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The Sahiwal breed of dairy cattle holds significant importance in Pakistan, mostly attributed to its ability 
to withstand high temperatures, resilience to diseases, and satisfactory performance when fed low-quality 
roughages. Domestication and breeding of mammals have exerted a consistent selection pressure on a 
wide range of characteristics in many domesticated species, resulting in discernible genetic modifications 
at the individual genome level. The study aimed to discover and analyze potential indicators of recent 
selection in Sahiwal cattle, specifically identifying the genes and quantitative trait loci associated with 
these selection indicators. The study utilized a sample size of 98 Sahiwal bulls. The genotyping of all 
animals was conducted using the BovineHD140k BeadChip. After undergoing quality control measures, 
87 samples as well as 74,070 SNPs located throughout 29 autosomes were selected as well as included in 
the study. The selection signatures were examined using the iHS and the Tajima D approach. The result 
reveals the current positive selections on BTA 1, 2, 6, 11, 12, 15, 17, 21, and 27 with the iHS test, while 
for the Tajima D test, the current positive selections were detected on BTA 1, 2, 3, 4, 5, 6, 7, 9, 10, 14, 18, 
20, 23, and 24. A total of 47 genes were detected within selection regions associated with vital economic 
traits. The QTL enrichment analysis has shown eight substantial QTLs in BTA19 and BTA20 linked with 
milk, production, as well as reproduction traits. Therefore, understanding the selection signatures and 
candidate genes that influence important economic traits can provide foundational knowledge that can be 
used effectively to gain insight into the underlying mechanisms controlling these traits in Sahiwal cattle.

INTRODUCTION

The Sahiwal cattle breed originated in the central 
Punjab district of Pakistan. The breed is named after 

the Sahiwal district, part of its home track (Joshi et al., 
2001; Akram and Khan, 2011; Saeed et al., 2020). They 
are members of a category of giant Zebu breeds known as 
dual purpose. Due to its higher milk production and growth 
capacity than other Zebu cattle breeds, it is primarily used 
for milk and meat production (Ilatsia et al., 2011; Iqbal 
et al., 2015). The Sahiwal breed of dairy cattle holds 
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significant importance in Pakistan, mostly attributed to 
its ability to withstand high temperatures, resilience to 
diseases, and satisfactory performance when fed low-
quality roughages (Bhatti et al., 2007; Zurwan et al., 2017). 
Sahiwal cattle have been widely included in crossbreeding 
initiatives on a global scale due to their superior milk 
production attributes and remarkable resilience under 
adverse ecological conditions (Naskar et al., 2012; Wilson, 
2018; Silpa et al., 2021). The use of selective breeding and 
genetic isolation contributes to the development of many 
breeds of cattle and aids in the preservation of genomic 
resources and the retention of adaptive traits adapted to 
specific local conditions (Alderson, 2018; Zhang et al., 
2018; Segelbacher et al., 2022). Artificial selection has 
been shown to improve the prevalence of advantageous 
alleles associated with economic traits, facilitating the 
enhancement of production parameters (Kim et al., 2015; 
Mei et al., 2019). Domestication and breeding of mammals 
have exerted consistent selection pressure on a wide range 
of characteristics in many domesticated species, resulting 
in discernible genetic modifications at the individual 
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genome level (Jensen, 2015; Jensen and Wright, 2022). 
The genomic regions under selection pressure shows a 
functional variation associated with the traits (Driscoll et 
al., 2009; Stamps and Groothuis, 2010). 

In Pakistan, researchers have been employing the 
progeny testing program as part of a selection effort to 
increase the milk production capacity of Sahiwal cattle 
for decades under the coordination of the Research Centre 
for Conservation of Indigenous Breeds (RCCIB), Jhang 
(Moaeen-ud-Din et al., 2014). The program involves 
registering and documenting institutional and private 
herds of Sahiwal cattle, recording for genetic evaluation, 
and identifying superior germplasm for genetic evaluation 
(McGill, 2015). However, applying for a conventional 
progeny testing program under Pakistani conditions 
appears to be difficult due to the small size of the herd, low 
awareness among the farmer community about pedigree 
and performance recording, resource limitations, and a lack 
of fundamental infrastructure (Shah et al., 2008; Moaeen-
ud-Din et al., 2014). Thus, the efficiency of the Sahiwal 
cattle has not improved much over the years (Moaeen-ud-
Din et al., 2014; Zurwan et al., 2017). The efficiency of 
the Sahiwal breed can be enhanced by improving nutrition 
and management practices, estimating genetic parameters, 
and identifying the genes as well as quantitative trait loci 
linked with vital economic traits and subsequence genomic 
selection for such genes (Meuwissen et al., 2001; Rehman 
and Khan, 2012; Khan et al., 2018). Thus, genomic areas 
of Sahiwal cattle will continue to experience intense 
selective pressures for an extended period as the quest to 
select the best animals with high milk production capability 
continues in the country (Haskell et al., 2014; Illa et al., 
2021). The existing body of literature on the outcome of 
selection on the Pakistan Sahiwal cattle remains limited at 
present. Hence, it is imperative to investigate and explore 
the genomic signatures of selection in Sahiwal cattle to 
comprehend the molecular mechanisms that influence 
quantitative as well as other significant traits (Pedrosa 
et al., 2021; Zhang et al., 2022b; Rajawat et al., 2023). 
Additionally, annotating the genes and quantitative trait 
loci (QTL) linked with economically vital traits is crucial 
(Illa et al., 2021; Zhang et al., 2022b).

Selection signatures refer to distinct genetic variations 
that occur at the DNA level as a result of deviations in 
the genomes of the chosen as well as neutral loci within a 
species that has experienced selection over time (Kreitman, 
2000). Selection signatures are found in species subjected 
to selection during their evolution (Bamshad and Wooding, 
2003; Laland et al., 2010). Variants subjected to selection 
pressure can cause characteristic genomic patterns to 
emerge, including a change in the distribution of allele 
frequencies, an increase in the proportion of homozygous 

genotypes, the prevalence of long haplotypes, and a 
significant degree of population substructure (Pritchard 
et al., 2010; Zhang et al., 2015). Modern cattle have 
undergone extensive selection over the centuries, resulting 
in dramatic phenotypic changes in the last 40 years (Pitt 
et al., 2019; Frantz et al., 2020; Brito et al., 2021). The 
development of affordable genotyping techniques has 
allowed more individuals to genotype using different 
densities of single nucleotide polymorphism (SNP) arrays 
(Boichard et al., 2012; Gorjanc et al., 2015; Cortes et al., 
2022). New polymorphism data and the subsequent release 
of the bovine genome sequence have provided useful new 
resources for the search for evidence of recent selection 
in the bovine genome (Utsunomiya et al., 2013; Xu et 
al., 2015). This has improved precision and accuracy in 
identifying specific genomic areas in cattle (Hayes et al., 
2009; Meuwissen et al., 2022). These advances have also 
contributed to identifying and analyzing genetic variations 
subject to natural selection in Homo sapiens as well as 
other animal species (Oleksyk et al., 2010; Luikart et 
al., 2019). When an allele experiences positive selection, 
it experiences a selective sweep when it becomes more 
common in the population (Moradi et al., 2012; Booker 
et al., 2017). Genetic hitch-hiking is the process through 
which closely related alleles increase frequency along with 
the positively chosen allele (Booker et al., 2017). An area 
of the genome where the positively selected haplotype is 
more prevalent due to a strong selection sweep would have 
less haplotype diversity (Moradi et al., 2012). Measuring 
LD or checking whether a haplotype is over-represented 
in a population are good ways to look for evidence of a 
selective sweep (Hayes, 2007; Zhang et al., 2022a). 

Several different statistical models have been created 
to identify signs of selection. Several studies have been 
performed to detect the signatures of selection using several 
statistical techniques, such as the integrated haplotype 
score (iHS) (Voight et al., 2006), Tajima’s D (Tajima, 
1989), fixation index (FST) (Akey et al., 2002), and the 
extended haplotype homozygosity (EHH) (Sabeti et al., 
2002). These studies use methods complementarity to 
improve statistical power (Illa et al., 2021; Waineina et al., 
2022). The iHS and Tajima’s D estimators are especially 
helpful among the numerous statistics used to recognize 
signs of positive selection from polymorphism data and 
would be the techniques of choice in this investigation 
(Zeng et al., 2007; Chen et al., 2010). The discovery of 
genomic areas under selection pressure has the potential to 
improve our comprehension of the underlying biology of 
certain phenotypes. This knowledge may be used to build 
techniques to improve selection efficiency (Moradian 
et al., 2020). Therefore, the study aimed to discover and 
analyze potential indicators of recent selection in Sahiwal 
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cattle, specifically identifying the genes and quantitative 
trait loci (QTL) linked with these selection indicators.

MATERIALS AND METHODS

Animal resources and SNP genotyping 
The study’s sample size consisted of 98 Sahiwal cattle 

bulls, which were sourced from public as well as private 
livestock farms in the Punjab area of Pakistan. Blood 
samples were collected from all the 98 Sahiwal cattle bulls. 
The researchers employed a salting-out method to extract 
genomic DNA from blood samples, as described by Miller 
et al. (1988). The NanoDrop ND-1000 spectrophotometer, 
manufactured by NanoDrop Technologies in Wilmington, 
DE, was utilized to quantify the concentration of the 
isolated DNA. Good quality DNA samples were sent 
for genotyping utilizing the BovineHD140k Bead Chip 
(Illumina Inc. in San Diego, California, USA) following 
the standard operating procedure described by the 
manufacturer. Raw data was processed to generate ped files 
that provide genotypes and map files having a genomic 
location of markers.

Quality control 
The PLINK program (Purcell et al., 2007) conducted 

quality control assessments on genotyping data. The 
research study opted for a call rate exceeding 95% for the 
collection of study data as well as subsequent analysis. 
The study employed SNPs with minor allele frequencies 
(MAFs) below 0.05. The analysis of the study included 
the examination of markers and animals, which did not 
exhibit a substantial divergence from Hardy-Weinberg 
proportions (P > 0.001, Bonferroni corrected). The analysis 
exclusively incorporated SNPs that were identified within 
autosomal chromosomes. Furthermore, samples that 
exhibited a missing genotyping rate exceeding 10% were 
excluded from the analysis. SNPs were subjected to a 
filtering process in order to exclude loci that were allocated 
to unmapped contigs and chromosomes associated with 
sexual determination. After undergoing quality control 
procedures, a total of 87 samples and 74,070 SNPs were 
deemed suitable for further analysis. These SNPs were 
distributed over the 29 autosomes.

Calculation of the integrated haplotype score 
The rehh package (Gautier and Vitalis, 2012) in R 

Software was utilized to analyze the integrated haplotype 
score (iHS) test. The iHS score is derived from the 
assessment of extended haplotype homozygosity (EHH) 
linked to each allele. The computation of single-site iHS 
values was performed for each animal throughout the 
whole genome. These values were then averaged in non-

overlapping windows of 500 kb throughout the genome. 
The window size was adapted on the bases of the extent of 
LD as defined by Qanbari et al. (2011). The unstandardized 
iHS can be obtained by using the following calculation:

Where  iHHA as well as iHHD  signify the integrated 
EHH score for ancestral as well as derived core alleles, 
separately. This value has been normalized such that the 
mean is 0 and the standard deviation is 1, and this is done 
regardless of the allele frequency at the core SNP (Voight 
et al., 2006).

The standardized iHS was computed as follows:

In this context, iHHA and iHHD denote the integrated 
EHH score for ancestral (A) and derived (D) core alleles, 
while E and SD reflect the expectation and standard 
deviation of unstandardized iHS, respectively. To determine 
the P value at the genome level, the iHS scores for each 
single nucleotide polymorphism (SNP) were subjected 
to a subsequent transformation. This transformation 
involved calculating the p  iHS = − log [1 − 2|Φ(iHS) − 0.5|]. 
The function Φ(x) denotes the Gaussian cumulative 
distribution function in the context of neutrality, whereas 
p iHS refers to the two-sided P-value linked to the neutral 
hypothesis (Gautier and Naves, 2011).

Tajima’s D statistics 
Tajima’s D statistics were also computed for each 

chromosome utilizing the vcftools software (Danecek 
et al., 2011). The Tajima D index was calculated using 
nonoverlapping sliding windows of 100 MB as a parameter 
(Tajima D 100). Within each bin, the p-values were 
calculated and given to each SNP. Zero was substituted for 
any missing values.

Identification of functional genes and QTL
SNPs exhibiting statistically significant iHS and 

Tajima D values were analyzed utilizing the ARS-
UCD1.2 assembly (Rosen et al., 2018) as well as Ensembl 
Genome Browser (Zerbino et al., 2018) databases. This 
analysis aimed to discover QTL genes or neighboring 
genes associated with these SNPs. The genes and QTLs 
were acquired from the ARS-UCD1.2 assembly (Rosen 
et al., 2018) as well as the Animal QTL database (Hu et 
al., 2016), respectively, in the gtf and gff formats. The 
study utilized Panther databases (Mi and Thomas, 2009) 
to document the molecular functions and biological 
processes associated with the discovered genes. The QTL 
animal database (available at https://www.animalgenome.
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org/cgi-bin/QTLdb/BT/index) (Hu et al., 2016) was 
utilized to ascertain the QTL reported in the literature 
for each specific candidate region. The gene as well as 
QTL annotations were conducted with the R package 
GALLO (Fonseca et al., 2020). The enrichment analysis 
of QTLs was performed on all QTLs annotated using 
the chromosome-based technique, utilizing the GALLO 
program. Implementing a bootstrap approach involved 
conducting a correlation analysis between the observed 
as well as expected number of QTLs per characteristic, 
using data obtained from the cattle QTL database. The 
p-values derived from the enrichment analysis were 
adjusted utilizing the false discovery rate (FDR) approach. 
A significance threshold of less than 5% was used to 
accommodate for the numerous tests conducted. Gene 
ontology and pathway analyses were performed using the 
TOPGO and KEGGREST packages in R software. 

RESULTS 

Genome-wide distribution of iHS
The iHS distribution exhibited a close approximation 

to normality, as indicated by iHS ~ N (0, 1). Consequently, 
it was possible to make comparisons between the markers 
and the chromosomes (Fig. 1). The unstandardized IHS 
within frequency bins (IHS-b) was used to identify the 
selection signatures in dairy cattle (Fig. 2). The IHS-b 
was calculated for each SNP within each frequency bin. 
The frequency bins were created by dividing the range of 
possible frequencies into equal intervals. The IHS-b was 
then calculated for each frequency bin. The SNPs with the 
highest IHS-b values were identified as signature SNPs.

Fig. 1. Comparison between the distribution of 
standardized integrated haplotype scores (iHS) and the 
standard Gaussian distribution.

Integrated haplotype score (iHS) test
Figure 3 shows the distribution of iHS by chromosome, 

while Figure 4 shows the alteration of analogous markers 
into piHS. The iHS statistic was plotted against the genomic 
location of the breed to visually represent the distribution 
of outlier signals across chromosomes. Since the iHS test 

found many important signals, we used the maximum iHS 
and piHS values to assess genes in the target genomic 
regions. Considering the iHS values, the genomic regions 
under the recent signatures of selection were found on 
BTA 1, 2, 6, 11, 12, 15, 17, 21, and 27 (Table I). The most 
convincing evidence of selection in the Sahiwal cattle is on 
BTA6 with an iHS score of -5.23 as well as on BTA27 with 
an iHS score of -5.58.

 

Fig. 2. Unstandardized integrated haplotype scores (iHS) 
within frequency bins.

Fig. 3. Distribution of the integrated haplotype score (iHS) 
across the genome.

Fig. 4. Genome-wide distribution of the logarithmic 
transformed Integrated haplotype scores (piHS) of each 
SNP per chromosome.

Table I. Genomic autosomal regions and potential 
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genes identified by the integrated haplotype score (iHS) 
test under the indication of the signature of selection in 
Sahiwal cattle.

Chro-
mosome

Position Candidate 
gene

iHS PiHS

1 132552990 PPP2R3A -4.019491072 4.234152759
2 26259557 UBR3 -4.035439883 4.263602754
2 59837978 THSD7B -4.533780388 5.237041985
2 92923678 PARD3B -4.268678484 4.706340383
6 13502824 AP1AR -5.238324881 6.790376077
6 21884446 CENPE -4.852971281 5.914976041
6 22334879 MANBA -4.526024536 5.221099479
6 22363715 MANBA -4.26626077 4.70163512
6 22695313 SLC39A8 -4.210045351 4.59291613
11 45961342 CHCHD5 -4.824651776 5.853103064
11 45985907 CHCHD5 -4.829806865 5.864340963
11 47097519 EIF2AK3 -4.145736881 4.470155805
12 82530142 NALF1 -4.489584574 5.146531708
15 7365780 ATG13 -4.713396119 5.613283588
17 40308609 FAT4 -4.301386566 4.770234589
21 57523947 CHGA -4.19035223 4.555140878
27 3658384 CSMD1 -4.272224754 4.713246396
27 13371357 TENM3 -4.738578572 5.667112173
27 13376444 TENM3 -5.581677719 7.623040968

Fig. 5. Manhattan plot of Tajima’s D values.

Tajima’s D statistics 
Most autosomes exhibited at least one significant 

signal of selection (Fig. 5), and high Tajima D values were 
found to be under positive selection in various contexts. The 
study only considered negative values representing current 
positive selection signals. Tajima’s D test found significant 
selection signals in 51 genomic regions. Current signals 
of positive selection were detected on BTA 1, 2, 3, 4, 5, 
6, 7, 9, 18, 20, 23, and 24. Tajima’s D signals comprised 
31 candidate genes (Table II). Furthermore, the 31 genes 
identified within the selection regions are linked with milk 

composition traits like milk protein yield, milk alpha casein 
percentage, milk fat percentage, milk fat yield, milk alpha-
lactalbumin percentage, milk protein percentage, as well as 
milk beta-casein percentage according to previous reports.

Table II. Genomic autosomal region and potential 
genes identified by Tajima’s D test under the indication 
of a positive signature of selection in Sahiwal cattle.

Chro-
mo-
somes

Start 
position 

End 
position 

Candidate gene Trait

1 29105747 29418948 GBE1 Milk protein 
yield1 1643680 1651038 ATP5PO

1 3498977 3629442 HUNK
1 20991748 21009134 LOC112447287
1 4925473 4926072 LOC112446980
1 57125817 57206343 CD200
1 98873841 98873935 MIR551B Milk alpha 

casein 
percentage

1 1.35E+08 1.35E+08 ANAPC13
1 1.32E+08 1.32E+08 LOC112448286
1 1.26E+08 1.26E+08 PAQR9
1 1.56E+08 1.57E+08 KCNH8 Milk fat content 
2 1.27E+08 1.27E+08 STMN1 Milk fat yield
2 47961935 48181188 LOC107132255
2 44432998 44652244 NEB
2 1.32E+08 1.32E+08 UBXN10
2 1.04E+08 1.04E+08 SMARCAL1
2 23404603 23571295 MAP3K20
3 51855689 51880658 CDC7 Milk protein 

yield
3 30206039 30268283 LRIG2 Milk protein 

percentage
5 98993095 99048504 LOC101902742 Milk alpha 

lactalbumin 
percentage

6 55443414 55635282 ARAP2 Milk protein 
percentage

7 328408 329337 LOC107131408 Milk fat yield
7 23975396 24263996 CHSY3 Milk beta ca-

sein percentage
9 32590633 33013293 SLC35F1 Milk fat yield
14 22640320 22957122 XKR4 Milk fat 

percentage
18 43093119 43130616 ANKRD27 Milk fat yield
20 21798316 21799446 ACTBL2
20 4596537 4709460 ERGIC1
20 27974735 27974841 LOC112443073
23 39178908 39266796 RNF144B
24 27152147 27152251 LOC112444247 Milk fat content

Analysis of QTL identification
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The study identified significant genomic regions 
consisting of 25.08% of milk-type QTLs in Sahiwal cattle 
as well as other QTLs associated with traits like meat as 
well as carcass, production, health, reproduction, as well 
as exterior, which were annotated and represented 21.54, 
18.72, 13.85, 11.05, and 9.76%, respectively (Fig. 6). 
Milk-type QTLs included loci associated with milk protein 
yield, milk yield, milking speed, milk beta-casein content, 
milk energy yield, stearic acid content, milk oleic acid 
content, milk kappa-casein percentage, curd firming rate, 
milk caproic acid content, milk alpha-casein content, milk 
alpha-S2-casein percentage, milk casein content, milk 
color, milk kappa-casein content, milk protein content, 
milk odd-chain fatty acid percentage, milk palmitoleic acid 
content, milk saturated to unsaturated fatty acid ration, and 
milk whey protein content (Fig. 7).

Fig. 6. Pie plot shows the part of six quantitative trait loci 
(QTL) classes annotated in the substantial genomic areas.

Fig. 7. Milk-type quantitative trait loci (QTL) component.
QTL enrichment analysis

The QTL enrichment analysis was done to obtain 
unprejudiced data on the significant QTLs in the population 
instead of doing the QTL annotation. The QTL enrichment 
analysis has shown 8 substantial QTLs on BTA19 and 
BTA20, which are linked with milk, production, as well 
as reproduction traits (Table III). The utmost substantial 
QTLs were mapped on BTA19 andBTA20, linked with 
fat percentage, fertilization rate, milk fat yield, early 
embryonic survival, body depth, body weight, and average 
daily gain (Fig. 8). Intriguingly, the highest significant 
QTL identified on BTA19 was linked with milk fat yield 
as well as fat percentage. 

Table III. The enriched QTLs were annotated in the 
assumed genomic areas.

Trait Chro-
mosome

Number 
of QTLs

Number of an-
notated QTLs

p-value

Milk 19 16 321 0.040234
19 12 321 0.046226

Production 19 22 321 0.000171
20 19 210 0.008069
19 11 321 0.013937
19 8 321 0.045253

Reproduction 19 12 321 0.009393
19 10 321 0.020660

Fig. 8. Quantitative trait loci (QTL) enrichment analysis 
resolute the vital traits enriched in the substantial genomic 
areas.

Gene enrichment analysis for iHS
The gene ontology (GO) enrichment analysis of 

the significant genes of the iHS scores was categorized 
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into biological processes (Fig. 9A), molecular function 
(Fig. 9B), and cellular components (Fig. 9C). The GO 
enrichment analysis revealed 30 biological processes, 6 

molecular functions, and 22 cellular components for the 
iHS test.

 

 

A 

B 

C 

Fig. 9. Biological process (A), molecular function (B) and cellular component (C) of gene network computed for the iHS significant 
potential genes. The cut off lines drawn at equivalents of p=0.05, p=0.01, and p=0.001. KS means the p-value of Kolmogorov-
Smirnov test implemented in the R package ‘topGO.
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A 

B 

C 

Fig. 10. Biological process (A), molecular function (B) and cellular component (C) of gene network computed for the Tajima’s 
D significant potential genes. The cut off lines drawn at equivalents of p=0.05, p=0.01, and p=0.001. KS means the p-value of 
Kolmogorov-Smirnov test implemented in the R package ‘topGO.
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Gene enrichment analysis for Tajima D
The gene ontology (GO) enrichment analysis of the 

significant genes of the Tajima’s D test was categorized 
into biological processes (Fig. 10A), molecular function 
(Fig. 10B), and cellular components (Fig. 10C). The GO 
enrichment analysis revealed 19 biological processes, 
13 molecular functions, and 8 cellular components for 
Tajima’s D test.

DISCUSSION 

The study investigated the signature of selection in 
the genomes of Sahiwal cattle utilizing two methods (iHS 
and Tajima D). Considering iHS values, the regions on 
BTA 1, 2, 6, 11, 12, 15, 17, 21, and 27 are under the recent 
signatures of selection (Table I). The study observed recent 
signatures of selection on BTA 1, 2, 3, 4, 5, 6, 7, 9, 14, 18, 
20, 23, and 24 with Tajima’s D test (Table II). This study 
also noticed results that were similar to those observed by 
other researchers. In Thai dairy cattle, Buaban et al. (2022) 
found that regions associated with milk production traits 
were located on BTA 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 
15, 16, 20, 21, 26, 27, and 29. Kolbehdari et al. (2009) 
performed a whole genome scan on Canadian Holstein 
bulls to identify QTL for milk production characteristics 
and somatic cell score. Their research identified map QTL 
significantly associated with protein yield in six SNP at 
the genome level, and nine at the chromosome level on 
BTA 1, 4, 7, 8, 9, 11, 14, 18, 21, 23, 26 and 28; 13 SNP 
significantly related to fat yield at the genome level, and7 at 
the chromosome level on BTA 1, 4, 5, 7, 10, 11, 14, 21, 23, 
24 and 28; 6 and 12 SNP that were significantly associated 
with the fat percentage in the genome were found on BTA 
3, 6, 9, 10, 14, 17, 21, 23, and 26; and one SNP at genomic 
and 9 SNPs at the chromosome level were found on BTA 3, 
4, 5, 10, 13, 17, 22, and 23 for the percentage of protein. In 
a whole genome evaluation of recent selection signatures 
in Sarabi cattle from Iran, Moradian et al. (2020) identified 
statistically significant SNPs on BTA5, BTA7, BTA10, 
BTA14, andBTA17. Kadri et al. (2015) found potential 
genes on BTA20 that are related to milk production, 
percentage of proteins, and resistance to mastitis.

The common genomic region identified by both tests 
(iHS and Tajima’s D) was on BTA 1, 2, and 6. Pitt et al. 
(2019) identified positive selection in Creole cattle breeds 
on BTA1 that harbored genes associated with Polled, milk 
production, and reproduction. Alshawi et al. (2019) found 
the most compelling evidence of selection in Jenoubi cattle 
in BTA1 with an iHS score of -5.40 as well as in BTA26 
with an iHS score of -5.0. Iraqi Rustaqi cattle notice a clear 
selection indication at BTA1 with an iHS score of -5.60 
as well as BTA18 with an iHS score of -5.03. Hayes et al. 

(2008) used an LD-based iHS technique and found many 
QTLs associated with milk production traits. They found 
selection signatures present on BTA6 in Norwegian red 
cattle. In a study on selection signatures employing ROH 
patterns in four different cattle breeds, Szmatoła et al. 
(2016) discovered that a homozygous area under selection 
on BTA2 was related to QTL for the muscling trait in the 
Limousin breed. At least three QTLs that influence milk 
traits are located on BTA6 (Khatkar et al., 2004; Ogorevc et 
al., 2009), and it has been hypothesized that dairy breeders 
are selecting these areas to improve milk production 
(Schwarzenbacher et al., 2012). Using iHS, FST, as well as 
XP-EHH methods, Maiorano et al. (2018) demonstrated the 
existence of QTLs that impact milk as well as meat quality 
traits in dual-purpose Gir cattle populations on BTA6. Lee 
et al. (2016) also found a gene on BTA6 that was under 
selection and related to milk production parameters like 
milk yield, fat composition, as well as protein yield in 
Holstein dairy cattle. 

These genomic regions identified by both tests in the 
study harbor candidate genes linked with milk, production 
and reproduction. PARD3B identified on BTA2 in the study 
has been found to be linked with bovine development and 
neural development in red Angus beef cattle (Smith et al., 
2022). The gene has also been found to be linked with fat 
percentage in Danish Holstein cattle (Buitenhuis et al., 
2014). PARD3B in red Angus beef cattle has been found 
to be associated with bovine tuberculosis traits (Raphaka 
et al., 2017). The PARD3B gene has also been identified in 
pigs as a candidate gene for body weight (Xu et al., 2020). 
The CENPE identified on BTA6 in the study has been found 
to be a candidate gene linked with milk composition traits 
in Holstein cattle (Jiang et al., 2016). The CENPE gene has 
also been identified in cattle to be linked with residual feed 
intake (Rathert et al., 2020). CSMD1 and TENM3 have 
also been detected on BTA27 in the study. Gonzalez et al. 
(2020) found CSMD1 to be associated with the rear udder 
height trait in Holstein cows. In the context of Hanwoo 
cattle, it was observed that CSMD1 exhibited higher 
expression levels in muscle samples derived from animals 
with elevated carcass weight, particularly in relation to 
intramuscular fat content and eye muscle area (Lee et al., 
2011). Hoff et al. (2019) identified a region in the CSMD1 
gene that regulates the complement system that controls 
inflammatory responses in Holstein cattle. CSMD1 has also 
been identified in goats as associated with goat fertility (Li 
et al., 2022). TENM3 has been found to be a candidate gene 
within the most significant QTL, which is associated with 
wither height or stature in beef cattle (Doyle et al., 2020). 
TENM3 has also been identified in sheep as associated with 
milk production traits (Sutera et al., 2019). TENM3, among 
others, affects the metabolic pathways of cell differentiation 
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and proliferation and is linked with the regulation of the 
immune system in goats (Krivoruchko et al., 2022).

The identification of QTLs in the study discovered 
that significant genomic areas consist of 25.08% of milk-
type QTLs in Sahiwal cattle as well as other types like 
meat as well as carcass, production, health, reproduction, 
as well as exterior, which were annotated and represented 
21.54, 18.72, 13.85, 11.05, and 9.76%, respectively (Fig. 
6). The study revealed a low percentage of milk-type 
QTLs in Pakistani Sahiwal cattle compared to Indian 
Sahiwal cattle, where Illa et al. (2021) observed 54.6% 
milk-type QTLs. This may suggest that Pakistani Sahiwal 
cattle have not been subjected to intense selection for milk 
production traits. The QTL enrichment analysis has shown 
8 substantial QTLs on chromosomes BTA 19 and BTA20, 
associated with milk, production, as well as reproduction 
traits. The utmost significant QTLs were assigned to 
BTA19 and BTA20, associated with milk fat yield, fat 
percentage, fertilization rate, early embryonic survival, 
body weight, body depth, and average daily gain (Fig. 8). 
Illa et al. (2021) conducted signature selection in Indian 
Sahiwal cattle, and the QTL enrichment analysis painted 
14 substantial locations in BTA 1, 3, 6, 11, 20, as well as 
21. They found that the top most three enriched QTLs 
were in BTA 6, 20, as well as 23, linked to the exterior, 
milk production, health, as well as reproduction traits. 
They obtained a more significant region, which may be 
due to Indian Sahiwal cattle being under intense selection 
for milk yield; they have a milk-type QTL of 54.6% as 
compared to the Pakistani Sahiwal cattle, which have just 
25.08% milk-type QTLs.

CONCLUSION

The study findings revealed many genomic regions 
and several novel genes that exhibited positive selection 
in the Sahiwal cattle for both the test (iHS and Tajima’s 
D) used in the study. Considering iHS values, the regions 
on BTA 1, 2, 6, 11, 12, 15, 17, 21, and 27 are under the 
recent signatures of selection. While genomic regions 
on BTA 1, 2, 3, 4, 5, 6, 7, 9, 14, 18, 20, 23, and 24 are 
under recent signatures of selection with Tajima’s D test. 
The common genomic region identified by both tests 
under positive selection signatures was BTA 1, 2, and 6. 
These genomic regions harbor candidate genes linked 
with milk composition traits. The study also observed that 
the Sahiwal cattle population has low milk-type QTLs 
of 25.08%, indicating that the population is not under 
intense selection for milk production traits. Therefore, 
understanding the selection signatures and candidate 
genes that influence important economic traits can provide 
foundational knowledge that can be used effectively to 

gain insight into the underlying mechanisms controlling 
these traits in Sahiwal cattle. Additionally, the results might 
serve as a basis for further investigation of economically 
vital traits linked to milk production in Sahiwal cattle.
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