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Introduction

The use of freshwater in the agricultural, industrial 
and domestic sectors is increasing daily due 

to the increasing world population and intensive 
farming practices (Maja et al., 2021). Surface water 
is the most commonly available freshwater resource, 
and agriculture is the primary user of it. The efficient 
use of open surface water is becoming a real challenge 
for researchers (Huang et al., 2021; Lehner et al., 
2021). Globally, the planning and management of 
freshwater resources partake a crucial part in economy 
and agriculture sustainability at national and regional 

scales. 

Irregular precipitation depths, Rapid urbanization, 
and frequencies affect water administration practices 
or storage capacity (Francipane et al., 2021; Jha 
et al., 2007; Singh et al., 2013; Sofia and Tarolli, 
2017). These problems follow to distinguish around 
the up-to-date short-term base procedures that 
instructive streamflow forecasting (Makkeasorn et 
al., 2008). Hydrological systems are very complicated 
to forecast, especially streamflow due to non-linear 
behavior between inputs and outputs. In Past decades, 
numerous forecasting methods used by investigators 

Abstract | Streamflow forecasting is a crucial hydrological variable. In the current study, the Artificial 
Intelligence (AI) based techniques: TB (Tree Boost), DTF Decision Tree Forest, SDT Single Decision Tree 
and conventional Multilayer Perceptron Neural Networks (MLPNN) are used for predicting streamflow 
of Jhelum River basin. The dataset was divided into two sections, i.e., training dataset (1971-2000); and 
testing dataset (2001-12). The tendency investigation was done by the Sen’s slope and Mann–Kendall (MK). 
Decreasing trends annually and seasonally found in MK and Sen’s Slope tests. The highest decreasing trend 
of -2.23 was observed in Autumn at Narran station, while the lowest change of -0.09 annually observed 
at Garhi Habibullah station at 95% of the significance level. The flow duration curves (FDCs) of all basin 
stations showed that DTF performed better and is more effective than other AI techniques. R2, RMSE, 
and NSE assessed the performance evaluation. DTF was more efficient AI techniques with the average 
evaluation parameters R2, NSE, and RMSE are 0.998, 0.992, and 382 m3/sec. The assessment revealed that 
DTF has potential and may be considered as an alternative method for streamflow forecasting.

Muhammad Waqas1*, Muhammad Shoaib2, Muhammad Saifullah1, Adila Naseem4, Sarfraz Hashim1, 
Farrukh Ehsan1, Irfan Ali3 and Alamgir Khan1

1Department of Agricultural Engineering, MNS-University of Agriculture Multan, Pakistan; 2Department of Agricultural 
Engineering, Bahauddin Zakariya University, Multan, Pakistan; 3Natural Resources Division, Pakistan Agricultural Research 
Council (PARC), Islamabad; 4Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan.

Received | February 04, 2020; Accepted | June 10, 2021; Published | June 27, 2021 
*Correspondence | Muhammad Waqas, Department of Agricultural Engineering, MNS-University of Agriculture Multan, Pakistan; Email: 
muhammad.waqas@mnsuam.edu.pk 
Citation | Waqas, M., M. Shoaib, M. Saifullah, A. Naseem, F. Ehsan, S. Hashim and I. Ali. 2021. Assessment of advanced artificial intelligence 
techniques for streamflow forecasting in Jhelum River Basin. Pakistan Journal of Agricultural Research, 33(x): 580-598.
DOI | https://dx.doi.org/10.17582/journal.pjar/2021/34.3.580.598
Keywords | Data-driven models, Forecasting, Hydrological cycle, Modelling, Indus basin

Assessment of Advanced Artificial Intelligence Techniques for 
Streamflow Forecasting in Jhelum River Basin

https://dx.doi.org/10.17582/journal.pjar/2021/34.3.580.598
crossmark.crossref.org/dialog/?doi=10.17582/journal.pjar/2021/34.3.580.598&domain=pdf&date_stamp=2008-08-14


Western Himalayas AI-based streamflow forecasting

September 2021 | Volume 34 | Issue 3 | Page 581 

to discourse the runoff misplaced statistics issue 
(Tayyab et al., 2019). 

Typically, researchers divided these techniques into 
data-driven and process-driven approaches (Barge 
and Sharif, 2016). Data-driven techniques are used for 
short-term streamflow forecasting (STF). Two types 
of techniques are used to predict STF: intelligent-
based algorithms; and simple mathematical 
equations (through its statistical features, which 
neglect the physical processes involved in it) (GEP 
Box and Jenkins, 1976). Process driven methods 
are implemented for continuing forecasting (LTF), 
like as rainfall-runoff forecasting, by applying the 
corporeal contributions of the basin tangled in this 
procedure. The LTF includes weekly, monthly, and 
yearly forecasts, while STF consists of an hourly 
and daily basis predictive. LTF is majorly used in 
sediments of transportation, water management, 
hydropower, strategies and planning of pools, while 
STF is essential in mitigation of flood (Sudheer et al., 
2002). 

For acquisition of data in LTF and STF, the 
following techniques are used: MLR (Multiple 
Linear regression); LR Linear regression; ARIMA 
(Auto integrated moving with exogenous input); 
ARMA (Autoregressive moving average); and 
AR (Autoregressive) (GE Box, 1970; Salas, 1980; 
Valipour, 2015; Valipour et al., 2013; Valipour and 
Montazar, 2012; Wu et al., 2009). These techniques 
have been used since 1970 to predict streamflow. 
Furthermore, all models were unable to find out 
the non-stationary and non-linear associations in 
hydrological procedures (Meng et al., 2019). 

At the end of the twentieth century, artificial neural 
networks (ANNs) recognized hydrological modeling 
and set it benchmark (Abdellatif et al., 2015; Dariane 
et al., 2018). During the last two decades, AI-based 
techniques got significant attention in streamflow 
forecasting by researchers and hydrologists 
( Jothiprakash and Magar, 2012; Kentel, 2009; Terzi 
and Ergin, 2014; Valipour and Montazar, 2012; 
Yaseen et al., 2016). Several (AI) based approaches 
are successfully applied for predicting the streamflow 
of rivers. These approaches comprise ANNs, SVM, 
SOM, ACO, PSO, GA and GEP (Babovic et al., 
2000; Mehr, 2018; Robert et al., 2020). 

ANNs have appeared as significant black-box 

approaches (Coulibaly et al., 2000). Tiwari and 
Chatterjee (2011) used hybrid wavelet bootstrapped 
(HWB) in forecasting daily discharge, which is 
also an extension of ANN. Chokmani et al. (2008) 
revealed that the ANN model developed by using 
HWB techniques was found more superior in 
predicting streamflow than others. He linked ANN 
and regression models to estimate river flow stream 
affected by icy conditions, and they revealed that 
ANN techniques produce better results in winter 
streamflow estimation. 

Many studies revealed that ANNs have some 
limitations and drawbacks to predict streamflow. 
These include stopping criteria, overfitting issue, 
low learning speed, backpropagation issue, or other 
human intervention such as rate of learning and 
learning epochs (Yaseen et al., 2015). Thus, there is a 
need to develop some approaches to overcome these 
problems and generate better results as compared 
with ANNs. 

In this study, three AI-based techniques are used: 
Single decision tree (SDT) (Quinlan, 1986), a 
rational technique that usage sets of forecast variables 
to forecast the mark value; Tree Boost (TB) (Freund 
and Schapire, 1996) generate an order of trees through 
the conclusion of the single tree alter hooked on the 
next division of the tree; and DTF (Breiman, 1996) 
cluster of conclusion trees whose forecasts are shared 
to change to the universal prediction. 

Different algorithms CART, ID3, association rules, 
and Out of Bag are used in these techniques. Bagging 
and boosting are also investigated to construct strong 
predictors for streamflow forecasting. The bagging 
method (Breiman, 1996) was proposed to improve 
the forecast ability of frail forecasters. Boosting is also 
a well-known ensemble technique with the similar 
viewpoint, which generates a linear combination 
among models (Hancock et al., 2005). 

These AI-based techniques partake not widely 
implemented in hydrological investigation, 
particularly in streamflow forecasting. Some 
researchers did a few recent implementations of 
these techniques in the hydrological analysis. Vezza 
et al. (2010) Determined that the CARTs performed 
better other than three classification methods in 
rapports of variance. The Connotation consequence 
of both stochastic GBRTs and BRTs methods own 
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regular streamflow prediction presentation, these are 
better than CART and SVR and models. He also 
knows that the predicting correctness of the regular 
streamflow of CART is remarkably advanced in 
collaborative learning paradigms (Erdal and Karakurt, 
2013). In forecasting hydrological components, the 
application of the CART is limited. Four cataloguing 
approaches: Sis (seasonality indices), RPA (residual 
pattern approach), WCA (weighted cluster analysis), 
and CARTs were castoff with morpho climatic basin 
physiognomies (Vezza et al., 2010). 

As mentioned above, many AI-based techniques 
were employed for streamflow forecasting, but still, 
some techniques have not yet been evaluated, such as 
Decision Trees. These trees are an AI-based approach 
to extract some valuable data from the complete 
dataset (Deo et al., 2017; Etemad-Shahidi and 
Mahjoobi, 2009; Keshtegar and Kisi, 2017; McGarry 
et al., 1999; Preis, 2008; Quinlan, 1987; Xu et al., 
2005). 

Sen’s Slope (Şen, 2011) was implemented in many 
studies (Ali et al., 2019; Mallick et al., 2021; Wang 
et al., 2020) to detect the modification in magnitude, 
and Mann-Kendall (Mann, 1945) trend assessment 
was used to confirm the significance of tendencies. In 
the conclusion, some statistical assessment parameters 
are used in current research, namely RMSE (root 
mean square error), R2 (coefficient of determination), 
(Levinson and Physics, 1946), and Nash-Sutcliff 
efficiency (NSE) (Nash and Sutcliffe, 1970), to 
compare results of developed techniques. 

Objectives of this study are:
1. Evaluation of advance artificial intelligence model 

for Upper Jhelum basin. 
2. Comparison with conventional methods. 
3. To examine the potential of AI-based methods 

for streamflow forecasting. 

Materials and Methods

As mentioned earlier, the aim of this investigation 
to assess or compare AI-based streamflow modeling 
results. Data collection, daily based on streamflow 
stations situated in the basin, was collected from 
1971-2012. To train and test the applied techniques 
streamflow dataset was employed. Q(i-30) was set as 
the target variable during the training and testing of 
models. Whereas, Q(i-1), Q(i-2), Q(i-3) …… Q(i-

29) was set as the predictor comprises on daily flow 
lacked by 1-day, 2-days, 3-days respectively for the 
models as input shown in Table 3. (Sheikh, 2001) 
revealed that the southern parts of Pakistan lie below 
30° of the north pole, especially the southern Punjab 
Balochistan and Sindh. Pakistan land comprise of 
semi-arid, arid, and hyper-arid areas. It has a varied 
climate because of the elongated longitudinal extent 
from 24-37°N. Therefore, there are four seasons in 
which two major rainy seasons, namely summer 
( June-September of each year) and winter (December 
to March each year). Based on rainy seasons in 
Pakistan, the dataset of the whole basin was alienated 
into four seasons, namely autumn, summer, spring, 
winter respectively. Results of this study are evaluated 
based on applied performance evaluation criteria 
mentioned above in Figure 2. It can be elaborated in 
four steps: Trend analysis, Statistical analysis, Flow 
duration curves. The Sen’s Slope and Mann-Kendall 
trend assessment and estimator remained working 
for tendency investigation. The coefficient of RMSE 
root mean square errors, R2 Determination, NSE 
Nash-Sutcliffe Efficiency, Evaluation standards were 
designated to evaluate the competence of forecasting 
all functional AI techniques. Flow duration curves 
were used to assess the results between observed and 
predicted (Da Silva et al., 2015; Saifullah et al., 2016; 
Shoaib et al., 2018; Tayyab et al., 2018). 

Figure 1: Map of Jhelum River basin, Western Himalayas.

Study area
Current investigation was associated with the 
predicting of streamflow in the Jhelum River basin, 
Western Himalayas, which is located in longitude 73° 
07ʹ to 75°40ʹ E and latitude 33° 00 to 35°12ʹ S of 
the Himalayas mountain range having a total area of 
33,425 km2 up to Mangla reservoir situated in Azad 
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Kashmir, Pakistan (Mahmoodet al., 2015). The major 
tributaries of the Jhelum River basin are Neelum, 
Kunhar, and Jhelum River. At the same time, the 
two more rivers Poonch and Kanshi, joins at Mangla 
Dam. 

Figure 2: Flow chart of methodology.

Figure 3: Single decision tree.

Eight streamflow gauge stations of the Jhelum River 
basin were used in this study. Two hydrological 
regimes contribute to the flow of Jhelum River basin, 

a rainfall regime and a nival regime that depends 
on concurrent rainfall and melting of winter snow, 
respectively. Moon soon season affect the lower basin 
portion of the Jhelum River. The Kohala and Azad 
Pattan stations have the highest average streamflow 
of 757.31m3/sec and 793.49 m3/sec. Both stations lie 
in rainfall regimes (Azmat et al., 2016). During the 
summer, mountain snow melted and overflow 20% 
to maximum momentous reporting about 45% in 
January. Whereas the Kanshi sub-catchment has zero 
snow cover and the Poonch sub-catchment has low 
elevation, it is snow-covered. Furthermore, Neelum 
and Kunhar sub-catchment have high elevations 
with the largest snow-covered area. Significant 
characteristics of the Jhelum River basin and its sub-
basins are shown in Table 1. 

Table 1: Characteristics of Jhelum River basin and its 
sub Catchment.
Basin/
Sub-Basin

Mean Annual 
Rainfall (mm)

Discharge 
m3/(sec)

Elevation 
(m)

Area 
(Km2)

Kanshi 898 6 310-867 1298
Poonch 973 128 329-4698 4270
Neelum 1509 325 671-6285 7414
Kunhar 1696 103 634-5106 2631
Mangla 1046 967 300-6528 33435

Data acquisition
Water and Power Development Authority and Surface 
Water Hydrology provided daily based streamflow 
datasets from 1971 to 2012. Eight streamflow gauge 
stations of the Jhelum River basin were used in this 
study. Seasonal distribution of 42 years datasets of all 
stations was done and then further alienated into two 
testing and training. In current investigation 1971 to 
2012, statistics used for training from 2001-12 was 
used to run and test the model. 

Table 2: Summary of basic statistics of streamflow of individual stations in the Jhelum River basin and Zoning of 
Basin.
Zones/ Sub-Basins Stations Name Lat. (dd) Long. (dd) El (m) Std. Median Mean Mode Cv Cs

Zone I <500m Kotli 33.2 73.4 400 185.02 85 128.16 20 144.37 0.7
Azad Pattan 33.7 73.6 485 668.6 552.07 793.49 0 84.26 1.08

Zone II <1000m Kohala 34.1 73.5 560 637.78 515.6 757.31 0 84.22 1.14
Muzaffarabad 34.4 73.5 670 318.12 178.48 324.18 103 98.13 1.37
Domel 34.4 73.5 701 271.51 169.8 268.32 0 101.19 1.09
Garhi Habibullah 34.4 73.4 820 96.55 55.99 99.41 0 97.13 1.35

Zone III >1000 Chinari 34.2 73.8 1070 244.24 206.52 294.77 0 82.86 1.08
Naran 34.9 73.7 2400 52.39 20.76 45.88 9.5 114.2 1.44
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The Mean annual rainfall of 1696 mm was found at 
the Kunhar sub-basin with discharge103 m3/sec. The 
highest discharge of 967 m3/sec was detected at Mangla 
sub-basin due to other sub-basin contributions. It has 
the largest area of 33435 Km2 and has the lowest 
elevation than another sub-basin. The Neelum sub-
basin has a discharge of 325 m3/sec. Kanshi sub-basin 
has the lowest discharge contribution 6 m3/sec in the 
catchment due to its elevation and area, elaborated in 
Table 2. 

Table 3: Input for AI techniques.
Input for AI techniques Q(i-1), Q(i-2), Q(i-3) ………. Q(i-

29), Q(i-30)
Target Variable Q(i-30)
Predictors  Q(i-1), Q(i-2), Q(i-3) …… (i-29)

In current investigation, Basin of river Jhelum River 
division into three zones concerning elevation as 
Zone I < 500m, Zone II< 1000m, and Zone III 
<3000, further elaborated in Table 2. Zone I consist 
of two streamflow stations: Kotli and Azad Pattan, 
which have a mean streamflow contribution to 
Jhelum River Basin are 128.16 m3/sec and 793 m3/
sec. Zone II consists of five stations, namely Kohala, 
Muzaffarabad, Domel, and Garhi Habibullah, with 
mean streamflow of 757.31 m3/sec, 324.18 m3/sec 
268.32, and 99.41 m3/sec, respectively, from which 
Garhi Habibullah has the lowest contribution to the 
catchment. Whereas Zone III is the highest zone in 
the Jhelum River Basin has two streamflow stations 
Chinari and Naran which contribute 294.77 m3/sec 
and 45.88 m3/sec. The average streamflow statistics of 
stations of particular zones was employed to interpret 
and reduce model input dataset requirements. 

Trend analysis techniques
Mann-Kendall trend test (MK test): In hydrology 
and climatology filed, find out the trend by the Mann-
Kendall (MK) non-parametric analysis (Saifullah et 
al., 2016). In the field of climatology and hydrology, 
the trend is widely detected by the (Mann, 1945) 
non-parametric Mann-Kendall (MK) test (Saifullah 
et al., 2016). We can determine the S and MK by the 
following formula;

Where; length of data set can represent as “n” the 
values of xi and xj are at the times of i and j. In 
formula values of S in positive and negative trend 
illustrate the decreasing or increasing tendency of the 
statics set correspondingly. The following expression 
is cast-off in this study, where the dataset length (n) 
is greater than 10.

Where; ti is the number of data values. The Z value is 
determined after the determination of the variance of 
time series data which is calculated with the following 
equation;

Z Value is then compared with standard normal 
distribution table with significance levels (𝛼=1%, 
𝛼=5%, and 𝛼=10%) (Ali et al., 2019). The [Ho] is 
excluded if the Z value is more significant than |Z| 
> |Z1−𝛼/2|. Therefore, trend is substantial. In other 
case, the [Ho] is accepted (Saifullah et al., 2016).
 
Sen’s slope estimation
True slop can be estimate on trend existing (alter per 
year) the Sen’s techniques is used in non-parametric 
(Şen, 2011). Sen’s technique implemented on those 
cases where the tendency must be expected in linear. 
In formula Sen’s non-parametric denotes the f(t) is 
equivalent mainly utilized in hydrology and water 
resources to estimate the true slope of any trend (Da 
Silva et al., 2015). It is used in cases where the trend 
is assumed to be linear. Mathematically, 

In Equation 1, B is a constant, and Q is a Slope. To 
get Q, we must determine the slope of all datasets. 
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In Equation 2, j>k. slope estimates Qi if in xj, in time 
series the values is n we will get N=n(n-1)/2.

Really, N values is median of slope in the Sen’s 
estimator and these values are ordered from lowest to 
higher. Mathematically Sen’s estimator is:
If N is Even,

Q=1/2[N(N/2) + Q(N+2/2)]   … (8)

Confidence interval on two-sided 100(1-α) % about 
the slope is estimated and can be obtained by the 
non-parametric method on the normal distribution. 
It is valid if n>10. In this study, the confidence level 
is computed at two different levels. 1) α=0.01 and 
2) α=0.05. To get these confidence levels first, we 
compute,

Cα=Z1- α/2 (VAR(s))1/2   … (9)

Z1-α/2 is obtained from the standard normal 
distribution, whereas VAR(S) is already described in 
Equation 4. M1= (N+Cα)/2 and M2= (N+Cα)/2 are 
computed. Qmax upper limits and Qmin lower limits of 
the confidence level contribute to finding the Qi. If 
the M1 and M2 are not the whole numbers, then the 
lower and upper limit are interpolated. To get the B 
value, the N values of differences xi - Qti are calculated 
(Salmi, 2002).

AI-based techniques 
Single decision tree (SDT): SDT consists of three 
elementary levels: Root Node, Interior node, child 
node, and terminal node shown in Figure 1. The 
Interior node connects nodes with other nodes. Child 
nodes further split into terminal nodes. Terminal 
node explicit output value. Overall, it consists of two 
stages known as tree building and pruning stages. 
During the first stage, the dataset is arranged from 
top to bottom, and secondly, during tree pruning, data 
having high entropy level is removed or altered. After 
pruning of dataset, the tree is constructed. In the 
second level, a relationship is built between predicted 
and target variables. A weight variable is assigned to 
each interior node which further split it into child and 
terminal node. Furthermore, if no weight variables 
are set to interior nodes and child nodes, then a fixed 
variable is allocated to the dataset (Sherrod, 2003).
 
Splitting nodes formula: AI techniques which are 

mentioned following equation is employed to separate 
the predicator variable.

K represent the predictor variable number or 
categories.

For appropriate and efficient outcomes is required 
for the evaluation of the values and comparison 
with their qualities. Main purpose of the SDT to in 
heterogeneity and homogeneity among with each 
node during the creation of the regression trees 
(Sherrod, 2003). Predication of missing values are 
done due to multiple reason, preferably it not be 
happening but some how probability of data missing. 
Unfortunately, in the hydrology process, missing 
statistics due to numerous reasons, like as technical 
individual engaging, instrument or weather. But in the 
Decision tree, use surrogate splitters to approximate 
the values of the predictor with missing values. The 
SDT narrates which line will be in right side or 
which in left side or new created node associated the 
splitter surrogate with the main separate of the row 
This connotation among the prime and substitute 
splitters calculated by what method numerous rows 
are disappeared beforehand in from child nodes of 
left and right. 

Still, the definite scheming behind schedule this 
purpose is complicated. This substitute forecast value 
is categorized in decreasing direction of connotation 
(Association rule) (Zhang and Zhang, 2002). 
Furthermore, the connotation among the substitute 
of prime splitters is furthermost repeatedly castoff 
to determine importance of predictor variables. The 
model studies in what way variables associate through 
the forecast variables (Wan et al., 2007). 

Decision tree forest (DTF)
DTF is the tree decision group whose forecasts are 
joint to get the overall prediction. The algorithm 
behind the DTF is Random Forest (Breiman, 2001). 
The competence of the DTF cannot be attained over 
SDT or further AI methods employed in current 
investigation. The “Out of bag” method is accepted in 
DTF intended for authentication of the prototypical. 
It transports model a release assessment without 
wanted any further distinct datasets to authenticate 
the prototypical (Sherrod, 2003). Thousands 
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predicator values of variable must be tackle with a 
single test. In predictable variables they tackle the 
missing values., must use the appropriate method 
to separate the splitters (Lewis, 2000). Datasets 
of Jhelum River basin must observe the 10928 (N) 
stream flow of mentioned stations. Through catching, 
harvest an arbitrary sample of “N” annotations as of 
each evaluating position’s data must show the re-
placement in Figure 4. Coarsely around two by third 
statistics will be designated by selection, and third 
part of the data must know as Out bag data (Breiman, 
1996). This process is replicate for every procedure of 
the building a tree Decision tree must be built with 
the aid of the statics in row selection is the first stage 
Never touch the tree for the purpose of pruning until 
they completed. During the construction of the tree 
must permit a set which predicate the whole set they 
must known as the splitters of probable each node is 
created in forest.

Figure 4: Flow chart of decision tree forest.

Some forecaster variables might not be designated 
for every split, but the leftover of variables in the 
preceding split will be encompassed in the subsequent 
split in the forest. DTF has two elements of stochastic: 
(1) the input for separately a tree choosing rows. (2) 
For every node split in the DTF considered a set 
of predictor variable values as a candidate. Due to 
this purpose, which is not well understood yet, this 
scholastic behavior of the DTF create it most efficient 
and accurate (Yadav and Pal, 2012). The algorithm of 
DTF cited above throughout its structure, to control 
the simplification error, in the tree of forest to each 
tree taking out of bag rows turns over the tree and 
percentage of error of the prediction is measured. To 
find out the total generality error frequency, average 
all errors of whole trees existing in the forest. During 
modeling all rows are used in and no one has created 
black as a separate assessment set. Testing procedure 
is very abrupt because only created a solitary forest 
(alike to V fold irritated authentication some 
additional trees formed) (Sherrod, 2003). The origin 
node divided each section recursively according to the 

Decision tree Forest learning algorithm (DTFLA). 
DTFLA is widely employed in applied methods for 
inductive interference (Mitchell, 1997).

Tree boost (TB)
TB prototypical can be illustrate graphically as 
Preliminary tree formfitting the statistics preliminary 
trees remaining then fed into the second tree, 
minimizing the fault. Events are recreated over the 
successive tree sequence as complete procedure is 
mentioned in Figure 5. The forecasted conclusion is 
shaped by addition the weighting effect of respectively 
tree. Adaboost (Freund and Schapire, 1996) or further 
composite-tree grounded on bagging and boosting 
methods cannot show outcomes improved than TB. It 
is highly resilient for the reason that it was employed 
in Huber M-regression loss function. For misplaced 
variables, it employed a very precise technique. To 
avoid overfitting TB, use cross-validation random 
row sampling (Sherrod, 2003). Boosting (Freund 
and Schapire, 1996) and bagging (Breiman, 1996) 
are present methods for expounding the predictive 
effect of classifier learning systems. In cooperation 
set are classifiers that assemble by elective bagging 
by generating pretending boot strap models of the 
data and enhancing the weights of instance. Different 
researches prove that TB performs well with DTF 
and few requests with others. Hereafter it is fantastic 
to attempt both methods and relate the outcomes 
(Sherrod, 2003).

Figure 5: Flow chart of tree boost.

In the current study, TB was used to predict streamflow. 
TB was trained and tested for improving the ability 
of streamflow prediction. By enhancing the accuracy 
of the predicting purpose by Boosting method, in a 
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sequence smearing the procedure continuously and 
integration the production of each purpose with 
weighting, the forecasting error is minimizing. In 
diverse cases, the predicting accuracy of sequence 
significantly upsurges the accurateness of the prime 
function. Jerome H. Fried man advanced the TB 
algorithm, which was used with (Friedman, 1999). 
Improve and enlighten the precision of techniques 
created on decision trees. Earlier investigations 
elaborate the models accumulated using tree boost are 
the utmost precise for any modeling method known. 
“Multiple Additive Regression Trees” (MART) and 
“Stochastic Gradient Boosting” is recognized as tree 
Boost. Functionally tree boost algorithm is analogous 
to decision tree forests as it create an ensemble tree. 
The tree boost model contains a arrangement of 
trees, nonetheless the decision tree forest includes an 
assemblage of trees that equivalent respectively other 
(Sherrod, 2003). Mathematically,

F0 initiate the series value (target is the median of 
regression model) “pseudo-residual” X is vector value 
remaining in the sequence at this point, T1(x), T2(x) 
are trees configuring to the pseudo-residuals or B1, 
B2, etc. are the continuous of the subdivision node 
predicting evidences that are planned by the Tree 
boost algorithm.

Conventional multilayer perceptron neural networks 
(MLPNN)
ANNs appropriate fit in the process of hydrological 
where considerable associations are complex and not 
simply understandable (Kasabov, 1996). In water 
resource engineering and hydrology MLPNN and 
RBFNN which are the primary form of ANNs 
widely employed (McGarry et al., 1999). MLPNN 
which contains of three layers input, hidden and 
output layers correspondingly illustrate in Figure 6. 
Every layer comprises numerous neurons which are 
interweaved with other layers through weights. In the 
primary layer, each neuron existing in it obtains an 
input array. It extracts a production over an identity 
purpose which is the contribution of the secreted 
layer as the same situation for the output layer, which 
obtains output from the secreted layer as input. It is 
developed by a neuron transmission function, which is 
a mathematical function. All neurons in three layers, 
as mentioned earlier, are interconnected, but there is 
no direct connection in between (Shoaib et  al., 2014).

Figure 6: Multi-Layer Perceptron Neural Network (MLPNN).

Model evaluation criteria 
The efficiency and fitness of the advanced techniques 
can be measured by the statistical parameters 
(Shoaib et al., 2014). The implementation of AI-
based techniques created for the monthly streamflow 
predicting was calculating through four diverse 
statistical parameters that define errors associated 
to the approaches. In current investigation, three 
statistical model authentication parameters used for 
the assessment of the efficient performance of models: 
(1) Coefficient determination (R2) (Menard, 2000); 
(2) Root mean square error (RMSE)(Levinson and 
Physics, 1946); (3) NSE (Nash and Sutcliffe, 1970) 
which are describe as: 

Qpre and Qobs are the predicted and observed flows, 
although Qmean is the of observed flows of mean. 
The coefficient of determination (R2) express us in 
what way to fit line of regression tactics the genuine 
statistics in regression, value 1 demonstrates that 
line proficiently fits the real statistics. To measure 
evaluated output exactness, RMSE is castoff. It arrays 
from 0 to eternity which illustrate the no match 
or match among predicted and observed outputs. 
The Nash Sutcliff efficiency (NSE) value ranges 
among -1 to 1. It is widely used for the assessment 
of hydrological techniques in this investigation 
NSE is in percentage. The NSE can calculate the 
aptitude of the technique to forecast the experiential 
output. Although the nominal value of RMSE and 
a high percentage of NSE illustrate a good model. 
The RMSE outcomes illustrate the integrity of the 
assessment for higher discharges. On the other hand, 
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Nash-Sutcliffe Efficiency (NSE) normally propose 
technique’s capability to forecast observed discharge 
values (Shoaib et al., 2018).

Flow duration curves (FDC)
FDC (Searcy, 1959) is a graphical illustration that 
signifies the flow of the stream that happens or is 
surpassed about percent of the period (Oeurng et al., 
2019). It is built among the experiential flow data 
composed from diverse organizations and departments 
and exceedance prospect, which fall on the y-axis. The 
general equation for exceedance probability:

N= stream flow observation (no units); M= listing the 
position on ranking (no companies).

The utmost substantial shares of FDCs are its higher 
or lower shares to assess catchment characteristics. The 
low stream flow portion of FDC’s illustrate in what 
way they capability of the catchment to sustain in dry 
and hot seasons. Although the high stream portion 
illustrations the kind of flood regime, which probably 
to have the catchment. Steep bends in FDCs (flow 
duration curves) illustrate the reason of floods by 
rain naturally in small catchments, whereas the much 
flatter bends close the upper portion are due to floods 
instigated by snowmelt. The flat curves illustrate the 
flows in the low flow portion due to natural or non- 
natural streamflow (Shoaib et al., 2014).

Results and Discussion

This study’s objective was to evaluate advanced 
AI-based techniques for streamflow forecasting in 
Jhelum River Basin in Western Himalayas, Pakistan. 
During spring and winter seasons, rainfall occurred 
in the mountain areas, mainly in Kunhar, Neelum, 
and Jhelum, which are sub-basins of the catchment in 
the form of snow. Therefore, snow melting is occurred 
due to temperature changes. The outputs of the MK 
test in annual and seasonal streamflow trend series 
are shown in Table 4. During the winter season, 
streamflow Naran and Chinari showed decreasing 
trend, whereas other places exhibited a cumulative 
trend due to precipitation increased in winter. The 
decreasing trend in streamflow also showed by Naran, 
Muzaffarabad, Chinari, Kohala stations during the 
spring season except for Garhi Habibullah, Azad 

Pattan, and Kotli stations. It is worth to note that 
the temperature is increased during the summer and 
autumn seasons in the Jhelum river basin, but all 
streamflow stations showed decreasing trends except 
Domel. These results show that the annual streamflow 
in all areas of the Jhelum river basin like Naran, Garhi 
Habibullah, Muzaffarabad, Chinari, Kohala, Azad 
Pattan, and Kotli showed the decreasing trend except 
Domel station because most stations lie in snow feed 
areas. Domel station showed an increasing trend due 
to high rainfall. These results are found accurate and 
precise, which can also be justified. Overall, in seasonal 
and annual trend analysis, the significance level (α) is 
blank, which means the α is greater than 

From Tables 4 and 6, it can see that the values of 
Z were negative for Narran, Garhi Habibullah, 
Muzaffarabad, and Chinari Streamflow stations 
which indicates the negative trend. Domel station has 
a positive Z value which shows the upward trend in the 
dataset. Although, the annual trend in the catchment 
was downward. On the other hand, the yearly (α) 
in the dataset is more significant than 0.1, except at 
Chinari station, the (α) is at 0.05. Overall, annually, 
the significance in the catchment was downward. 
The Z value is positive in the winter season except 
for Narran and Chinari stations, showing the upward 
trend in the dataset. In winter, the (α) in winter is 
0.05 at Narran, Garhi Habibullah and Muzaffarabad 
stations, whereas Chinari, Kohala, Azad Pattan, and 
Kotli have (α) 0.1. Only Domel has (α) 0.1. In the 
spring season, the Z value is negative in Narran, 
Muzaffarabad, Chinari, and Kohala, which indicates 
the downward trend in the dataset. On the other side, 
the Z value is positive at remaining stations have an 
upward trend.

Whereas, the (α) is more significant than 0.1, 
indicating the MK test’s significance. In the Summer 
season, except for the Domel station, all others have 
a negative value of Z which illustrate a descending 
tendency in dataset. All streamflow gauge stations 
have (α) is greater than 0.1, which indicates the 
significant direction in the summer season. During 
autumn, the Z value was negative and showed a 
downward trend in the dataset except for the Narran, 
Garhi Habibullah, and Domel. The (α) at Naran 
station at 0.1 and Chinari is 0.05 significance level. 
Other all stations have a significance level greater than 
0.1. Though, they illustrate the monotonic trend and 
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Table 4: Seasonally and Annually Mann-Kendall test for Jhelum River basin.
Stream flow stations Naran Garhi Habibullah M. Abad Chinari Domel Kohala Azad Pattan Kotli
Time series Z α Z α Z α Z α Z α Z α Z α Z α
Winter -2.23 * 2.12 * 2.15 * -1.5 1.73 + 0.28 0.8 0.28
Spring -1.0 1.17 -0.8 -1.47 0.97 -0.35 0.04 0.13
Summer -1 -0.63 -1.54 -1.78 + 1.1 -1.39 -0.91 -1.58
Autumn 2.47 * 0.67 -0.76 -1.86 + 1.31 -0.63 -0.11 -0.2
Annual -1.17 -0.09 -0.98 -2.1 * 1.01 -1.13 -0.35 -0.93

suitable assessment method is Mann-Kendall. 
Annually the linear trend in the dataset was negative 
except for the Domel station, which indicates the 
downward trend overall in the dataset. Annually the 
movement in the dataset was negative except for the 
Domel station. Annually, the Sen’s Slope has negative 
Q values, which indicates the downward trend overall 
in the dataset. Seasonally the Sen’s Slope values of 
Q. In the winter season, Naran and Chinari stations 
have a negative value of Q. All other stations have a 
positive value of Q, which indicates the positive trend 
in the winter dataset. During the Spring season, the Q 
values are negative in Naran, Muzaffarabad, Chinari, 
and Kohala station, which directs to the downward 
trend in the dataset. Whereas, at Garhi Habibullah, 
Domel, Azad Pattan, and Kotli, values of Q are 
positive, which shows an upward trend in the dataset of 
spring. In the Summer season, the trend is downward 
at all stations except Domel station. Therefore, in the 
summer season, the overall trend is downward. The 
values of Q are positive only at stations Naran, Garhi 
Habibullah, and Domel stations during the autumn 
season. All remaining stations have an upward trend 
in the dataset.

Linear trend of The Sens’s Slope estimator is always 
true slope is engaged. Seasonally and annually, the 
Sen’s Slope values of Q are mentioned in Tables 6 and 
7. The Mk test results of different zones are mentioned 
in Table 5. The significance was more significant than 
0.1 and in zones I and II and 0.1 at Zone III. A 
positive trend was detected in Zone I and Zone II, 
but a negative trend was found in Zone III during 
the winter and spring seasons. According to the Mk 
test, the Trend was positive and upward. The trend 
was overall negative in the summer season, with more 
than 0.1 except zone III, where the significance was 
0.1. During the autumn and annually, the trend was 
negative except Zone III, with a value greater than 
0.1, but in zone III, the significance was 0.1. generally 
negative trend must observe and importance must 
create less than, there was a negative trend detected, 

and the importance was found to a lesser amount 
of 0.1. The results of Sen’s slope estimator (Q) were 
mentioned in Table 7. During the winter and spring 
seasons, the result of Q was explicit that there was a 
negative trend in zone II and zone III but positive 
in zone I. In contrast, there was a negative trend in 
summer, autumn, and annually in all catchment 
zones. Many studies reveal that significant trends 
were detected using Mann Kendall tests, Sen’s Slope, 
Mann Whitney U and Student t-test in streamflow 
for upper Jhelum basin, western Himalaya, and its 
sub-basin, i.e., Kanshi, Neelum, Poonch, and Kunhar 
(Azmat et al., 2016; Khan et al., 2015; Mahmood et 
al., 2015; Tahir et al., 2015; Yaseen et al., 2014).

Table 5: Seasonally and Annually Mann-Kendall test 
for Zones in Jhelum River baisn.
Stream flow stations Zone I Zone II Zone III
Time series Z α Z α Z α
Winter 0.69 1.95 + -1.50
Spring 0.20 0.56 -1.58
Summer -1.17 -0.76 -1.89 +
Autumn -0.17 0.33 -1.58
Annual -0.43 0.02 -2.04 *

Note: Significance level (α) of MK test.

Performance evaluation criteria revealed that in 
training and testing of applied AI techniques, 
including SDT, DTF, and TB, each zone (Z1, Z2 
and Z3) and whole upper Jhelum river Basin are best 
techniques. The average value of R2 and NSE found 1 
for all applied techniques during training and testing 
of models mentioned in Tables 7 and 8, respectively. 

Evaluation criteria R2, RMSE, and NSE showed 
that DTF embraces superiority on the SDT and TB. 
In Figure 7, it can be seen clearly that the results of 
R2 are approximately 1.00 of the annual forecast for 
all AI techniques except the Kotli station and meet 
the original data requirements. At Kotli station, the 
DTF showed a good forecast with results of 0.91 and 
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Table 6: Seasonally and Annually Sen’s Slope Estimate (Q) for Jhelum River Basin.
Stream flow stations Naran Garhi habibullah M. Abad Chinari Domel Kohala Azad Pattan Kotli
Time Series Q Q Q Q Q Q Q Q
Winter -0.28 0.64 70.82 -5.96 320.48 74.34 164.48 26.13
Spring -0.59 1.05 -66.99 -6.75 252.07 -113.11 38.49 4.5
Summer -0.87 -1.52 -464.67 -14.75 410.04 -902.88 -749.87 -186.85
Autumn 0.28 0.09 -13.38 -1.85 66.56 -37.64 -13.38 -3.22
Annual  -1.31 -0.3 -357.97 -32.16 806.04 -890.6 -346.27 -159.23

Table 7: Seasonally and Annually Sen’s Slope Estimate 
(Q) for Zones of Jhelum River Basin.
Zones Zone I Zone II Zone III
Time Series Q Q Q
Winter 3.051 -2.187 -2.988
Spring 0.742 -10.360 -3.852
Summer -12.955 -28.700 -7.981
Autumn -0.256 -1.820 -0.915
Annual -12.478 -38.666 -17.145

0.93 in training and testing, respectively of R2. In 
contrast, the other three techniques (SDTF, TB 
MLPNN) were not found accurate, with results 
0.41, 0.42, 0.40 and 0.46, 0.54, 0.45 in training and 
testing, respectively. In comparison, DTF was found 
most accurate than MLPNN, SDTF, and TB. DTF 
results are approximately near 1 (Sharma et al., 
2013; Tayyab et al., 2018). R2 is the topmost model 
assessment measures cited and employed by numerous 
investigators or hydrologists during the procedure 
of hydrology and predicting and estimating diverse 
hydrological cycle mechanisms (Kisi and Cimen, 
2011). In Figure 7, the results of NSE for both training 
and testing cases of AI techniques results revealed that 
the TB and SDT showed the most efficient results of 
1.00 during training of models at all stations except 
for Kotli station. At Kotli station, DTF performed 
well with the average result of 0.85 and 0.65 during 
the training and testing of models. While, SDTF, 
TB and MLPNN showed less efficient results of 
0.42, 0.43, 0.40 and 0.47, 0.54 0.46 in training and 
testing respectively. High values of NSE illustrate the 
efficiency of Models. So, SDT is the utmost operative 
method for the predicting of streamflow rendering to 
NSE outcome.

In contrast, the DTF or TB partake virtuous potential 
intended for predicting for the reason that their 
outcomes are reasonable related by MLPNN. In Figure 

8, RMSE results showed that all gauges of the DTF 
have better annual streamflow prediction than SDT 
and TB. DTF is more efficient than the traditional 
MLPNN. The lesser value of the RMSE shows the 
fitness of the model (Sharma et al., 2013; Shoaib et al., 
2014). The average RMSE value for DTF in testing 
and training is 382 m3/sec and 2846 m3/sec. Therefore, 
for the upper Jhelum river basin, the DTF is most 
effective for predicting annual streamflow according 
to RMSE results. 

Figure 7: Results of Co-efficient of determination (R2).

Figure 8: Annual Results of Nash- Sutcliff Efficiency (NSE).

Figure 9: Annual Results of Root Mean Square Error (RMSE).

The data of the whole upper Jhelum river basin, including 
streamflow gauge station, were alienated into different 
weather like June to September (Summer), October to 
November (Autumn) December to March (winter), 
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Table 8: Evaluation training results of Zones (Z1), (Z2) and (Z2) and Overall Jhelum River Basin.
Techniques Training

Zone I Zone II Zone III Overall Basin
R2 NSE RMSE R2 NSE RMSE R2 NSE RMSE R2 NSE RMSE

SDT 1.00 1.00 4326.61 1.00 1.00 890.61 1.00 1.00 92.99 1.00 1.00 120737.30
DTF 1.00 1.00 861.43 1.00 1.00 181.68 1.00 1.00 16.24 1.00 1.00 27203.45
TB 1.00 1.00 4821.75 1.00 1.00 837.20 1.00 1.00 84.08 1.00 1.00 130277.90
MLPNN 1.00 1.00 6148.18 1.00 1.00 1533.72 1.00 1.00 91.24 1.00 1.00 130277.90

Table 9: Evaluation testing results of Zones (Z1), (Z2) and (Z2) and Overall Jhelum River Basin.
Techniques Testing

Zone I Zone II Zone III Overall Basin
R2 NSE RMSE R2 NSE RMSE R2 NSE RMSE R2 NSE RMSE

SDT 0.99 1.00 1929.18 1.00 1.00 488.33 1.00 1.00 54.85 1.00 1.00 70682.47
DTF 1.00 1.00 257.53 1.00 1.00 83.04 1.00 1.00 10.46 1.00 1.00 9971.38
TB 1.00 1.00 1235.14 1.00 1.00 397.12 1.00 1.00 43.51 1.00 1.00 49114.65
MLPNN 1.00 1.00 1952.96 1.00 1.00 580.82 1.00 1.00 54.10 1.00 1.00 65877.67

Spring (April to May),), and based on rainy seasons in 
Pakistan (Sheikh, 2001). Then AI-based techniques 
(SDT, DTF, TB, and MLPNN) were applied to 
the training and testing datasets. After training 
and testing models, performance evaluation criteria 
were engaged with predicted values for the seasonal 
streamflow. The results of R2 were described in Figures 
9 and 10, it can easily understood that DTF is the 
most efficient model in all-season winter, summer, 
spring, and autumn, with the average result of 0.98, 
0.95, 0.99, and 0.98, respectively. However, there was 
some irregularity in streamflow contribution from the 
Narran gauge station. Where other two techniques 
SDT and TB, do not show efficiency as compared to 
the DTF. DTF also performed most effectively and 
gave better efficiency in all four seasons.

Figure 10: Seasonal results of coefficient of determination (R2) for 
training dataset.

At the end, when these results were compared with 
conventional MLPNN, the DTF also indicated better 
results in comparison. The outputs of RMSE for 
the training and testing of AI-based techniques are 
represented in Figures 10 and 11. It can be seen that 
SDT has good results as compared to DTF and TB. 

As measure assessed output precision RMSE is used. 
Results clearly show that STD has good potential to 
forecast monthly streamflow. When AI techniques 
outputs compared to conventional MLPNN, the 
outcomes of RMSE are approximately the same. In 
both cases, the results of NSE of AI techniques are 
practical and meet the original data requirements 
presented in Figures 13 and 14. In this study, DTF 
and SDT were found the utmost efficient AI method 
intended for the cyclical streamflow predicting 
associated with other techniques like TB and SDT. 
When we compare these outcomes with MLPNN, 
DTF are the most effective and accurate strategy 
and illustrate better values range than TB, SDT and 
MLPNN and. In Figures 13 and 14, the DTF results 
are approximately near to 1. The results of the NSE 
are out of 1. The higher value of the NSE illustrate 
the efficient outcomes (Nash and Sutcliffe, 1970; 
Shoaib et al., 2018; Zaman et al., 2018). So, for the 
Jhelum River basin, the DTF is the most appropriate 
method for predicting streamflow rendering to 
NSE outcomes. In contrast, TB or SDT have great 
potential intended for predicting.

Figure 11: Seasonal results of coefficient of determination (R2) for 
testing dataset.
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Figure 12: Seasonal results of root mean square error (RMSE) for 
training dataset.

Figure 13: Seasonal Results of Root Mean Square Error (RMSE) 
for Testing dataset.

Figure 14: Seasonal Training Results of Nash- Sutcliff Efficiency 
(NSE).

Figure 15: Seasonal Testing Results of Nash- Sutcliff Efficiency 
(NSE).

Figure 16: Naran Flow duration curve.

Figure 17: G. Habib Flow duration curve.

Figure 18: M. Abad Flow duration curve.

Figure 19: Chinari Flow duration curve.

Figure 20: Domel Flow duration curve.

Figure 21: Kohala Flow duration curve.
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Figure 22: Azad Pattan Flow duration curve.

Figure 23: Kotli Flow duration curve.

In Figures 15 and 22, illustrate that hydrographs of 
the low, medium and high stream were created by the 
artificial intelligence techniques like SDT, MLPNN, 
DTF and TB to analyses for their capability.

The FDCs illustration of exceedance probability 
versus noted and simulated flows which illustrate the 
given discharges were exceeded through the shown 
period, which was exposed by numerous investigation 
in the past (Archer and Fowler, 2008; Babur et al., 
2016; Hayat et al., 2019). The flow is considered 
high, which fall equal among 1 to10 percent of the 
period. Likewise, from 11 to 89, flow is occupied 
as the medium flow, and from 90 to 100 percentile, 
lows are taken as low flows. The percentile flows from 
11-49 as a high medium flow, and from 50-89 the 
flow is considered low medium flow. DTF is a better 
AI technique for medium high and high percentile 
flows and better bonds with flow duration curve of 
observed flow compared with other FDCs of SDT, 
TB, and MLPNN. The TB FDCs better bond with 
experiential flow FDC for low and medium-low 
percentile flows than other FDCs. The FDCs of 
MLPNN for high and medium percentile flows also 
illustrate good potential and bonds with observed 
flow FDCs compared to FDCs of SDT. The FDCs 
of all places of the upper Jhelum river basin predicted 
and observed by diverse AI techniques disclosed 
that the DTF performed better than other methods. 

Though, the capability of the DTF in the predicting 
of medium-high and high discharges is perfect 
as paralleled to other AI techniques. At the same 
time, the TB executed outstanding and fit for the 
low and medium-low discharges for the long term 
of predicting. SDT also disclosed good potential to 
forecast streamflow of high flows.

Conclusions and Recommendations

By timely and effective forecasting of streamflow 
magnitude, peaks, and duration, many lives, enormous 
money, and infrastructure can be saved as complete 
safety is challenging. NSE (Nash-Sutcliffe Efficiency), 
RMSE (root mean square error) and R2 (Coefficient 
of determination), are three indices that are deployed 
as performance evaluation criteria. Through Sen’ Slope 
and MK analysis illustrate the trend of entire station. 
The seasonal analysis of the upper Jhelum river basin 
also was performed, and applied AI techniques were 
trained and test for each streamflow gauge station. The 
outcomes were also presented as flow duration curves 
(FDCs) among forecasted and observed data for each 
station. The outcomes of applied AI techniques (SDT, 
DTF, TB, and MLPNN) that comprise Q(i-1), Q(i-
2), Q(i-3)….Q(i-29), Q(i-30) as input have executed 
great effectiveness and accuracy.

In contrast, DTF is evaluated as the most effective 
AI technique among other applied methods based 
on performance evaluation criteria results in different 
zones and the whole upper Jhelum river basin. In 
contrast, SDT and TB have also better performed 
in annual streamflow forecasting. From all over 
techniques SDT techniques considered the best 
approach intended for the entire catchment. On an 
individual basis in annual streamflow forecasting at 
the entire catchment, the performance evaluation 
criteria were satisfied. The average results of evaluation 
parameters R2 and NSE for DTF are 0.998 and 0.992, 
respectively.

On the other hand, the average RMSE value for 
DTF in testing and training are 382 m3/sec and 
2846 m3/sec, respectively. Trend analysis of the whole 
catchment outcome effective in both techniques by 
Sen’s Slope and Mann-Kendall Methods. The highest 
decreasing tendency of -2.23 m3/sec was observed in 
Autumn at Naran station, while the lowest change of 
-0.09 m3/sec was found at Garhi Habibullah station. 
The seasonally and annually streamflow showed a 
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significant decrease at a 95% level of confidence. 
Based on these results, it was concluded that Sen’s 
Slope and Mann-Kendall approaches are effective 
for inclination analysis in the upper Jhelum river 
basin. Flow duration curves (FDCs) were engaged to 
observe the accuracy between observe and predicted 
streamflow in the current catchment. The outcomes of 
FDCs revealed that the DTF was a better AI method 
for high and medium-high percentile streams and well 
promises through FDC of observed flow compared 
to others. The FDC of TB better bonds with low 
and medium-low percentile flows. The percentile 
flows also illustrate well in FDCs of MLPNN for 
high and medium flow. However, the DTF’s ability 
to forecast high and medium-high discharges are 
appropriate compared to further AI techniques. It can 
predict different hydrological processes like reference 
evapotranspiration, rainfall-runoff prediction, or 
forecasting sediments transport.

Novelty Statement

These Artificial intelligence techniques (AITs) are 
never used for the forecasting of streamflow of the 
Mangla Catchment in Pakistan.
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