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Introduction 

Individual power consumption is increasing with 
each passing day. Power generated at generation 

centers is transmitted to far long areas, as the load 
centers are often situated at a fair distance. The dis-
tribution grid stations step down the voltage level 
and feed the required consumers according to the 
requirement. Pakistan is an agriculture-based econo-
my, relying mostly on agricultural products. Machines 
used in agricultural industry are generally inductive in 
nature. At times agricultural machinery is very sen-
sitive and required stable and streamlined power re-
quirements. Thus, it is mandatory to keep the voltage 

between permissible limits according to the tolerance 
levels of machines. In case of inductive agricultural 
loads, the power factor along with the voltage profile 
are quite poor. Poor power factor results in penalties 
from the utilities upon agricultural industry, which 
directly affects the production cost. In order to im-
prove voltage profile and power factor, such consum-
ers take the help of voltage regulators thus stepping 
up the voltage which results in high line currents and 
increased power loss (Schipman and Dalincé, 2018). 
Industries have employed step-wise capacitor banks 
that can only improve the power factor in pre-defined 
steps. A real time PFI device is required that can cope 
linearly with load changes and VAR requirement 
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(Marlar and Cho, 2008; Tey et al., 2005). Static VAR 
Compensator (SVC) can be used for real time VARs 
injection based on thyristor or Insulated Gate Bipolar 
Junction Transistors (IGBTs) controlled switching of 
Capacitors (Pradhan et al., 2014; Saito et al., 2013). 
This would allow agriculturists to avoid penalties thus 
helping in boosting their agricultural production. In 
addition to this the equipment life would increase 
because of stabilized voltage and power requirements 
due to balanced VAR’s.

Materials and Methods 

Static Var Compensator (SVC)
Static VAR compensators were introduced in the last 
decades of the 20th century and are compensation 
devices connected in parallel. They can both provide 
voltage support as well as improve the power factor 
(Das et al., 2016). It has three basic configurations: 
they consist of Silicon controlled rectifiers, controlled 
switched capacitor and controlled switched inductor. 
Each valve consists of two anti-parallel thyristors 
that helps in controlling the Reactive Volt Amperes 
injection. Unlike the Thyristor switched capacitors, 
the Thyristor switched inductors generates high 
harmonics. Filters could be added to minimize 
harmonics (Reid, 1996).

SVC can be used both for regulating transmission 
voltage and improvement of power quality. In case of 
lightly loading conditions, thyristor switched reactors 
are incorporated to consumer VARs from the system 
so as to bring the voltage level down; thus, avoiding 
power flow problems. Similarly, under heavily loaded 
conditions, the capacitors are switched to balance the 
lagging VARs produced due to inductive load and 
raise the power factor (Manan and Jamnani, 2016).

A model of SVC was introduced that had TSC with 
TCR. Results showed remarkable improvement 
compared to ordinary switched capacitors. The 
introduction of fully controlled switch (GTO) added 
to the controllability of bidirectional switches (Khan 
et al., 2018).

Thyristor Switched Capacitor (TSC) 
The Thyristor switched capacitors includes 
bidirectional power electronic based switches, 
capacitors and reactors to limit the current (Ohtake 
et al., 2014). Thyristor valves are added in series 
to withstand the line voltage. Thyristor switched 

capacitors are capable of injecting number of reactive 
Volt Amperes with a fair bit of control. Switching is 
possible with the help of valves but phase control in 
not possible. Thus, the amount of VAR injection is 
always in pre-defined steps.

Thyristor Switched Inductor (TSI)
It consists of bidirectional valves and inductive 
reactance. They can be helpful in light loading 
conditions when the grids are not over-stressed. If 
for some reason the power factor is leading, Thyristor 
switched inductors because of its ability can absorb 
reactive power to bring the power factor back to unity. 
They can be controlled by controlling the firing angles 
of Power Electronic switches.

Thyristor Switched Capacitors (TSC) with Thyristor 
Switched Inductors (TSI)
In order to introduce flexibility Thyristor Switched 
Inductors can be used in connection with Thyristor 
Switched Capacitors for power factor improvement. 
This is known as Static VAR Compensator, which 
has the ability to cope with varying reactive power 
requirements. They are coupled to the Alternating 
Current system through coupling transformers.

Mathematical Design of TSC and TCR
The value of capacitance in TSC branch can be 
computed using Equation (6):

Putting value of Equation (2) in Equation (1) we get,

Putting the Equation (3) in Equation (4) we get,

Here, V is the line to line voltage; f is the system 
frequency, 50 HZ; C is the Capacitance and
kVAC is the capacitive reactance.
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Alternatively, we can write,

Similarly, Inductance can be computed using 
Equation (11):

Here; V is the line to line voltage; IL is the inductor 
current; f is the system frequency, 50 HZ; L is the 
Inductance; kVARL is the inductive reactance.

 
Figure 1: three phase thyristor switched capacitors with added line 
inductance.

Static VAR compensator is the combination of 
TSI and TSC. Figure 1 shows TCS with added 
line inductances. The delta connected TSC consists 
of capacitor, inductor and anti-parallel thyristors. 
Thyristor valve controls reactive power injection 
with the help of control circuits (Zemerick, 2002). 
Capacitance is strictly linked to power demand. The 
equation (Sumangala, 2013) which relates reactive 
power with capacitance is given by Equation (12):

 

Where;
Q C is reactive power supplied by capacitor; VL is 
the line voltage; f reflects frequency of line and C 
indicates capacitance. Reactive Power Support = 30 
MVAR Leading Capacitance = 0.2 Farad and Current 
Limiting Reactor = 0.3 micro-H.

Figure 2 represent the model of TSI connected in delta 
fashion (three-phase). Figure 3 displays controller for 
SVC. The controller computes reactive VARs (Q) 
of the system. The decision of turning on and off 
depends on the value of Q. A single unit can provide 
up to 30 MVAR. If the requirement is higher than 
the capacity of a single unit, a second unit may turn 
on. In case of both units meeting the Q requirement 
the sharing is supposed to be strictly equal.

Figure 2: Three phase thyristor controlled reactors.

 
Figure 3: SVC Controller.

When a Gate Turn Off (GTO) thyristor is used 
instead of SCR, a control over the turn-off can also 
be achieved. Figure 4 shows the gating pulses.

Results and Discussion

Simulations were carried out at PhD Simulation Lab, 
Department of electrical engineering. Agricultural 
machinery sensitivity data was collected at department 
of Agricultural Loads. Voltage and currents before 
compensation and after compensation were plotted
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Figure 4: Gating Signals for GTO.

Figure 5: Voltage vs current graph (Before Compensation).

in the following figures (for same loading conditions). 
The effect of SVC on PQI is then observed for all 
conditions. Results showed considerable improvement. 
In Table 1, the first two columns show active and 
reactive loads (before simulation). Column 3 and 4 
represents Power Factor before and after correction. 
Subsequent figures show voltage and current 
waveforms for loading conditions for 50MW active 
load and 24MVAR lagging reactive load. In case if 

harmonic filters were employed, harmonic distortion 
would further reduce, and power quality will improve.

Figure 5 shows voltage and current graphs for 
50 MW, 24 MVAR system before reactive VAR 
compensation/ power factor correction. Voltage is 
shown in blue, and current is shown in red. It can be 
observed that the voltage and current is not in phase 
thus resulting in a phase shift between the two. This
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Figure 6: Voltage vs current graph (After Compensation).

 
Figure 7: System Q graph.

situation worsens the displacement power factor, 
thus making the sensitive loads vulnerable to the 
disturbances in system parameters. Figure 6 shows 
the voltage and current graphs (voltage shown in 
blue and current shown in red) for 50 MW, 24 
MVAR after compensation by SVC. It is clear 
that the voltage and current is in line with a phase 
difference of zero degrees, thus making the power 
factor close to unity. As a result, the voltage profile 

as well as the power factor are in permissible 
limits ruling out any damages to the sensitive 
equipment. Figure 7 reflects the system response 
for Q (MVAR) against Time (seconds). Results of 
simulations show that after initial transients due to 
switching of thyristors SVC compensates within 
0.8 seconds for system reactive power. After which 
the system response becomes stable and power 
factor is improved to unity. 
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Table 1: Power factor before and after compensation.
Active 
Load 
(MW)

Reactive Load 
Before Simula-
tion (MVAR Lg)

Power Factor 
Before Sim-
ulation (Lg)

Power Factor 
After Simu-
lation (Lg)

Com-
pensated 
(MVAR)

25 12 0.9 0.94 3
25 15.5 0.85 0.96 8.5
50 24.2 0.9 1 24.02
50 37.5 0.8 0.98 28.8
50 45 0.75 0.96 31.2
100 62 0.85 0.96 34
100 75 0.8 0.96 39.5

Conclusions

From the above results, I conclude that voltages are 
compensated, and power quality is improved with 
the help of static VAR compensators using TSC, 
TSI, and Power Electronic Switches. This would 
ensure operation at high power factor for agricultural 
loads, thus avoiding any paneities. In addition, it 
would reinforce machine life and safe operations. 
The production cost could be cut down via savings 
in energy production costs. Model was developed in 
SIMSCAPE (MATLAB). Real time power factor 
improvement can be achieved using TSC and TSI. 
Fast electronic Switches were added to control the 
firing delays and hence the capacitance of capacitors. 
Harmonics can be negated by using appropriate firing 
delays and the use of harmonic filters. This relieves 
the weak grid and consequently improves the power 
quality.

Recommendations

It is recommended that in order to make further 
improvements, press packed IGBTS should be 
introduced to the system model. Currently IGBTs 
have some shortcoming, as a result it cannot be 
incorporated though they are superior switches 
in terms of control and current carrying as well 
as voltage withstanding capabilities. Researchers 
are working on press packed IGBTs which would 
overcome its shortcomings and thus would 
improve the system further. In additions to this, 
control systems could be employed for real-time 
measurements of reactive power, based on which 
control signals would be initiated for controlling 
firing of controlled switches.
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