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Abstract | Drought is a significant issue because of the worldwide effects of climate change and the negative 
effects it has on wheat output. For improving production in water-scarce locations, screening drought-tolerant 
wheat cultivars is crucial. At the Plant Physiology Division of NIA, Tando Jam, the current experiment 
was conducted during the Rabi year of 2021. At both the P0.01 and P0.05 probability levels, the growth 
measurements at the seedling stage revealed extremely significant variations for all characteristics among 
genotypes, treatments, and interactions. The results demonstrated a stronger osmotic impact when using -0.5 
MPa PEG. At the seedling stage, the genotype SDW-3 had higher decreases in a number of growth indices, 
such as shoot length (-11.3), root length (-72.6), and shoot fresh weight (-4.4), with an increase in PEG (-0.5 
MPa) level. According to the results of the current study, all six wheat genotypes’ seed incubation shoot, root 
length, and shoot fresh weight drastically decreased under laboratory conditions due to osmotic stress. The 
genotype SDW-3 showed the greatest decrease under increased osmotic stress brought on by PEG-6000 
(-5.0 MPa). As a result, the genotypes AST-1(V1), SDW-1, and SDW-2 may be employed in future breeding 
programmes and are drought resistant.
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1. Introduction 

Being a worldwide restriction, drought has shown 
to have a significant influence on productivity 

(Li et al., 2020; Abro et al., 2020). Each stage of 
plant growth is eventually impacted by the impacts 
of drought on crop output. Additionally, there is a 
reduction in germination potential, coleoptile length, 
and vigour (Mahpara et al., 2022; Abro et al., 2019). 
The primary limiting variables for germination are 
semi-arid locations and low moisture places. The 
production of seedlings and their rate can be used 
to predict the maturity and yield of H. hirsutum 
(Sharma et al., 2022).

A popular in vitro selection technique is polyethylene 
glycol (PEG), which is used to weed out cultivars 
that can withstand drought (Tabatabai et al., 2022). 
It causes osmotic stress in plants and has a big impact 
on how quickly their roots and shoots grow (Latif 
et al., 2022). The nonionic, almost impermeable 
chains of the PEG molecules (PEG 6000) maintain 
the homogeneity of water potential throughout the 
experiment without harming people’s health (Vuković 
et al., 2022). The research on identifying drought-
resistant wheat genotypes have demonstrated that 
various features respond differently to varying 
amounts of PEG-6000 (Batool et al., 2022; Abro et 
al., 2021). According to (Abro et al., 2022; Hussain et 
al., 2022) decrease in the length of vegetative organs 
(such as the stem, plumule, and coleoptile) and a drop 
in the proportion of seeds that germinate as a result 
of the severity of moisture stress may not be a reliable 
signal for choosing resistant cultivars. Coleoptile 
lengths and leaf surface areas decline early in wheat 
development (Lei et al., 2021; Abro et al., 2021). Low 
germination rates would ensue as a result, which 
would decrease the likelihood of planting in damp 
soil (Manoj et al., 2021).

The osmotic stress brought on by the drought brought 
on by the depletion of subterranean water (PEG) 
influences ion transport and absorption throughout 
the plant’s life cycle, from growth to crop production 
(Loutfy et al., 2022). An efficient method for 
modifying physiological characteristics and genetic 
processes that result in the breeding of superior 
cultivars is in-vitro drought resistance screening 
(Mahpara et al., 2022). Scientists are concentrating 
on increasing the output capacity of wheat through 
developing new varieties of bread wheat that have 

a favourable genetic makeup (Pandey et al., 2022). 
Increasing productivity and crop yield per unit area 
was the goal in primitive times. Because hybridization 
can best use the gene, genetically modified wheat can 
be very successful. Genetic modification is the best 
method for improving wheat production (Sharma et 
al., 2022). The only way to select wheat genotypes is if 
there is strain heterogeneity. Earlier researchers looked 
at the phenotypic correlation coefficients of different 
grain yield and its components with crop yield in 
terms of genetic improvement through a variety of 
experiments. Othmani et al. (2021) discovered that 
grain weight in the 1000-grain range had an effect 
on grain yield (Bijalwan et al., 2022). Assert that 
tillers plant-1 significantly contributed to grain 
yield. The objective of the current study is to filter 
for wheat genotypes that is drought resistant using 
polyethylene glycol (PEG-6000) liquid in a laboratory 
environment. The same genotypes were also examined 
in the field to further support the laboratory research. 
Our research compared the performance of different 
wheat genotypes based on morpho-physiological 
characteristics in both in vitro and in vivo tests. The 
wheat (Triticum aestivum L.) genotypes that were 
stressed at the seedling stage were also removed 
using PEG-6000. Our research compared the 
performance of different wheat genotypes based on 
morpho-physiological characteristics in both in vitro 
and in vivo tests. Additionally, we eliminated wheat 
(Triticum aestivum L.) genotypes that were stressed 
at the seedling stage using PEG-6000.

2. Materials and Methods

The current study was carried out in the Rabi year 
of 2021 by the Tandojam Plant Physiology Division 
of the Nuclear Institute of Agriculture (NIA). 06 
wheat genotypes were excluded from the experiment 
under control conditions (1/4th Hoagland solution) in 
addition to a simulated drought of 0.5 MPa caused by 
Polyethylene glycol-6000. These genotypes included 
V1 AST-1, V2 AST-1, V3 SDW-1, V4 SDW-2, 
V5 SDW-3, V6, and Khirman (PEG-6000). The 
Plant Breeding and Genetics Division (PBGD) 
of the Nuclear Institute of Agriculture (NIA) in 
Tandojam provided the different wheat germplasm 
samples (the advanced lines). The study took place in 
a growth cabinet with a 25/25°C daytime and 12°C 
nighttime temperature control. It was factorially set 
up in a fully randomised design (CRD), and it was 
duplicated three times (irradiance: 22 Wm-2). The 
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seedlings in each treatment were cultivated on plastic 
moulded nets and put in 8.5 cm diameter bowls 
after being surface sterilised with 0.5 percent NaCl 
(sodium hypochlorite) on 30 wheat seeds from each 
genotype (Abro et al., 2021, 2020). For 72 hours, the 
bowls were kept in the dark to guarantee a successful 
germination process. The seeds were exposed to a 12-
hour photoperiod for 11 days (irradiance: 22 Wm-
2). 06 wheat genotypes were discarded from the 
study under control circumstances (1/4th Hoagland 
solution), and polyethylene glycol-6000 was used to 
mimic a drought of 0.5 MPa (PEG-6000). When 
necessary, Ca (OH) 2 and/or H2SO4 were used 
to assess the nutritional solution’s pH and adjust it 
to 5.5 + 0.2. The plants were removed carefully ten 
days after planting, separated into shoots and roots, 
thoroughly cleansed with filtered water, and blotted 
dry. After being weighed dry for the shoot and root, 
the materials were thoroughly treated in a wiley mill to 
pass through with a 1 mm (40 mesh) filter. Uniformly 
ground materials were digested with a di-acid mixture 
of nitric (HNO3) and per chloric (HClO4) at a 3:1 
ratio. Using a flame photometer ( Jenway PFP-7) to 
calculate the potassium content in the shoot and root 
(mg g-1dry wt) in accordance with (Abro et al., 2020, 
2021; Wei et al., 2013).

2.1 Statistical analysis
Data were examined by Gomez and Gomez using 
the statistical method of analysis of variance (Gomez 
and Gomez, 1984). When the F-test was significant, 
a multiple mean comparison analysis incorporating 
the variety and stress therapy was performed. Tukey’s 
significant difference was then utilised to determine 
the treatment combinations.

3. Results and Discussion

In this work, an in-vitro environment was used 
to assess the ability of the six wheat cultivars to 
survive water stress induced by PEG (6000) at the 

early seedling stage. Six distinct wheat cultivars 
had varying performances under the various PEG 
treatments, according to statistical analysis data. 
There was a substantial two-way interaction between 
cultivars and the amount of drought for all seedling 
measures (P 0.01). The mean square of analysis at the 
vegetative stages for the nutrient uptake, including 
shoot (length), root (length), shoot (fresh wt), root 
(fresh wt), shoot (dry wt), and potassium (K) percent, 
revealed highly significant difference at P0.01 and 
P0.05 probability level for all traits for genotypes, 
treatments, and interaction (Table 1).

Table 1: In vitro effect of drought condition on 
shoot length (cm) of wheat genotypes.
S. 
No

Genotypes Control Drought Mean R. Dec 
(%)

1 AST-I(V1) 16.58 AB 15.53 BC 16.055 AB 6.4
2 AST-I(V6) 15.85 ABC 13.04 DE 14.443 C 17.7
3 SDW-1 17.56 A 16.04 ABC 16.8 A 8.7
4 SDW-2 16.96 AB 14.59 CD 15.778 AB 14.0
5 SDW-3 11.87 E 13.21 DE 12.543 D -11.3
6 Khirman 16.06 ABC 15.18 BC 15.622 B 5.5

Mean 15.82 A 14.60 B 7.7
HSD (0.05); Treat =0.44; Geno = 1.15; T x G = 1.90

3.1 Shoot and Root length
Under control conditions, SDW-1 (17.56 cm) had the 
longest shoots on average while SDW-3 (11.87 cm) 
had the shortest. Whereas, in drought conditions, the 
SDW-1 maximum shoot length was 16.04 cm, and 
the AST-I minimum was V6 (13.04 cm). However, 
Khirman showed the lowest reduced R.D (5.5%) and 
AST-I showed the most decreased (17.7 %%). (V6). 
In an in vitro investigation, wheat genotypes were 
examined to see how their root length responded to 
drought circumstances (moisture stress). The results 
(Tables 2, 3) revealed that the tested wheat genotypes 
responded differently to drought conditions. SDW-3 
(7.05 cm) had the shortest root length while AST-I 
(V1) had the longest root length at the maximum

Table 1: Mean square of analysis for different growth parameters under osmotic stress using PEG (6000). 
 Source DF Shoot 

(length)
Root 
(length)

Shoot 
(fresh wt)

Root 
(fresh wt)

Shoot 
(dry wt)

Root 
(dry wt)

Potassium 
(K) %

Replication 2 0.1008 0.0910 0.0227 0.04110 0.00049 0.00064 4.6978
Genotypes 5 13.7201** 13.6548** 0.1220** 0.06717ns 0.1310** 0.00794** 16.5458*
Treatment 1 13.3103** 10.2187* 17.6931** 0.58303** 0.03277** 0.05505** 25.3344*
Genotype x treatment 5 3.1948** 8.2668** 1.0429** 0.22056** 0.01150** 0.00351** 22.8318**
Error 22 0.4096 1.6852 0.0718 0.02764 0.00091 0.00029 5.7472

**: significant at <0.01probability level; *: Significant at P<0.05probability level and ns.: non-significant.
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Table 2: In vitro effect of drought condition on root 
length (cm) of wheat genotypes.
S. 
No

Genotypes Control Drought Mean R. Dec 
(%)

1 AST-I(V1) 13.71 A 11.78 AB 12.75 A 14.1
2 AST-I(V6) 10.38 ABC 11.38 AB 10.88 AB -9.6
3 SDW-1 8.62 BC 10.46 ABC 9.54 B -21.3
4 SDW-2 12.22 AB 12.27 AB 12.24 A -0.4
5 SDW-3 7.05 C 12.17 AB 9.61 B -72.6
6 Khirman 12.64 A 12.96 A 12.80 A -2.5

Mean 10.77 B 11.84 A -9.9
HSD (0.05); Treat =0.90; Geno = 2.33; T x G = 3.85

Table 3: In vitro effect of drought condition on 
shoot fresh weight (g) of wheat genotypes.
S. 
No

Genotypes Control Drought Mean R. Dec 
(%)

1 AST-I(V1) 3.93 B 2.69 C 3.31 A 31.6
2 AST-I(V6) 4.67 AB 2.47 C 3.57 A 47.0
3 SDW-1 4.06 AB 2.50 C 3.28 A 38.5
4 SDW-2 4.74 A 2.61 C 3.68 A 44.8
5 SDW-3 2.46 C 2.57 C 2.52 B -4.4
6 Khirman 4.34 AB 2.93 C 3.64 A 32.3

Mean 4.03 A 2.63 B 34.8
HSD (0.05); Treat =0.19; Geno = 0.48; T x G = 0.80

under control conditions. However, in Khirman, 
the greatest root length measured under drought 
conditions was 12.96 cm, while the minimum SDW-
1 (10.46 cm). However, the AST-I test showed a 
relative reduction of 14.1%. (V1). The main factors for 
choosing wheat cultivars that are drought-resistant 
relate to plant growth, such as root and shoot length, 
seedling fresh weight, etc. (Abro et al., 2020, 2021; 
Foito et al., 2009). It is also obvious that different 
cultivars’ shoot lengths are considerably impacted 
by water stress caused by PEG. Because cell division 
and shoot elongation both require artificial osmotic 
stress. The researcher found that PEG had an effect 
on the shoot length of numerous wheat varieties in 
his study experiment and came to similar conclusions 
(Almaghrabi, 2012). This explanation states that 
the root length reduces with increasing PEG 
concentrations, possibly as a result of the inhibition of 
cell division and elongation (Doneva et al., 2021). The 
reduction in root length during drought stress may 
be due to a limitation of cell division and elongation 
that results in soft tuberization, claim Chachar et al. 
(2014).

3.2 Shoot and root fresh weight (g)
In an in vitro investigation, wheat genotypes were 
examined for how they responded to moisture stress 
and drought in terms of shoot fresh weight, and 
the results (Table 3) revealed that the tested wheat 
genotypes responded differently to drought. Under 
control conditions, SDW-2 showed the highest 
shoot fresh weight (4.74 g), while SDW-3 showed 
the lowest (2.46 g). While in a drought, Khirman 
had the highest fresh shoot weight (2.93 g) and the 
lowest AST-I (V6) levels (2.47 g). A lowest reduced 
R.D of 44.8 percent was found in SDW-2, whilst a 
maximum decreased R.D of 32.3 percent was found in 
Khirman. In an in vitro experiment, wheat genotypes 
were examined to see how drought circumstances 
(moisture stress) affected the root fresh weight of the 
plants. The results (Table 4) revealed that the tested 
wheat genotypes responded to drought in different 
ways. Under control conditions, AST-I (V6) (1.98 g) 
had the highest root fresh weight and SDW-3 (1.43 
g) had the lowest. Whereas, in drought conditions, 
SDW-3 recorded the highest root fresh weight 
(1.84 g), while SDW-1 recorded the lowest (1.12 g). 
However, Khirman showed the lowest reduced R.D 
(12.7%) and SDW-1 showed the most decreased 
(38.6%). Our findings concur with those made by 
(Abro et al., 2020, 2021; Wei et al., 2013), who saw 
a trend of decline in the shoot and root’s fresh/dry 
weight. However, it was noticed by multiple studies 
that the both variables of shoot/root fresh and dry 
weight greatly increased shoot and root masses in 
both cultivars under well-watered circumstances.

Table 4: In vitro effect of drought condition on root 
fresh weight (g) of wheat genotypes.
S. 
No

Genotypes Control Drought Mean R. Dec 
(%)

1 AST-I(V1) 1.65 ABC 1.40 BCD 1.52 A 15.3
2 AST-I(V6) 1.98 A 1.42 BCD 1.70 A 28.4
3 SDW-1 1.82 AB 1.12 D 1.47 A 38.6
4 SDW-2 1.52 ABCD 1.32 CD 1.42 A 13.5
5 SDW-3 1.43 BCD 1.84 AB 1.64 A -28.3
6 Khirman 1.69 ABC 1.47 BCD 1.58 A 12.7

Mean 1.68 A 1.43 B 15.1
HSD (0.05); Treat =0.12; Geno = 0.30; T x G = 0.49

3.3 Shoot and root dry weight (g)
In the in vitro experiments, wheat cultivars were tested 
for how drought-related moisture stress affected their 
shoot dry weight. The results (Table 5) showed that 
the tested wheat genotypes reacted to drought in 
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different ways. Under control conditions, SDW-2 
(0.51 g) had the highest shot dry weight while SDW-
3 (0.29 g) had the lowest shoot dry weight. While 
under drought conditions, the highest shoot dry 
weight (SDW-3) measured was 0.41 g, and the lowest 
(AST-I) was V1 (0.31 g). However, Khirman showed 
the lowest reduced R.D (15.0%) and AST-I showed 
the most decreased (24.7%) (V6). In an in vitro 
experiment, wheat genotypes were examined to see 
how drought circumstances (moisture stress) affected 
the root dry weight of the plants. The results (Table 6) 
revealed that the tested wheat genotypes responded to 
drought in different ways. Under regulated conditions, 
SDW-3 had the highest root dry weight (0.34 g), 
whereas Khirman had the lowest (0.19 g). However, 
in times of dryness, SDW-1’s highest root dry weight 
(0.19 g) and AST-lowest I’s (V1) were also recorded 
(0.12 g). A minimum reduced R.D of 21.0 percent 
was found in SDW-1, whilst a maximum decreased 
R.D of 52.0 percent was found in SDW-3. Other 
studies that found that water stress had a significant 
influence on root and shoot dry matter production 
(Abro et al., 2020, 2021; Ahmad et al., 2013; Marciska 
et al., 2013) also noticed a downward trend in root 
and shoot dry weight.

Table 5: In vitro effect of drought condition on 
shoot dry weight (g) of wheat genotypes.
S. 
No

Genotypes Control Drought Mean R. Dec 
(%)

1 AST-I(V1) 0.38 BCDE 0.31 DE 0.34 C 19.0
2 AST-I(V6) 0.45 AB 0.34 CDE 0.39 BC 24.7
3 SDW-1 0.50 A 0.39 BCD 0.44 AB 22.4
4 SDW-2 0.51 A 0.39 BCD 0.45 A 23.3
5 SDW-3 0.29 E 0.41 BC 0.35 C -37.9
6 Khirman 0.41 BC 0.34 CDE 0.37 C 15.0

Mean 0.42 A 0.36 B 14.3
HSD (0.05); Treat = 0.02; Geno = 0.05; T x G = 0.09

Table 6: In vitro effect of drought condition on root 
dry weight (g) of wheat genotypes.
S. 
No

Genotypes Control Drought Mean R. Dec 
(%)

1 AST-I(V1) 0.18 DEF 0.12 G 0.15 D 31.2
2 AST-I(V6) 0.22 BCD 0.16 EFG 0.19 BC 26.8
3 SDW-1 0.24 BC 0.19 CDEF 0.21 B 21.0
4 SDW-2 0.26 B 0.18 DEF 0.22 B 29.6
5 SDW-3 0.34 A 0.16 EFG 0.25 A 52.0
6 Khirman 0.19 CDE 0.14 FG 0.17 CD 27.9

Mean 0.16 B 0.24 A -49.3
HSD (0.05); Treat =0.01; Geno = 0.03; T x G = 0.05

3.4 Potassium content (%)
In an in vitro experiment, the potassium content of 
wheat genotypes was screened to determine how 
they would react to moisture stress and drought. 
The results (Table 7) revealed that the tested wheat 
genotypes responded differently to drought. Under 
controlled conditions, SDW-3 had the greatest 
potassium content (22.20%), while AST-I had the 
lowest amount (V6) (18.0%). The lowest SDW-1 
levels and maximum potassium concentration in 
AST-I (V1) (25.27%) were discovered during drought 
circumstances (17.73%). SDW-1 had the lowest 
reduced R.D (2.7%) and SDW-3 had the highest 
decreased R.D (18.6%). This might be explained by 
the fact that higher K+ concentrations in the soil 
provided roots with more possibilities to absorb K+ 
and that cellular membrane recovery increased K+ 
conservation in plant tissues. Study from (Abro et al., 
2020, 2021; Wei et al., 2013) supports the findings of 
his study, which discovered that enough exogenous 
K+ significantly increased K+ contents in both the 
shoot and root of PEG6000-stressed plants.

Table 7: In vitro effect of drought condition on 
potassium content (%) of wheat genotypes.
S. 
No

Genotypes Control Drought Mean R. Dec 
(%)

1 AST-I(V1) 20.50 ABC 25.27 A 22.88 A -23.3
2 AST-I(V6) 18.00 BC 24.97 AB 21.48 AB -38.7
3 SDW-1 18.23 ABC 17.73 C 17.98 B 2.7
4 SDW-2 19.03 ABC 20.47 ABC 19.75 AB -7.5
5 SDW-3 22.20 ABC 18.07 BC 20.13 AB 18.6
6 Khirman 20.07 ABC 21.60 ABC 20.83 AB -7.6

Mean 19.67 B 21.35 A -8.5
HSD (0.05); Treat =1.66; Geno = 4.31; T x G = 7.12

Conclusions and Recommendations

The current study demonstrates that, both in vitro 
and in vivo, osmotic stress significantly lowered its 
seeds incubated, root length, and shoot fresh and 
dry weight throughout all six wheat cultivars. The 
greatest reduction was found in the genotype SDW-
3 when PEG-6000-induced enhanced osmotic stress 
was present (-5.0 MPa). AST-1(V1), SDW-1, and 
SDW-2 as a consequence. The results demonstrated 
that the osmotic impact was larger when PEG was 
applied at a pressure of -0.5 MPa. With an increase in 
PEG (-0.5 MPa) level, the genotype SDW-3 reduced 
various growth parameters, including shoot length, 
root length, and shoot fresh weight, more during the 
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seedling stage. It was suggested that these genotypes 
may be used in next breeding initiatives and taken 
into consideration as genotypes resistant to drought.
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