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This study was carried out to check the corrosive impact of sulfate-reducing bacteria (SRB) on mild steel 
coupons in solid and liquid media under two variable nutritional conditions. The bacterial species for 
the experimental trials was isolated from buried corroded metallic installment and found motile, Gram-
negative, non-spore former and identified by 16S rRNA gene sequencing as Desulfovibrio desulfuricans. 
The corrosive impact of SRB on steel coupons was performed in water as liquid medium and the 
processed clay as the solid medium without and with the provision of Postgate B medium. After 60 days 
of anaerobic incubation, corrosion rate (CR) and average percent weight loss (APWL) of the steel pieces 
were calculated. Higher CR and APWL were observed in the liquid medium (water) than in the solid 
medium (clay). The CR and APWL in water were 249 ± 2 µg dm−2 d−1 and 4.16 ± 0.25 %, respectively, 
while the corresponding figures for CR and APWL in clay were 108 ± 2 and 1.88 ± 0.29, respectively. In 
addition, the CR and APWL were higher in the presence of Postgate B medium compared to the medium 
without it. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic analyses reveals 
the presence of FeS in the corrosion product. Our findings of this study will be helpful for devising 
corrosion-protecting strategies.

INTRODUCTION

Metals and their alloys are very important for the 
construction of buildings and manufacturing of 

different useful equipment but varying environmental 
conditions are posing big challenges to metals’ stability and 
becoming the major cause of metallic corrosion (Videla 
and Herrera, 2005; Ferreira et al., 2007). Microbiologically 
influenced corrosion (MIC), in this context, is a very 
complex phenomenon involving interaction between 
metals, microorganisms, and their environmental 
conditions. In different environments, MIC deteriorates 
metals with the involvement of oxidation and reduction 
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reactions (Beech and Sunner, 2004; Chugh et al., 2022). 
In oxidation and reduction reactions, one metal donates 
electrons, and the other metal accepts electrons and drives 
the corrosion process. The flow of electrons between these 
two metal sites determines the CR and severity of metals’ 
damage (Kaesche, 2003; Enning and Garrelfs, 2014).

The estimated damage cost due to MIC is in 
billion dollars per year (Thompon et al., 2007). In many 
industries including the gas and oil industry, MIC is a 
major challenge (Li et al., 2016; Okoro et al., 2016; 
Liu et al., 2017). A wide variety of microorganisms are 
involved in the corrosion of metals including bacteria and 
fungi (Liu et al., 2015). Fungi are the abundantly available 
eukaryotic microorganisms causing metallic corrosion 
(Qu et al., 2017; Kadaifçiler et al., 2022; Zhang et al., 
2022b). Fungi have the potential to produce organic acids 
and other corrosive metabolites. These metabolites and 
organic acids play a crucial role in the corrosion of metals 
and their alloys (Little and Lee, 2007). Among prokaryotic 
microbes, acid-producing, iron-oxidizing, sulfate and 
nitrate-reducing bacterial groups are considered the major 
contributors causing MIC by colonization on buried 
gas and oil pipelines (Dang and Lovell, 2015; Qian and 
Cheng, 2017; Lv et al., 2019). Acid-producing bacteria 
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(APB) produce predominately organic acids that cause 
corrosion of metallic installations (Juzeliunas et al., 2007; 
Qu et al., 2017; Madirisha et al., 2022). APB can survive 
under anaerobic environments and initiate the corrosion 
process (Gu et al., 2018). Nitrate-reducing bacteria such 
as Bacillus licheniformis and Pseudomonas aeruinosa are 
also considered the causative agents of MIC (Xu et al., 
2013). Iron-oxidizing and sulfate-reducing bacteria (SRB) 
are the key bacterial groups causing corrosion of materials 
under aerobic and anaerobic conditions, respectively (Lv 
et al., 2019). However, among all the corrosion-causing 
bacterial groups, SRB are considered the key culprits due 
to their widespread distribution in anoxic environments of 
aquatic ecosystems and the frequent availability of sulfate 
there (Hussain et al., 2016; Lv and Du, 2018). Anoxic 
environments may contain sulfate concentrations up to 28 
mM (Pester et al., 2012). SRB consume sulfate as their 
terminal electron acceptors and generate corrosive sulfide 
as well as organic acids that cause localized pitting corrosion 
of metals (Hussain et al., 2016; Zhang et al., 2022a). 
Various SRB genera (Desulfovibrio, Desulfobulbus, 
Desulfococcus, Desulfonema and Desulfotomaculum) have 
been reported to play a vital role in corrosion (Lv and Du, 
2018). Keeping in view the wide-ranged environmental 
distribution and corrosion-causing potential of SRB, the 
present study was designed for studying the corrosive 
impact of pure cultured Desulfovibrio desulfuricans on 
mild steel in water and clay.

MATERIALS AND METHODS

Isolation and molecular identification of SRB
The SRB species was isolated from a wastewater stream 

(Hudiara Drain) flowing through Mohlanwal, Lahore, 
Pakistan metallic installations. For the purpose, water 
(about 100 mL) was collected in a sterile glass container 
and transported to the laboratory for the isolation of SRB. 
The bacteria were isolated in deep agar by the dilution to 
extinction method as described by Postgate (1984) using 
the Postgate B medium (concentration in g L−1: CaSO4, 
1.0; FeSO4.7H2O, 0.5; KH2PO4, 0.5; MgSO4.7H2SO4, 
2.0; NH4Cl, 1.0; Ascorbic acid, 0.1; Sodium lactate, 3.5; 
Thioglycolic acid, 0.1; yeast extract, 1.0).

The bacterial pure culture was characterized 
phenotypically by motility detection, Gram’s, and 
endospore staining. The bacterial strain was then 
identified at the molecular level by 16S rRNA gene 
sequencing. For the purpose, SRB growth was revived 
in the Postgate B medium. Total genomic DNA from 
freshly grown bacterial cells was extracted and amplified 
following Hussain et al. (2014) using universal primers 
[27f (5′-AGAGTTTGATCMTGGCTCAG-3′) and 1492r 

(5′-GGTTACCTTGTTACGACTT-3′)]. The amplified 
gene was then got sequenced through Macrogen, Korea. 
Neighbor-joining phylogenetic tree of the bacteria isolated 
in the present study was constructed along with reference 
sequences recovered from the NCBI GenBank database.

Collection and processing of clay
Clay was collected from the vicinity of UVAS, Ravi 

Campus, Pattoki and processed in the laboratory for the 
experimental trial. The collected clay fraction was dried 
completely in an electric oven (Bioevopeak, DON-18E) 
at 105 oC till the achievement of constant weight and then 
sieved to obtain its fine powder (particle size ~ 1 mm). The 
sieved clay was stored in clean, dry, and air-tightened glass 
containers till the start of the experimental trial.

Mild-steel coupons
The coupons (1 × 1 × 0.1 cm) were procured from 

the Department of Metallurgy and Materials Engineering, 
University of the Punjab, Lahore, Pakistan, and degreased 
with analytical grade acetone (Cat No. 10014, Merck, 
Germany) as previously described by Bano (2008). The 
coupons were then polished with polishing paper (Cat No. 
WD240, Caswell, Taiwan). After cleaning, the coupons 
were washed with ethanol (Cat No. 100983, Merck, 
Germany) followed by cleansing with distilled water, and 
dried completely at 80 oC for 10 min in an electric oven. 
The initial weights (g) of coupons were measured by using 
an electric balance after cooling (Zuo and Wood, 2004). 
The coupons were then autoclaved and buried under 
different experimental conditions.

Experimental trial
The experimental trial for studying the corrosive 

impact of SRB on steel coupons was conducted in moist 
clay and water with and without the provision of Postgate 
B medium. For studying corrosion in clay in the presence 
of nutrients, 30 g clay was mixed with 10 mL of Postgate 
B medium. Similarly, for studying corrosion in clay in 
the absence of nutrients, 30 g clay was mixed with 10 mL 
of distilled water. In other experimental sets, only water 
(30 mL) was used instead of clay with and without the 
provision of Postgate B medium. All the experiments were 
conducted in sterile serum bottles (SSB) of 30-mL capacity. 
Initially, in all the experiments, pH was set between 7.0 
and 7.5. The processed and autoclaved coupons were then 
inserted in the solid media vertically and left horizontally 
in the liquid media. Half vials of both sets (A and B) were 
inoculated with revived SRB cultures [5 % (v/v) ⁓ 1.8×106 

C.F.U. mL−1], while the remaining half vials were kept 
un-inoculated (control). Oxygen diffusion in the vials was 
stopped by sealing SSB with butyl rubber stoppers (Cat 
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No. 32-A2, Sunshine, China) and aluminum crimp seals 
(Cat No. SU27227-U, Supelco, Germany). The sealed 
SSB were then incubated at 30 oC for 60 days.

Measurement of CR and APWL
At end of the experimental period, coupons were 

recovered from the clay under aseptic conditions. Corrosion 
products and other contaminants were removed from the 
coupons using Clark’s solution (Sb2O3, 20 g; SnCl2, 50 g; 
HCl, 774 mL) following Angeles-Chavez et al. (2001). 
Contaminant-free coupons were rinsed with distilled water, 
dried completely, and weighed to check the weight loss. 
The rate of corrosion (µg dm−2 d−1) was then estimated by 
following the given formula (Majumdar et al., 1999):

Where, C represents CR (µg dm−2 d−1), while W1 and 
W2 are weights of coupons before and after the harvesting, 
respectively. A represents the surface area of the coupons 
and the experimental period (days) is represented by T.

XRD and FTIR spectroscopy analyses of the corrosion 
product

Fine powder of the corrosion product collected after 
crushing was processed for XRD analysis for checking 
the existence and nature of oxides and sulfides. A semi-
computer-controlled XRD (RIGAKU, Model DMAX/A) 
analysis was performed to determine the composition of 
the corroded material.

The corroded product was then observed with FTIR 
(Nicolet AVATAR360, Nicolet, Madison, AL, USA) for the 
quantitative analysis of organic groups produced by SRB 
during growth and consequent corrosion of the coupons.

Statistical analysis
All the experiments were carried out in triplicates. The 

data were analyzed by one-way ANOVA using Minitab 19. 
Mean differences were considered significant at P < 0.05.

RESULTS

The present study reported SRB-induced CR and 
APWL in clay and water in the absence (A) and presence 
(B) of some mineral nutrients. For this purpose, SRB species 
were isolated from a wastewater stream and found motile, 
Gram-negative, non-spore former and identified by 16S 
rRNA gene sequencing as Desulfovibrio desulfuricans. A 
comparison of sequence homology with known sequences 
is shown in Figure 1 as basis for identification. On average, 
CR and APWL appeared maximally in the experimental 
coupons of both experimental sets A and B. The CR and 
APWL were significantly higher in water as compared to 

clay (Fig. 2). The CR and APWL in sets A and B appeared as:

Fig. 1. Neighbour joining phylogenetic tree of 
Desulfovibrio desulfuricans isolated in the present study 
along with reference sequences recovered from the NCBI 
GenBank database. The current tree was derived from the 
analysis of 16S rRNA sequences. Bootstrap support values 
at each node are indicated by numbers (percentage of 1,000 
replicates). Values above 70% are displayed only. The bar 
represents 0.02 substitutions per nucleotide position. The 
bacterial isolate from the current study is denoted by green. 
Staphylococcus aureus is used as an outgroup.

Fig. 2. Corrosion rate and average percent weight loss of 
mild steel coupons in clay and water under variable biotic 
and nutritional conditions.

CR and APWL in the experimental set A
CR and APWL in clay
The CR and APWL in clay appeared almost the same 

in the control vials as compared to the experimental vials. 
The CR and APWL in the experimental vials were 43 ± 
2 µg dm−2 d−1 and 0.75±0.25 %, respectively, while the 
corresponding figures for CR and APWL in the control 
vials appeared as 46±2 and 0.74±0.11, respectively (Table 
I). The impact of the SRB remained masked in this set of 
experiments.
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Table I. Corrosion rate (CR, µg dm−2 d−1) and average percent weight loss (APWL, %) of mild steel coupons in clay 
and water under different experimental conditions.

Index With postgate B medium Without postgate B medium
Clay Water Clay Water

Inoculated
n= 3

Uninoculated
n= 3

Inoculated
n= 3

Uninoculated
n= 3

Inoculated
n= 3

Uninoculated
n= 3

Inoculated
n= 3

Uninoculated
n= 3

CR 108 ± 3 62 ± 2 249 ± 2 166 ± 2 43 ± 2 46 ± 2 68 ± 2 55 ± 2
APWL 1.88 ± 0.29 1.68 ± 0.11 4.16 ± 0.25 2.83 ± 0.14 0.75 ± 0.25 0.76 ± 0.11 1.22 ± 0.45 0.98 ± 0.19

CR and APWL in water
The CR and APWL in water appeared amazingly 

higher in the experimental vials as compared to the control 
vials. The CR and APWL in the experimental vials were 
68 ± 2 µg dm−2 d−1 and 1.22 ± 0.45 %, respectively, while 
the corresponding figures for CR and APWL in the control 
vials appeared as 55 ± 2 and 0.98 ± 0.19, respectively (Table 
I). The significant impact of SRB on the experimental 
coupons was observed in this set of experiments.

CR and APWL in the experimental set B
CR and APWL in clay
The CR and APWL in clay appeared slightly higher 

in the experimental vials as compared to the control vials. 
The CR and APWL in the experimental vials were 108±3 
µg dm−2 d−1 and 1.88±0.29 %, respectively, while the 
corresponding figures for CR and APWL in the control 
vials appeared as 62±2 and 1.68±0.11, respectively (Table 
I). The impact of SRB remained masked in this set of 
experiments.

Fig. 3. XRD analysis of the corrosion product showing 
higher peak of iron sulfide.

CR and APWL in water
The CR and APWL in water were significantly higher 

in the experimental vials as compared to the control vials. 
The CR and APWL in the experimental vials were 249 ± 
2 µg dm−2 d−1 and 4.16 ± 0.25 %, respectively, while the 
corresponding figures for CR and APWL in the control 
vials appeared as 166 ± 2 and 2.83 ± 0.14, respectively 
(Table I). The significant impact of SRB was observed in 
this set of experiments.

XRD and FTIR spectroscopy analyses of the corrosion 
product

Analyses of the corrosion product depicted the 
presence of FeS in all the inoculated groups, while different 
iron oxidation forms were appeared in the uninoculated 
groups (Figs. 3 and 4).

Fig. 4. FTIR analysis of the corrosion product depicting 
significant presence of metal sulfide.

DISCUSSION

In the current study, the corrosive impact of SRB on 
mild steel coupons was studied in fluid and solid media. 
For this purpose, a motile, Gram-negative, and non-spore 
former SRB species was isolated from a wastewater 
stream and identified by 16S rRNA gene sequencing as 
D. desulfuricans. SRB have been studied extensively and 
considered one of the key causative agents of corrosion of 
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buried metals and their alloys (Muyzer and Stams, 2008; 
Yuan et al., 2013; Guan et al., 2016; Xu et al., 2016).

In this study, two major sets of experiments were 
performed with and without the addition of nutrients of 
the Postgate B medium. In experimental set B, the addition 
of nutrients manifested higher CR and APWL values. 
Numerous SRB genera (Desulfobulbus, Desulfococcus, 
Desulfonema, Desulfotomaculum, and Desulfovibrio) 
have been reported to play a vital role in corrosion due to 
the abundant availability of sulfate in anoxic environments 
(Lv and Du, 2018; Tran et al., 2021). In the presence of 
nutrients, SRB grew well and generate more H2S and thus 
caused more corrosion. It is well known that nascent H2S 
acidifies water and causes pitting corrosion of metals. 
Furthermore, it enhances the corrosive action when 
combines with O2 and CO2 (Asmara, 2018).

Higher CR and APWL values were observed in 
water when compared with that of clay. The CR and 
APWL in water were 249±2 µg dm−2 d−1 and 4.16±0.25 %, 
respectively, while the corresponding figures for CR and 
APWL in clay were 108 ± 3 and 1.88 ± 0.27, respectively. 
The isolated SRB species for the current study appeared 
motile. The motile bacteria are more likely to show their 
impact in liquid media. Motile bacteria may penetrate the 
pores present on the metal surface and thus result in more 
severe corrosion. Similar findings have been reported 
by Jimenez-Lopez et al. (2008) while studying the 
advantageous motility of Myxococcus xanthus in porous 
material thus increasing the consolidation efficiency.

XRD and FTIR spectra showed the presence of FeS 
in all the inoculated groups. It has been reported that SRB 
use sulfate as their terminal electron acceptors and a variety 
of organic substrates as their electron donors and generate 
H2S (Hussain et al., 2016). The biogenic H2S acidifies the 
moisture contents that cause the pitting corrosion of metals 
(Butt and Mohsin, 2022; Qin et al., 2022; Xu et al., 2022). 
In our study, the presence of FeS in the inoculated groups 
confirmed the production of H2S and consequent corrosion 
of the steel coupons.

CONCLUSION

The present study reveals the corrosive impact of SRB 
on mild steel coupons in clay and water in the absence (A) 
and presence (B) of some mineral nutrients. On average, 
CR and APWL appeared maximally in the experimental 
coupons of both experimental sets A and B. The CR and 
APWL were significantly higher in water as compared to 
clay while depicting the corrosive potential of SRB. Future 
studies on the corrosion behaviour of SRB while utilizing 
various other electron acceptors and donors are needed to 
explore more facts on SRB-based corrosion compatible 

with various geochemical conditions.
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