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Oxygen is an essential regulator for normal aerobic metabolism in humans and animals, oxidative stress 
and energy metabolism during hypoxia may be related to hypoxia-related diseases. Gentiana straminea 
Maxim (G. straminea), a natural Tibetan herb with exerts several biological effects, was used to study 
the anti-hypoxia effects of its ethanol extract. Three extract methods were employed to evaluate the best 
extraction methods. Male Kunming specific pathogen-free (SPF) mice were randomly divided into blank 
control, model (hypoxia), positive (propranolol 30 mg/kg + hypoxia), and three G. straminea ethanol 
extracts dose groups (10, 5 and 2.5 g/kg respectively + hypoxia), administered intragastrically once a day 
for 14 consecutive days. After that, multiple hypoxia experiments were conducted including soda lime 
normobaric hypoxia test, sodium nitrite poisoning test, isoproterenol poisoning test, and acute cerebral 
ischemic hypoxia test. Subsequently, the content of superoxide dismutase (SOD), malondialdehyde 
(MDA), and activity of total antioxidant capacity (T-AOC), catalase (CAT) in mice liver were measured; 
while SOD and MDA contents and activity of T-AOC, CAT, Na+-K+-ATPase, Ca2+-Mg2+-ATPase, 
pyruvate kinase (PK) and phosphofructokinase (PFK) in mice brain were evaluated. In the results, G. 
straminea ethanol extract markedly enhanced hypoxia tolerance in mice. It attenuated hypoxia-induced 
oxidative stress by reducing MDA levels (in liver and brain), and elevating SOD (in liver and brain), 
T-AOC and CAT (in liver). Furthermore, pre-treatment with G. straminea ethanol extracts significantly 
increased ATP content, up-regulated the activity of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, PK, and PFK in 
hypoxia mice brain. In conclusion, this research demonstrated the anti-hypoxia activity of ethanol extract 
of G. straminea, which may be related to increased energy metabolism. Our findings provide a basis for 
investigating hypoxia-related diseases and drug development.

INTRODUCTION

Oxygen plays a vital role in regulating aerobic 
metabolism by serving as a key regulator of cell energy
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production and enzyme activation (Lu et al., 2020). 
Hypoxia refers to abnormal changes in the morphology, 
metabolism, and function of tissues and organs caused 
by insufficient oxygen supply or oxygen dysfunction 
(Murray et al., 2018). Hypoxia is a central factor in 
acute and chronic altitude sickness (Avellanas, 2018), 
and can be caused by factors such as low oxygen content 
and pressure, impaired oxygen transport, and impaired 
cellular oxygen uptake or utilization (MacIntyre, 2014). 
Hypoxia is involved in the development of hypertension, 
cardiovascular and metabolic disorders, and respiratory 
diseases. The oxidative stress during hypoxia may be 
causally related to these diseases (McGarry et al., 2018).

Mitochondria produce energy by using a variety 
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of energy sources. Energy is transferred between cells 
in the form of adenosine triphosphate (ATP) to support 
cell activity. Mitochondrial energy metabolism is highly 
regulated to continuously meet the energy demands of cells 
(Benard et al., 2010). Mitochondria are significant targets 
of hypoxic injury, which involves the production of reactive 
oxygen species (ROS) (Ham and Raju, 2017). ROS includes 
hydrogen peroxide, hydroxyl radicals, and superoxide 
anions essential for normal cell function (Finkel and 
Holbrook, 2000). The cellular antioxidant system typically 
removes ROS; however, ROS production overwhelms 
antioxidant capacity in hypoxic injury, leading to DNA 
damage, lipid peroxidation, and mitochondrial membrane 
depolarization (Bhat et al., 2015). These mechanisms lead 
to the release of cytochrome C and apoptosis (Lemasters 
et al., 2009; Murphy and Steenbergen, 2008; Wu and 
Bratton, 2013). Hypoxia causes insufficient oxygen supply 
to various organs, inhibits oxidation, promotes glycolysis, 
and leads to insufficient ATP production (Liu et al., 2020). 
As a result, tissues and organs undergo apoptosis due to 
a lack of ATP and energy with subsequent tissue damage 
(Bickler et al., 2017). Hypoxic damage can be substantially 
reduced if a cell’s anti-hypoxia ability is enhanced, and 
energy metabolism can improve (Ferraresi et al., 2015). 
Inadequate oxygen supply reduces intracellular oxygen 
partial pressure, leading to mitochondrial dysfunction and 
affecting energy metabolism (Li et al., 2021). 

Anoxia occurs at high altitude such as the Tibet Plateau 
where the acute altitude response has become a serious 
problem. In addition, physiological conditions such as 
ischemia, stroke, neurodegenerative disease, cardiovascular 
injury and other pathological conditions can also lead to 
hypoxia (Heinicke et al., 2003; Katayama et al., 2004; 
Savourey et al., 1996). In high altitude hypoxia environment, 
a series of stress reactions will occur in the body, resulting 
in organ hypoxia damage. Among them, oxidative stress 
damage, immune system damage and disturbance of cellular 
energy metabolism are the main mechanisms.

Under hypoxic environment, the antioxidant capacity 
of the body is disordered, and the brain and other organs 
may die due to insufficient energy supply (Jiao et al., 2019). 
Although drugs such as dexamethasone, acetazolamide, 
propranolol, and carbamazepine are used to treat hypoxic 
diseases, some of these have slow curative effects and are 
burdened by side effects. They are not suitable for long-
term use (Khambatta et al., 1987; Reddy et al., 2013; 
Shimoda et al., 2021). Therefore, identifying natural, 
nontoxic and effective anti-hypoxia bioactive substances 
is vital and urgent.

Tibet’s special climate and geographical environment 
have formed rich medicinal plants and mineral resources 
with unique curative effects. Using Tibet’s unique 

plateau plant resources, developing high-quality and 
efficient anti-hypoxia drugs has become possible. 
Gentiana straminea Maxim (G. straminea), also called 
as “Jiejigabao” in Tibetan, is an important Tibetan 
medicine (Zhou et al., 2021). The chemical constituents 
of G. straminea are complex and diverse, including 
iridoids, triterpenes, flavonoids, alkaloids, steroids, and 
carbohydrates (Kakuda et al., 2001; Pan et al., 2016; 
Yang et al., 2014). G. straminea is mainly used for the 
treatment of rheumarthritis, icterepatitis, constipation, 
pain and hypertension (Tan et al., 1996; Yu et al., 2004). 
Pharmacological studies reported that G. straminea 
exhibits several pharmacological properties, including 
analgesic, anti-hypoxia, anti-inflammatory, anti-bacterial, 
antihypertensive, hepatoprotective, diuretic, antipyretic, 
immune regulation, and free radical scavenging properties 
(Song et al., 2022). However, few studies have reported 
the effect of G. straminea on energy metabolism. 

This research demonstrated the effects of G. 
straminea on normobaric hypoxia using animal models, 
and provided an experimental basis for studying hypoxic 
diseases and novel drug development.

MATERIALS AND METHODS

Materials, main reagents and animals
Gentiana straminea Maxim (G. straminea) was 

purchased from Tibetan Medicine Co., Ltd. (Lhasa, 
China). Soda lime was procured from Beijing Deerli Soda 
Lime Factory (Beijing, China). Propranolol was obtained 
from Shanxi Linfen Jianmin Pharmaceutical Factory Co., 
Ltd. (Shanxi, China). 

The superoxide dismutase (SOD) kit, malondialdehyde 
(MDA) kit, ATP kit, ATPase kit, pyruvate kinase (PK) kit, 
phosphofructokinase (PFK) kit, total antioxidant capacity 
(T-AOC) kit, and catalase (CAT) kit were procured from 
Nanjing Jiancheng Bioengineering Institute (Nanjing, 
China). The cell counting kit-8 (CCK-8) was purchased 
from Sangon Biotech (Shanghai, China). 

Specific pathogen-free male Kunming mice were 
obtained from Chengdu Dossy Experimental Animals Co., 
Ltd. (Chengdu, China). They were housed in a standard 
laboratory environment with a 12 h light-dark cycle, 
regular chow, and ad libitum water.

Preparation of G. straminea extracts
To evaluate the effect of different extraction methods 

on the anti-hypoxia properties, three extraction methods 
were used to prepare G. straminea extracts as described 
by Song et al. (2022), including water extraction, water 
extraction and alcohol precipitation, as well as ethanol 
extraction (Table I).
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Table I. Preparation of three different extracts from G. straminea.

Extract method Operation steps
Water extraction 100 g G. straminea were added to 500 mL ddH2O at 100°C for 1 h twice, then filtered to obtain water 

extract. The filtrate was stored at 4°C for further use.
Water extraction and 
alcohol precipitation

100 g G. straminea were added to 1000 mL ddH2O for 24 h, then boiled for 3 times, 0.5 h each time, and 
added 1000 mL ddH2O each time. Water extraction were collected, and centrifuged at 2500 rpm for 0.5 h, 
take the supernatant and concentrated to 100 mL. To get the water extraction and alcohol precipitation, 95% 
ethanol were added to the concentrated, followed by vacuum rotary evaporation to evaporate the ethanol to 
reach a final volume of 100 mL.

Ethanol extraction 100 g G. straminea were added to 500 mL 95% ethanol for 24 h, then heated to reflux for 1.5 h, followed by 
vacuum rotary evaporation to evaporate the ethanol. Finally, to obtain the ethanol extract, ddH2O was added 
to reach a final volume of 100 mL

Five groups were set up (n= 6 per group): model 
group (phosphate-buffered saline, PBS), propranolol group 
(30 mg/kg), and three G. straminea extract groups (10 g/
kg water extraction, 10 g/kg water extraction and alcohol 
precipitation, 10 g/kg ethanol extraction. The mice were 
intragastrically administered their respective treatments 
doses once a day for 14 consecutive days. After 30 min 
of the last administration, all the mice were challenged 
with soda lime, and their survival time in each group was 
recorded.

Animal treatments
To further assess the anti-hypoxia effects of different 

concentrations of ethanol extract of G. straminea, thirty-
six mice were randomly divided into 6 groups (n= 6 per 
group): blank control; model (hypoxia treatment only); 
positive groups (30 mg/kg propranolol for hypoxia 
treatment); and three G. straminea ethanol extract dose 
groups (10, 5, and 2.5 g/kg respectively for hypoxia 
treatment). Mice in control and model groups received 
PBS administration, while mice in positive group and G. 
straminea dose groups were administered intragastrically 
once a day for 14 consecutive days. After 30 min of the last 
administration, all mice in each group except the control 
were challenged with subsequently treatments.

Soda lime normobaric hypoxia test
Each mouse in model, positive and three G. straminea 

ethanol extract dose groups was placed in a 250-mL tank 
(1 mouse in each tank) containing 15 g of soda lime and 
tightly covered with vaseline around the neck. The survival 
time was recorded (Li et al., 2021; Yang et al., 2019).

Sodium nitrite (NaNO2) poisoning test
Mice were intraperitoneally injected with 240 mg/kg 

NaNO2, and their survival time was recorded accordingly 
(Li et al., 2021; Yang et al., 2019).

Isoproterenol poisoning test
Mice were intraperitoneally injected with 15 mg/kg 

isoproterenol. After 15 min, the mice were placed in a 250-
mL tank (1 mouse in each tank) containing 15 g of soda 
lime, and the neck was tightly covered with petroleum 
jelly. The time of death was then recorded (Cai et al., 
2011).

 
Acute cerebral ischemic hypoxia test

Mice were decapitated. The time from decapitation 
to cessation of wheezing were recorded (Li et al., 2021).

Tissues collection and indicators determination
At the end of the above soda lime normobaric hypoxia 

test, all the mice including control group were sacrificed. 
Their liver and brain tissues were washed twice with 
precooled PBS, dried and weighed for tissue homogenate. 
Using the ratio of tissue weight (g) to PBS (mL) of 1:9, 
liver and brain tissues were homogenized in an ice bath 
and centrifuged at 4°C, 3000 rpm for 10 min to separate 
the supernatants. The concentrations of SOD, MDA, 
T-AOC and CAT in the liver, and the SOD, MDA, ATP, 
Na+-K+-ATPase, Ca2+-Mg2+-ATPase, PK and PFK content 
in the brain were determined using the commercial kits.

Statistical analysis
The experiments were expressed as the mean ± 

standard deviation (SD). One-way analysis of variance 
(ANOVA) was used for multiple comparisons, and 
differences with P <0.05 were considered statistically 
significant.

RESULTS

Anti-hypoxia effects of three different extraction methods 
of G. straminea in mice

The anti-hypoxia effects of three different extraction 
methods of G. straminea on mice were compared by 
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measuring the survival time. As shown in Figure 1, no 
significant difference in the survival time of mice among 
the water extraction group, water extraction and alcohol 
precipitation group, and model group under normobaric 
hypoxia tests. However, compared with model group, 
the survival time of mice in G. straminea ethanol extract 
group was significantly extended, indicating that ethanol 
extraction method was effective, and therefore had a 
significant anti-hypoxia effect on mice compared to other 
two methods.

Fig. 1. Effects of G. straminea extracts obtained by three 
extraction methods on the survival time of soda lime 
normobaric hypoxia model mice.
Notes: n= 6; *P <0.05 vs. model group, NS, not 
significant. 1: model; 2: 30 mg/kg propranolol; 3: 10 g/kg 
water extraction; 4: 10g/kg water extraction and alcohol 
precipitation; 5: 10 g/kg ethanol extraction.

Anti-hypoxia effect of different concentrations of G. 
straminea ethanol extract

To investigate the anti-hypoxia activity of G. 
straminea ethanol extract, we conducted various hypoxia 
experiments, including soda lime normobaric hypoxia 
test, NaNO2 poisoning, isoproterenol hypoxia, and an 
acute cerebral ischemic hypoxia test. Compared with the 
hypoxia-only group, the ethanol extract prolonged the 
survival time of mice under various hypoxia experiments, 
confirming its anti-hypoxia effect (Fig. 2). These results 
indicated that G. straminea ethanol extract increased 
hypoxia tolerance.

Ethanol extraction of G. straminea alleviates liver oxida-
tive stress

To determine the antioxidant activity of the ethanol 
extract of G. straminea, mice were intragastrically 
administered with PBS, propranolol and various doses of 
ethanol extract (10, 5, 2.5 g/kg) for 14 days, respectively. 

Subsequently, the mice were challenged with soda lime 
normobaric hypoxia, whereas the blank control group 
gavaged with PBS only. Hepatic SOD activity was 
markedly lower in the normobaric hypoxia model group 
compared with the control group. However, pre-treatment 
with the ethanol extract of G. straminea (5 and 10 g/kg) 
significantly improved SOD activity in hypoxia mice (Fig. 
3A). MDA content obviously increased in the normobaric 
hypoxia model group compare to the control group; 
ethanol extract of G. straminea administration decreased 
hepatic MDA content compared to the model group, 
although the difference was not statistically significant 
(Fig. 3B).

A  B  

C  D  

Fig. 2. Effects of different concentrations of G. straminea 
ethanol extract on survival time in (A) soda lime 
normobaric hypoxia test, (B) NaNO2 poisoning test, (C) 
isoproterenol hypoxia test, (D) and acute cerebral ischemic 
hypoxia test.
Notes: *P <0.05 vs. model group, NS, not significant. N=6 
in each treatment. 1: model; 2: 30 mg/kg propranolol; 3: 10 
g/kg ethanol extraction; 4: 5 g/kg ethanol extraction; 5: 2.5 
g/kg ethanol extraction.. 

 The influence of ethanol extract of G. straminea 
on hepatic T-AOC and CAT in hypoxic mice was further 
explored. Normobaric hypoxia attenuated T-AOC and 
CAT activity, while pre-treatment with ethanol extract of 
G. straminea increased enzymatic activity in hypoxia mice 
groups (Fig. 3C, D). Thus, these results suggest that the 
anti-hypoxic effect of G. straminea ethanol extract was 
associated with its antioxidant and oxidase-regulating 
activities.
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A  B  

C  D  

Fig. 3. Effects of G. straminea ethanol extract on oxidative 
stress parameters in the liver of mice under normobaric 
hypoxia.
Notes: (A) SOD, superoxide dismutase; (B) MDA, 
malondialdehyde; (C) T-AOC, total antioxidant capacity; 
(D) CAT, catalase. # P <0.05 and ## P <0.01 vs. control 
group, NS, not significant; * P <0.05 vs. hypoxia model 
group.

Effect of G. straminea ethanol extract on lipid peroxidation 
and energy metabolism in hypoxia model mice brain

The SOD and MDA levels in brain tissues were 
measured to determine the degree of lipid peroxidation in 
mice brain. Compared with the control group, the content 
of SOD in rice brain was obviously lower, while MDA 
level was significantly higher in normobaric hypoxia 
model mice. Pre-treatment with G. straminea ethanol 
extract for 14 days significantly increased SOD level and 
slightly decreased MDA content compared to the model 
group (Fig. 4A, B). 

ATP plays a critical role in cellular metabolism by 
storing and transferring chemical energy, serving as the 
primary energy source for living organisms. Compared with 
model mice under normobaric hypoxia, after 14 days of G. 
straminea ethanol extract administration, ATP content, and 
activities of Na+-K+-ATPase and Ca+-Mg+-ATPase in mice 
brain were restored (Fig. 4C, E). PK and PFK are essential 
enzymes involved in energy metabolism via glycolysis. 
Under normal circumstances, PK and PFK exhibit lower 
activity levels. However, PK and PFK were induced by 
hypoxia due to the consumption of ATP (Fig. 4F, G). PK 
and PFK activities were enhanced by G. straminea ethanol 
extract pre-treatment. The results showed that when the 

mice were in a hypoxic state, the hypoxic environment 
activated PF and PFK. Anaerobic glycolysis provides 
essential energy sources, thereby improves the ability 
to resist hypoxia, and prolongs survival. These findings 
suggest that the anti-hypoxia activity of G. straminea 
ethanol extract might be based on its regulation of ATP 
and energy metabolism.

A  B  

C  D   

E  F   

                            G  

Fig. 4. Regulation of lipid peroxidation and energy 
metabolism in hypoxic mice brain by G. straminea ethanol 
extract. 
Notes: (A) SOD; (B) MDA; (C) ATP, adenosine 
triphosphate; (D) Na+-K+-ATPase; (E) Ca2+-Mg2+-ATPase; 
(F) PK, pyruvate kinase; (G) PFK, phosphofructokinase. 
# P <0.05 and ## P <0.01 vs. control group, NS, not 
significant; * P <0.05 vs. hypoxia model group.
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DISCUSSION

The brain consumes one quarter of the body’s oxygen, 
and insufficient oxygen supply can lead to brain damage 
or even brain death (Ferrer, 1973; Lenart, 2017). To 
investigate the potential protective effects of G. straminea 
extract, both liver and brain tissues were collected for 
the present study. Our results demonstrated that ethanol 
extract of G. straminea markedly enhanced mice’s anti-
hypoxia capability through ameliorating their anti-
oxidative ability and energy metabolism. Breathing time 
can be used as an important indicator to evaluate the effect 
of hypoxia protection. In this work, the ethanol extract 
of G. straminea intervention significantly prolonged the 
respite time of hypoxic mice, indicating its potential anti-
hypoxia effects. During hypoxia, the body undergoes 
anaerobic respiration, resulting in the accumulation of 
incomplete oxidation products, consequently leading to 
increased oxidative damage in mice tissues. Generally, 
the contents of SOD and MDA are essential indicator for 
lipid peroxidation. The results showed ethanol extract 
of G. straminea significantly induced SOD content and 
reduced MDA content in liver and brain. Furthermore, it 
significantly improved hepatic T-AOC and CAT activities, 
decreased free radical accumulation and accelerated lipid 
peroxides elimination. 

Hypoxia disrupts normal oxidative decomposition 
function, and glycolysis is the primary short-term energy 
source (Fernie et al., 2004). ATP molecules serve as 
the direct substrate for energy, providing energy for 
cellular metabolism, and responsible for the storage and 
transmission of chemical energy (Miao et al., 2014). Our 
findings suggested that G. straminea ethanol extract pre-
treatment significantly increased ATP content, Na+-K+-
ATPase and Ca+-Mg+-ATPase activities, and enhanced 
PK and PFK activity, indicating that the mechanism of 
G. straminea ethanol extract may be related to increased 
energy metabolism. This study implies that the anti-
hypoxia activity of G. straminea depends on its regulation 
of energy metabolism. Further research is needed to 
explore its in-depth mechanisms of the anti-hypoxic effect 
and its potential as a therapeutic agent.

CONCLUSION

In this study, we demonstrated the anti-hypoxia 
effects of G. straminea ethanol extract in vivo on mice 
under various hypoxia conditions. Our results showed 
that the ethanol extract of G. straminea significantly 
improved the survival time and increased their tolerance 
to hypoxia. Moreover, the anti-hypoxic effect is associated 
with the regulation of antioxidant enzyme activities and 

energy metabolism. These findings provide evidence and a 
molecular insight that G. straminea can serve as a potential 
natural anti-hypoxia agent and be used for prevention and 
treatment of hypoxic diseases, as well as in the design of 
anti-hypoxia drugs.
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