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BACKGROUND 

Avian influenza (AI) virus type A is a member of family Orthomyxoviridae affecting 
much variety of birds, mammals, and man. (Saif, Y.M. et al., 2003).The majority of AI vaccines 
are inactivated oil emulsion vaccines which protect poultry against clinical signs, death and 
decrease virus transmission among poultry and to humans. (Swayne, D.E. 2003). 

Although of the massive use of inactivated AI vaccines in Egypt, the outbreak continues 
to occur due to many reasons such as: the frequent viral structure changes via antigenic shift and 
antigenic drift, so the vaccine should be continuously updated according to circulating field 
strains. (Tosh, P.K. and Poland, G.A. 2008). Inactivated vaccines do not prevent infection and 
birds may shed variable quantities of virus depending on the homology between the 
hemagglutinin of vaccine and field strains. (Becker, A.L. 2004). AI vaccination requires 
effective biosecurity and monitoring system to be able to prevent AI virus introduction and 
reducing its spread, this biosecurity measures is not well implemented in Egypt. (OIE /FAO / 

ABSTRACT 

Background: There is no international quality control protocol for evaluation of recombinant H5 
vaccines had been established yet so, these vaccines are evaluated by applying the conventional QC 
tests such as identity, safety, purity, potency and efficacy that were not satisfactory in vaccine 
evaluation. 
Objective: The present study was conducted to standardize a protocol for quality control and 
evaluation of the recombinant HVT-H5 vaccine.  
Methods: The protocol was designed for evaluation of H5 identity besides regular vaccine safety, 
purity and potency. The identity of H5 insert was evaluated using real-time PCR while the vaccine 
potency was evaluated using HVT virus titration, reduction of viral shedding during challenge test.  
Results: Five vaccine batches were selected randomly and coded as A, B, C, D and E; these were 
examined and proved to be identical by quantitative real- time PCR in which the H5 gene titer was 
7.364, 7.499, 7.767, 8.049, 8.000 logs 10 copies / ml respectively. The result of in- house ELISA was 
not significant for H5 gene detection and titration using polyclonal H5 serum. The HVT titer in CEF 
was 3045, 3200, 3400, 3750 & 4000 PFU/dose for batch A, B, C, D, and E respectively. The selected 
batches safety was satisfactory by 10 fold field doses injection in SPF chicks. The challenge test results 
revealed 80% protection for A, B and C batches while D and E batches gave 90% protection. The 
shedding of challenge virus was significantly low with mean of 2 logs 10 in the vaccinated group 
compared with control group. 
Conclusion: the developed evaluation protocol could depend mainly on q PCR for identity and 
titration of H5 insert gene in addition to vaccine safety and efficacy. 
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IZSVe scientific conference, 2007) and inactivated vaccines require booster doses for long term 
protection and limit virus transmission. (Peyre, M. et al 2009). 

On the other hand, other vaccine types were developed with enhanced efficacy, and 
cross-protection such as gene-based vaccines (rFP-H5, rND-H5 and rHVT-H5). (Rao, S.S. et al., 
2008). Both recombinant fowl pox and Newcastle disease virus (rNDV) vaccines are ineffective 
as single dose primary vaccine in presence of maternal immunity or immunity against vector. In 
this case, they are effective if used as a priming vaccine. (OIE, 2015). Recently a new live cell-
associated recombinant turkey herpesvirus avian influenza (A/swan/ Hungary/4999/2006 
(H5N1)) clade 2.2 virus (rHVT-H5) vaccine was developed, that is effective in presence of 
maternal immunity for both the vector (HVT) and the insert (H5) and is  applicable at the 
hatchery (Rauw, F. et al., 2012a), in which both humeral and cellular immunity induced. 
(Kapczynski, D.R. et al., 2015). 

No international quality control protocol for evaluation of recombinant H5 vaccines had 
been established yet, however, these vaccines are evaluated by applying the conventional QC 
tests such as identity, safety, purity, potency and efficacy. But Kaczynski, D.R. et al., 2015 tried 
conventional QC for evaluation of rHVT-H5 vaccine and he found that the HI antibodies average 
titers were between 25 and 26 using the homologous HA antigen. However, when using 
heterologous HA antigens, the HI antibodies average titers was between 21 and 23. Nonetheless, 
the vaccine provides good protection against those heterologous viruses in challenge test, which 
may indicate that other immune factors (CMI) contribute to this protection against AIV than 
antibodies. So, there is a need for the establishment of a standard protocol for evaluation of 
recombinant H5 vaccines as follow: identity testing and titration testing for H5 gene insert by 
qPCR and ELISA, vaccine safety & purity, vaccine efficacy and its relatedness with vaccine 
identity and antigen amount. 

 MATERIALS AND METHODS 

Vaccines  
- Five  randomly selected batches coded as  A, B, C, D and E of VECTORMUNE® HVT AIV 

(Recombinant Avian influenza Marek’s disease vaccine) contains a genetically engineered 
Marek’s disease virus of serotype 3 (turkey herpesvirus or HVT) expressing  HA gene of a 
highly pathogenic avian influenza (HPAI) H5N1 clade 2.2 A/Swan/Hungary/499/ 2006.  

- Reassortant inactivated avian influenza virus vaccine, inactivated (H5N1 subtype, Re-5 
strain), used for the preparation of monospecific H5 serum in rabbit to be used in ELISA 
according to Hussain, I. et al., 2004. 

- Recombinant HVT-ND vaccine, select one batch randomly for H5-ELISA. 
- Marek’s disease vaccine (Rismevac) ®: batch number A304B with a titer of 3200 PFU/dose, 

used in H5-ELISA test.   

H5 avian influenza virus strain:  
A/chicken/Egypt/12378 N3-CLEVB/2006/H5N1 strain was used as positive control for real - 
time PCR (standard sample). 

Viral antigen: 
Reassortant avian influenza virus (H5N1 subtype, Re-5 strain) antigen was used as positive 
control in H5- ELISA according to Burleson, F.G., et al. 1992. 
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Challenge virus: 
The challenge virus used in the present study was A/chicken/Egypt/15755/2015 (H5N1) which 
represents currently circulating HPAI H5N1 clade 2.2.1.2 (Arafa, A.S. et al., 2015) viruses in 
Egypt. The challenge was administered by intranasal inoculation at a dose of 106 EID50/0.1ml 
according to OIE, 2004. 

Cell Culture: 
- Primary chicken embryo fibroblasts (CEF) were prepared from 10 days old SPF chicken 

embryo; that obtained from Kom Oshiem Farm, Fayoum, Egypt and used for titration of 
HVT virus vaccine by plaque assay according to OIE, 2004 and used also for Cell-ELISA 
according to Dutta, S.K. et al., 1983 & Burleson, F.G., et al., 1992. 

- MDCK cell line used for detection of H5 in Cell-ELISA according to Dutta, S.K. et al., 
1983. 

SPF Embryonated Chicken Eggs (ECE):  
9-11 day old SPF ECE obtained from Kom Oshiem Farm, Fayoum, Egypt used for detection of 
extraneous viruses. 

Chickens: 
 One day old SPF chicks obtained from SPF poultry farm at Koum Osheim El-Fayoum, Egypt, 
were used for vaccine safety and efficacy. 

Nucleic acid extraction kits:  
- DNeasy Blood and tissue Qiagen extraction kit (Cat No. /ID: 69506). 
- QIA amp Viral RNA Mini Kit (Qiagen extraction kit) Cat No. / ID52906. 

PCR condition 
Real-time PCR was conducted on the rHVT-H5 vaccine using primer pair and probe 

designated according to Capua, I. and Alexander, D. J. (2009) and superscript R III Platinum R 

one-step q real - time-PCR system Invitrogen kit by life technologies (lot no. 1447688). The 
fluorescence data were read by Bio-Rad thermocycler. The quantification of H5 gene insert was 
accomplished using standard curve generated from  tenfold serial dilutions of the standard H5 
sample in the range of 10 1 to 10 9 copies / ml.  

Cell-ELISA:  
Used for detection of H5 recombinant protein according to Burleson, F.G., et al., (1992) & Dutta 
et al., (1983). 

H5 ELISA:  
Used for H5 antigen detection according to Burleson, F.G., et al., (1992). 

Vaccine safety: 
According to OIE, 2008. 

Extraneous virus detection (vaccine purity): 
 According to OIE 2008. 

Potency test:  
Titration of live HVT vector in CEF (Plaque assay) 
According to Burleson, F.G., et al., 1992, Bussey, K. A., 2010 and Tse, L. V. et al., 2013. 
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Experimental design for vaccine efficacy:  
The vaccine is diluted by the manufacturer's diluent at room temperature according to the 
indicated dosage before administration. Fifteen, one day old SPF broiler chicks were used for 
each vaccine batch in this experiment. They were divided into 3 groups, each group kept in 
separate isolation unit with adequate water and balanced ration: 

Group (I): Comprised 20 SPF one day old chicks are vaccinated with 0.2 ml of 
VECTORMUNE® HVT AIV vaccine S/C and experimentally challenged with 
A/chicken/Egypt/15755/2015 (H5N1) 4 weeks post vaccination.  

Group (II & III): each consisted of 15 unvaccinated SPF chickens.  
Group II challenged with A/Chicken/Egypt/15755/2015 (H5N1) and serving as positive control, 
while Group III was neither vaccinated nor challenged and served as negative control.  
Four weeks post vaccination, ten birds was selected randomly from a group I & II to be 
challenged. After the challenge, birds were monitored daily for clinical signs and deaths. 
 
Virus shedding 

Quantification of the AIV challenge strain in the oropharyngeal swabs was determined by 
quantitative real-time reverse transcription–polymerase chain reaction (qRT-PCR) targeting the 
influenza A matrix (M) gene, as previously described by Rauw, F et al., 2011. The results were 
expressed as the number of M gene copies per milliliter of swab samples.  
Oropharyngeal swabs were taken in 3rd, 5th, 7th & 10th days post challenge and stored at -80 C 
before processing. 

Measured parameters for vaccine efficacy 
The mean virus load shed per group was calculated only for live positive shedders per 

group per day. 
The level of protection (survival rate) conferred by the rHVT-H5 vaccine was computed as the 
proportion of surviving birds after challenge. 

 
RESULTS 
Quantitative real-time PCR 
The results obtained by q real-time PCR was shown in fig. (1&2) and mentioned in a table (1). 

Table (1): Results of quantitative real-time PCR 

Target Content H5 gene titer (log 10 copies/ml) 
H5 A 7.364 
H5 B 7.499 
H5 C 7.767 
H5 D 8.049 
H5 E 8.000 
H5 Neg. Ctrl (NTC) 0 
H5 Neg. Ctrl 0 
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Fig. (1) Show amplification plot of quantitative real - time PCR, blue negative, orange standard, 
black unknown. 

 
Fig. (2): Show the standard curve for quantifying H5 gene insert in vaccine samples, Efficiency 
% 133.32, Slope -2.718,Y intercept 36.165,R^2 (CORRELATION COEFFICIENT)0.958. 

ELISA 
The result of Cell-ELISA is not significant due to high false positive result in negative cell 
control in Cell-ELISA as shown in the table (2 & 3). 
The result of H5-ELISA is also not significant due to high false positive result with rHVT-ND & 
rispen antigens as shown in the table (4). 
 
Table (2): 24 hour incubated CEF monolayer inoculated with the tenfold serially diluted 
vaccine. The optical density (O.D) result was as follow: 

Serum dilutions 
 

Control +ve 
1/10 1/20 1/40 1/80 
1.602 0.601 0.967 0.501 

Control –ve 1.44 0.923 0.763 0.556 
10-4 1.4 0.52 1.58 0.46 
10-5 1.5 0.47 1.5 0.49 
10-6 1 0.46 0.92 0.48 
10-7 0.85 0.36 0.89 0.36 
10-8 0.68 0.29 0.73 0.31 
10-9 0.56 0.26 0.640.46 0.32 
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Table (3): 24 hour incubated MDCK monolayer inoculated with tenfold serially diluted vaccine, 
the optical density (O.D) result was as follow: 

     Serum dilution 
 1/10 1/100 1/200 1/400 

Control +ve 1.86 1.055 0.881 0.615 
Control –ve 0.76 0.75 0.35 0.54 

10-4 1.19 0.83 1.05 0.37 
10-5 0.69 0.57 1.15 0.34 
10-6 1.07 0.49 0.97 0.33 
10-7 0.96 0.41 1.15 0.34 
10-8 1.05 0.38 1.13 0.36 
10-9 1.01 0.35 1.2 0.21 

Table (4): Result of H5 ELISA by optical density (O.D): 

 
Vaccine 

batch 

 
Vaccine  

dil. 

 
Mean of 

1/10 serum 
dil. 

 
Mean of 1/100 

serum dil. 

 
Mean of 1/10 

anti-IBD 
serum dil. 

 
Mean of 1/10 

anti-reo serum 
dil. 

Batch 30 1/25 2.2 0.76   
1/50 2.5 0.62   

Batch 32 1/25 2.3 0.66   
1/50 2.3 0.69   

Batch 34 1/25 3.3 0.92 0.056 0.058 
1/50 3.2 0.97 0.053 0.059 

Batch 42 1/25 2.7 0.72   
1/50 2.5 0.74   

Resmivac® 1/25 2.8 0.57   
1/50 2.78 0.64   

Re-5 H5 
antigen 

1/25 4.3 3.45   
1/50 3.79 2.98   

r HVT-ND 1/25 1.75 0.41   
1/50 1.77 0.51   

 
Vaccine safety  
There are no clinical signs, deaths, pathological lesion & systematic reactions on chicks was 
observed so the vaccine is safe. 
 
Extraneous virus detection (vaccine purity) 
The result of intr allantoic inoculation of 9 days old SPF ECE for other HA viruses detection was 
negative so, the vaccine is pure. 
 
Potency test 
HVT virus titration in CEF 
The oldest vaccine batch (A) show the lowest HVT virus titer (3045 PFU/ml) but, the most 
recent one (E) show the highest virus titer (4000 PFU/ml) as shown in the table (5). 
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Table (5): Results of HVT titration in CEF cells 

Vaccine batch HVT virus titer ( PFU/ml) 
A 3045 
B 3200 
C 3400 
D 3750 
E 4000 

 
Vaccine efficacy in SPF chicks: 

In general, only 2/10 (80%) for batch A, B and C, 1/10 (90%) for batch D and E of the 
birds in group I and 10/10 (100%) in Group II were died as described in the table (6).The virus 
shed varied significantly (P < 0.05) between the two challenged groups, The mean number of 
virus copies shed by Group II was significantly higher (P < 0.05) than that of Group I. The 
amount of virus shed by Groups I was lower (by 2 or 3 logs) than in Group II as described in the 
table (6). 

After infection with influenza A (H5N1), oropharyngeal swabs may be superior to 
cloacal swabs for diagnosing AI infection under field conditions. Duration of virus excretion 
before death was very short. So, we take tracheal swabs only. (Swayne, D.E. et al., 2001). 

Table (6): Shedding titer variation between the negative non - vaccinated challenged and 
vaccinated challenged groups: 

vaccine 
batch 

protection % reduction in mean daily virus shedding 
(log10 PCR copies/ml) 

A 80 2.1 
B 80 2.4 
C 80 2.51 
D 90 3.35 
E 90 3.35 

Control 0 0 
  

DISCUSSION 

Although up till now the majority of commercially available AI vaccines are 
inactivated vaccines, a new trend for development the recombinant vaccines was arisen to 
overcome the problem of inactivated vaccine (Kapczynski, D.R. et al., 2010).  

In Egypt, however, the use of classical inactivated vaccines is hampered by the 
interference with MDA; the frequent antigenic drift of the AIV that requires continuous 
updating of vaccines to keep up the corresponding efficacy; the poor quality of vaccine 
application at farm level and the limited duration of the induced immunity and, therefore, 
the necessity for booster vaccinations. (FAO, 2013). So, the recombinant H5 vaccines are 
gaining use for their ability to overcome maternal antibody interference & induce 
protection against heterologous isolates (multiple lineages of HPAI). (Kapczynski, D.R. et 
al., 2015). 
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The current study was planned to evaluate the live rHVT-H5 vaccine by identity, purity, 
safety and potency. The real-time PCR was successfully used to detect and titrate H5 gene insert 
in the randomly selected batches of rHVT-H5 vaccine in which there is no signal of 
amplification was observed in negative control (no template control NTC) to ensure that the 
observed amplification signal from samples is related to H5 gene insert only. The specificity of 
quantitative real- time PCR was examined by the absence of amplification signal for the negative 
control of available avian pathogen isolates other than H5.  

The real-time PCR result shows that all vaccine batches used in this study contain H5 
gene insert and they are identical that confirmed also by high protection % in challenge test 
against H5N1 virus. 

The study shows that the vaccine is very sensitive to any change in temperature as shown 
in real-time PCR results, the most recent batch has H5 titer higher than the old batch So, long 
period of storage and handling errors can decrease vaccine potency and reduce effectiveness and 
protection as shown in challenge test result, the E batch with 108 copies /ml give protection 90% 
while batch C with 10 7.7copies /ml give protection 80%. These agreed with Centers for Disease 
Control and Prevention (CDC, 2011). 

In Cell-ELISA results, the negative cell control give high false positivity which can be 
explained by the endogenous peroxidase activity that physiologically present in many cell types 
such as RBCs, granulocytes, monocytes, neurons, muscle cells, liver & kidney cells that can 
react with the chromogen and substrate producing high non-specific background identical to 
specific immunoperoxidase and lead to false positivity in negative cell control this agreed with 
Helle Grann Wendelboe MS and Kirsten Bisgaard BSc, 2009 and Elias, J.M. 2003 who said 
that this activity must be completely blocked to prevent false positivity especially in case of 
bloody/inflamed tissues. So, we try to block the endogenous peroxidase activity by the treatment 
of cell culture with diluted H2O2 without significant changes in the reactions. 

In H5 ELISA result, show high O.D with rispen & r HVT-ND antigens. These results 
may be due to impurities that present in the used H5 monospecific serum which react non-
specifically with negative cell control in cell-ELISA, Respin & r HVT-ND antigens in H5-
ELISA lead to a false positive result. This results agreed with Chantle S.M., and Clayton A.L. 
1988, Crowther J.R. 2001, Law B. and Malone, M.D. 1996 who found out that the common 
source of these impurities was proteins aggregates and bacterial contamination. 

The non- specific reactions in negative controls also agreed with Coudert, F. and 
Ahluwalia, R. 1984, and Cheng, Y.Q et al., 1984 who noticed this in ELISA and Cell-ELISA 
for detection of antibodies against MDV respectively and referred these non-specific reactions to 
unpurified antigen and/or serum. The serum must be treated before used to eliminate these 
nonspecific reactions in negative controls. This findings suggested that non-specific binding 
might be overcome by using monoclonal monospecific H5 antibody to exclude any protein 
aggregates and contaminants that might cause non-specific binding (Chantle S.M., and Clayton 
A.L. 1988, Crowther J.R. 2001, Kemeny D.M. and Chantle S. 1988).  

The rHVT+H5 vaccine titer for A, B, C, D & E batches was 3045, 3200, 3400, 3750 & 
4000 PFU/dose respectively in CEF cells and these vaccine batches were potent in challenge test 
that agreed with the parameters of Code of Federal Regulation USA ‘‘Part 133.331-9 CFR 
ch. 1, 1-1-97 Ed.’’ which recorded the minimum titration level of Marek’s disease must be not 
less than 2000 PFU/ dose for potent vaccines. 

The challenge test showed that at 4 weeks post vaccination, the r HVT-H5 vaccine 
conferred 80% protection in batches A, B and C and 90% protection in batches D and E against 
the high-dose experimental challenge infection. This results agreed with De Vriese, J. et al. 
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(2009), Kilany, W.H. et al. (2012) and Rauw, F. et al. (2012b) studies on rHVT-H5 vaccine, 
who reported 80 to 100% clinical protection after challenge with H5N1virus in broilers and SPF 
chicks (with or without maternal derived antibodies) vaccinated with rHVT-H5. 

The amount of viral shed by group I was lower by 2 or 3 logs than in positive control 
group, this reduction in viral shedding was agreed with Kilany, W. H. et al., 2014 who found 
that the amount of virus shed by group I vaccinated with r HVT-H5 vaccine with 73.3% 
protection was lower by 2 logs than positive control group. 

The reduction in viral shedding result reflect the antigenic and / or genetic identity 
between vaccinal H5 gene insert and challenged virus so, there is a link between identity and 
efficacy of the vaccine that agreed with  Jadhao, S.J. et al., 2009, Middleton, D. et al., 2007, 
Romer-Oberdorfer, A. et al., 2008, Veits, J. et al., 2006, Taylor, J. et al., 1988, Veits, J. et al., 
2008, Van der Goot, J.A. et al., 2008 and Kilany, W.H. et al., 2011 studies which suggest that, 
for both inactivated and vectored HA vaccines, a more closely matched HA is more effective and 
may suppress virus shedding to a greater extent. 

From the qPCR and challenge test results, we can notice that the vaccine batch with 
higher antigen content (high H5 gene titer) generally provide better protection and greater 
decrease in virus shedding. The vaccine batch A has H5 titer 10 7.3 copies /ml with protection % 
80 but the vaccine batch E has higher H5 titer 10 8 copies / ml with protection % 90. These 
agreed with Swayne, D.E. et al., 1999, Webster, R.G. et al., 2006, Wood, J.M. et al., 1985, 
Uchida, Y. et al., 2014, Maas, R. et al., 2009, Swayne, D.E. 2001, Di Trani, L. et al., 2003 and 
Sasaki, T. et al., 2009 who reported that sufficient antigen content is critical for potent vaccine 
and the quantification of antigen content may be a method to determine potency.  

In conclusion, the developed evaluation protocol will depend mainly on qPCR for 
identity and titration in addition to safety and efficacy. 
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