or subcutaneous tissue. Once administered, various 

immune or non-immune cells take up the mRNA 
and translate it into antigens that are then displayed 
to T and B cells. The mRNA and delivery vehicle 
used together enhances the immunogenicity and 
efficacy of mRNA vaccines. Fifteen mRNA vaccine 
candidates against infectious diseases had entered 
clinical trials by the start of 2020 (Chaudhary et al., 
2021); the recent progress in the mRNA vaccination 
has been summarized in Table 1.

Conclusions and Recommendations
 
mRNA vaccines are a safe and promising platform 
for preventing infectious diseases. They offer 
significant advantages over other vaccines, such as low 
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reactogenicity, efficient immune response activation, 
and rapid, inexpensive, and scalable production. The 
mRNA vaccine platform also allows easy target 
gene replacement, reducing the time lag between 
epidemic outbreaks and vaccine release. However, 
mRNA vaccination is still in its infancy, and further 
investigations are needed to improve efficacy and 
in vivo delivery methods. As stated above, using 
modified nucleobases such as pseudouridine and 
methylated pseudouridine are promising tools to 
enhance immunogenicity and stability. Moreover, 
using other methylated nucleobases could be beneficial 
for enhancing immunogenicity. Chief among those 
using the methylated adenosines at N6-position 
(m6A), N1-position (m1A), methylated ribose to 
any nucleotide (Nm) which has been reported to 
have enhanced immunogenicity and reduced innate 
immune recognition as exogenous/nonself RNA 
in various viral models as we and others reported 
earlier (Bayoumi et al., 2020; Tsai and Cullen, 2020; 
Bayoumi and Munir, 2021a, 2021b). Therefore, using 
these modified bases would be promising to be 
incorporated in the potential mRNA vaccines.
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