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Co-culture of rice with aquatic animals has garnered widespread interest for its potential to control soil-
borne diseases, improve soil quality and increase rice yields. Therefore, it is necessary to further explore 
its mechanism. In this study, the samples of different growth stages of rice, including tillering stage (TS), 
jointing stage (JS), heading stage (HS) and mature stage (MS) were collected to analyze the impact on 
the community composition, diversity and functional potentialities of the rhizosphere bacterial in the 
coupled rice-crab system were investigated through 16S rRNA gene high-throughput sequencing. The 
results showed that, a total of 444,882 sequences from 12 samples were obtained, and 6637 bacterial 
operational taxonomic units (OTUs) with 97% sequence similarity were identified. The rhizosphere 
bacterial communities were more influenced by growth stages of rice than chemical properties. Principal 
component analysis (PCA) revealed the similarity of samples at four growth stages was significantly 
low (P <0.05). The dominant taxa phyla for bacterial community were similar in different growth 
stages. The LefSe analysis indicated that 32 distinctly taxa that were abundant among four stages with 
a linear discriminant analysis (LDA) score higher than 3.5. The α-diversity of the bacterial community 
in rhizosphere soil was not significantly different among different growth stages (P >0.05). Moreover, 8 
functional potentials among 46 KEGG pathways showed notable differences for the rhizosphere bacterial 
community and HS had the largest number of species and strongest metabolic function potentials. 
Overall, the findings in this study provide valuable information for maintaining soil ecosystem balance 
and provide theoretical guidance for the practical application of this co-culture system.

INTRODUCTION

Rice (Oryza  sativa L.) is one of the most widely cultivated 
food crop worldwide, with the largest planting area 

in China. In recent decades, excessive application of 
chemical fertilizers to increase crop productivity has led 
to environmental and ecological concerns, such as soil 
acidification and soil health deterioration (Abάn et al., 
2021), which poses a threat to the sustainable development 
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of agriculture. These soil management and land-use 
practices seriously affect soil quality and health, and lead 
to nutrient loss, decreased diversity and abundance of soil 
biota, loss of functional biodiversity and deterioration of 
ecosystem services they regulate (de Vries et al., 2013). 
In recent years, the co-culture of rice with ecologically 
friendly aquatic animals such as crabs, fish, frogs, 
river crabs, and turtle shrimps, has been proved to be a 
promising option for enhancing soil quality and soil health. 
Studies have shown that such animals have the ability to 
prevent soil-borne diseases, reduce the use of chemical 
fertilizers, minimize environmental pollution, and promote 
microbiological diversity and rice yield (Bashir et al., 
2020; Huang et al., 2022; Hu et al., 2020). The dominant 
bacterial phyla in paddy soil includes Chloroflexi, 
Actinobacteria, Proteobacteria, Acidobacteria, etc., which 
play a crucial role in soil nutrient cycling (Herlambang et 
al., 2021; Arunrat et al., 2022). 

The rhizosphere is a critical component of the 
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agroecosystem, comprising the soil surrounding plant 
roots that is influenced by plant root exudates, abscission, 
and plant residues. Plant roots secrete various metabolites, 
such as organic acids and carbohydrates, providing 
suitable conditions for growth and reproduction of soil 
microorganisms, which makes the rhizosphere contains 
an abundant and diverse microbial population. In the 
agroecosystems, rhizosphere microbiota has a profound 
impact on crop growth, nutrition and health (Philippot 
et al., 2013). Rhizosphere bacteria play an important 
role in the decomposition of organic matter, nutrient 
transformation, disease control and plant immunity 
improvement, but are sensitive to environmental changes 
(Degens et al., 2000; Mendes et al., 2011; Zamioudis 
and Pieterse, 2012). Cultivable microorganisms under 
laboratory conditions represent only a small percentage 
of the soil microbial population, which limits the more 
detailed study of rhizosphere microorganisms. The 
emergence of high-throughput technologies makes 
it possible to study previously uncultivable and rare 
microbial populations (DeLong, 2004; Sogin et al., 2006; 
Campbell et al., 2011), not only can distinguish relative 
abundance and evolutionary relationships, but also can 
insight into the diversity and species composition of 
microbial communities, as well as their classification and 
phylogeny (McHugh and Schwartz, 2016; Si et al., 2018; 
Li et al., 2021). 

The integrated agri-aquaculture system (IAAS) 
ensures food security and promots sustainable agricultural 
development by connecting aquaculture with agricultural 
systems (Lansing and Kremer, 2011; Hu et al., 2016). 
Such system can reduce green gas emissions, increase 
farm productivity, and improve resource utilization 
efficiencies (Bashir et al., 2020). Therefore, as one of the 
most important aquatic ecosystem, the coupled rice-crab 
system has the potential to reduce the need for herbicides, 
pesticides and chemical fertilizer, and to stimulate the 
growth of rice through their uninterrupted activities. 
Therefore, it has gained increasing attentions due to its 
ability to increase soil nutrient levels and improve nutrient 
accumulation (Xu et al., 2019; Song et al., 2019), and has 
been applied in northern China. 

Many studies have investigated the diversity and 
composition of bacterial community in paddy soil. 
Previous study indicated that straw returning in the rice-
crayfish integrated system could improve microbial 
community functional diversity, contributing to the 
improvement of soil quality and the long-term sustainable 
development of the rice-crayfish integrated system (Zhu et 
al., 2022). Chen et al. (2021) demonstrated that the rice-
turtle integrated system could effectively improve soil 
nutrients, and paddy field with low stocking density of 

Chinese soft-shelled turtles exhibited relatively high soil 
microbial diversity. Fernández-Baca et al. (2021) studied 
changes in rhizosphere soil microbial communities during 
plant developmental stages of high and low methane-
emitting rice genotypes, contributing to determine the 
period of high methane emission and reduce methane 
emission from rice fields by screening rice varieties with 
low abundance methanogenic bacteria and high abundance 
methanogenic bacteria during this period. However, the 
effects of different growth stages on the structure and 
functional potentialities of bacterial communities in the 
rhizosphere soil of coupled rice-crab system is yet to be 
adequately investigated. The Gaijiaba organic planting 
farm in Beijingzi town, Donggang city, Liaoning province 
has been producing organic rice by culturing paddy fields 
with aquatic animals in recent years. Previous study have 
confirmed that river-crab coculture paddy fields have a 
better ecological basis for soil bacterial (Song et al., 2020).

In this study, the influences of different growth stages 
of rice on the structure and functional potentialities of 
bacterial communities in rhizosphere soil of the coupled 
rice-crab system was analysed. This study aims to identify 
the main driving rhizosphere bacterial communities in 
the coupled rice-crab system, to evaluate the diversity, 
structure and potential functions of the rhizosphere soil 
bacterial community at the different growth stages, and 
to distinguish the dominant bacterial population, the 
main functional potentials and the growth stage with the 
highest potential functions in the rhizosphere soil. This 
study provides valuable information for the practical 
application of this co-culture system and contributes to the 
understanding of maintaining soil ecosystem balance.

MATERIALS AND METHODS

Study area
The field study was conducted at the Gaijiaba 

Organic Planting Farm, located in Beijingzi, Donggang 
city, Liaoning province (39°54’ N, 123°50’ E), China from 
May to October 2020. This area has a continental monsoon 
climate, with an average annual precipitation of 888 mm 
and temperature of 8.4°C. The soil type was coastal saline 
paddy soil, with a pH of 7.1, total nitrogen (TN) of 1460 
mg/kg, available phosphorus (AP) of 31.39 mg/kg, and 
available potassium (AK) of 126.7 mg/kg. 

The main experimental plot (about 1000 m2) 
(Supplementary Fig. S1) was divided into 3 plots, each 
with a width of 15 m and length of 20 m. The rice variety 
used in this study was the Japanese high quality rice 
variety Yueguang. Rice seedlings were transplanted on 
May 10, 2020, with a plant to plant and row to row spacing 
of 15cm × 30cm. A week following transplantation, 

Y. Song et al.



175                                                                                        

 

Chinese mitten crabs (Eriocheir sinensis) with an average 
weight of 23.1 ± 0.8 g for females and 20.8 ± 0.7 g for 
males, sourced from the Panjin river crab breeding base, 
were randomly distributed in the paddy fields at a ratio of 
1:1 and the throwing density was about 450 crabs/667m2 
(Zheng et al., 2019). The paddy field was surrounded 
by blue polyethylene escape film and equipped with a 
circular ladder-shaped temporary breeding pond, which 
could provide fish and shrimp, green feed or high-protein 
concentrate feed for river crabs. The seaweed biological 
organic fertilizer produced by Yikang Organic Agricultural 
Science and Technology Development Co., Ltd. (Rizhao, 
China) was applied in March and July respectively to 
provide nutrients for paddy field, regulate water quality of 
paddy field and enhance rice disease resistance. The crabs 
would be co-cultured with rice plants until the harvest on 
October 25, 2020.

Soil samples collection
Rhizosphere soil samples were collected from each 

plot using a five-point sampling method at four growth 
stages: the tillering stage (June 29, 2020), jointing stage 
(July 31, 2020), heading stage (September 2, 2020) and 
mature stage (October 15, 2020), which were named as 
TS, JS, HS and MS, respectively. The rice plants were 
carefully dug out to keep the intact roots and bulk soil 
shaken off, the rhizosphere soil closely adhering to the root 
surface of about 2 mm was collected using a sterile brush. 
Three biological replicates were collected at each growth 
stage and each replicate was mixed by five sub-samples. 
The soil samples were then divided into two parts, with 
one part utilized for soil chemical property determination, 
and the other part stored at -80°C for DNA extraction.

Determination of chemical properties of rhizosphere soil
The soil samples were air-dried, crushed, and sieved 

through a 2 mm sieve. Soil pH was determined using a 
1:5 soil/water suspension. The content of soil organic 
matter (SOM) was measured by potassium dichromate 
oxidation method (Liu et al., 2020). The content of AK 
was extracted using ammonium acetate solution and 
determined by flame photometry (Zhao et al., 2004). The 
content of soil AP was determined by NaHCO3 extraction 
molybdenum antimony colorimetry method (Zhang et al., 
2019). The content of soil TN was determined using the 
Kjeldahl method (Bremner, 1960).

DNA extraction, PCR amplification and high-throughput 
sequencing

Rhizospheric soil DNA extraction was extracted 
from 0.5 g of each soil sample using the E.Z.N.A.® soil 
DNA kit (Omega Bio-tek, Norcross, GA, USA). 

The V3-V4 hypervariable region of the bacterial 16S 
rRNA gene were amplified with the primers 338F 
(5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R 
(5′-GGACTACHVGGGTWTCTAAT-3′) using an ABI 
GeneAmp® 9700 PCR system (Applied Biosystems, 
Foster City, CA, USA). The amplification procedure was: 
pre-denaturation at 95°C for 2 min; denatured at 95°C 
for 30 s, annealed at 55°C for 30 s, extended at 72°C for 
30 s, lasting for 25 cycles; finally, extended at 72°C for 
5 min. PCR products were obtained and then quantified 
using the QuantiFluor ST blue fluorescence quantitative 
system (Promega, Madison, WI, USA). Finally, the DNA 
was mixed in corresponding proportions and sequenced 
using the Illumina MiSeq 300 platform (Meiji biology 
Co., Ltd., Shanghai, China). The paired-end reads for each 
sample were merged using FLASH v1.2.11 (Magoč and 
Salzberg, 2011), the filtered sequences were clustered into 
operational taxonomic units (OTUs) with a 97% similarity 
threshold using UPARSE 7.0.1090 (Edgar, 2013). The 
representative OUT sequence was annotated using the 
SILVA database v.138 (https://www.arb-silva.de/).

Data analysis
Venn diagram of the common and specific OTUs 

among groups were drawn using R software (v3.3.1, http://
www.R-project.org/). Alpha diversity of rhizosphere soil 
bacterial communities, including Chao1 and Shannon 
indices, was analyzed using Mothur software (v1.30.2, 
https://www.mothur.org/). Statistical significance 
determined by one-way analysis of variance (ANOVA) for 
α-diversity. QIIME software (v1.9.1) was used to conduct 
PCA analysis to show the beta diversity of the bacterial 
community at different stages (Caporaso et al., 2010). The 
linear discriminant analysis (LDA) effect size (LEfSe) was 
applied to identify taxa with statistical differences (LDA 
score >3.5, P <0.01), and the correlations between the 
rhizosphere soil bacterial communities and soil chemical 
properties (SOM, pH, TN, AP, AK) were evaluated by 
Mantel tests (Dixon, 2003). Adonis statistical method 
was employed to determine the significant difference 
between different groups, the impact of different stages 
on the rhizosphere soil bacterial community was valued 
by Permutational multivariate analysis of variance 
(PERMANOVA). The cluster of orthologous groups 
(COG) family and KO (KEGG ortholog) information 
corresponding to each OTU were obtained using the 
PICRUST software (v1.1.0) and PICRUSt program with 
3 levels of metabolic pathways was used to forecast the 
metabolic function of bacterial community in consideration 
of its effectiveness in obtaining functional predictions 
(Langille et al., 2013).
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Table I. Chemical factors of rhizosphere soil at different growth stages of the coupled rice-crab system.

Stage pH AP (mg/kg) AK (g/kg) SOM (g/kg) TN (g/kg)
TS 6.66±0.09a 31.39±0.56ab 126.7±5.81a 25.98±3.54a 1.46±0.20ab

JS 6.03±0.19b 35.68±2.82a 112.18±36.79a 26.70±2.67ab 1.50±0.15ab

HS 6.31±0.2ab 29.55±0.86b 94.75±13.55a 31.85±2.6a 1.78±0.15a

MS 6.69±0.11a 25.76±0.65b 75.39±3.23a 20.48±1.52b 1.15±0.08b

TS, tillering stage; JS, jointing stage; HS, heading stage; MS, maturity stage; AP, available phosphorus; AK, available potassium; SOM, soil organic 
matter; TN, total nitrogen. a-b: Small letters in the same column indicate significant difference among different growth stages at P <0.05.

RESULTS

Rhizosphere soil chemical properties at different growth 
stages of coupled rice-crab system

The chemical factors of rhizosphere soil in the coupled 
rice-crab system changed at different growth stages (Table 
I). The pH at TS was significantly different from that at 
JS (P <0.05). The AP content decreased significantly by 
20.74% at HS and 38.51% at MS compared to that at 
JS (P <0.05). The AK content gradually decreased with 
the growth and development of rice, but there was no 
significant difference among different stages (P >0.05). 
The content of SOM and TN showed a trend of increasing 
first and then decreasing, with the highest at HS and the 
lowest at MS. Compared with HS, the content of SOM 
and TN at MS significantly decreased 55.52% and 54.78% 
respectively (P <0.05).

 
α-Diversity of bacterial community in rhizosphere soil at 
different growth stages

After quality control, a total of 444,882 clean 
sequences from 12 samples were obtained and 6637 
rhizosphere soil bacterial OTUs with 97% sequence 
similarity were identified. 4690, 5056, 5139 and 5048 
bacterial OTUs were detected at TS, JS, HS and MS, 
respectively (Supplementary Fig. SII). The numbers of 
common bacterial OTUs among the four groups were 
3122; and the numbers of unique bacterial OTUs were 
273, 294, 264 and 328 at TS, JS, HS and MS, respectively. 

The results of the analyzed soil samples collected at 
different growth stages showed an insignificant change in 
rhizosphere soil bacterial community α-diversity indicies 
(ANOVA, P >0.05). The highest bacterial Chao1 index 
(4784.3 ± 165.89) was detected at HS, while the Chao1 
indices at TS, JS and MS were 4373.45 ± 199.03, 4770.05 
± 274.37 and 4689.98 ± 303.17, respectively. Furthermore, 
the highest Shannon index (6.87 ± 0.06) was observed at 
MS, while the Shannon indices at TS, JS and HS were 
6.85 ± 0.04, 6.78 ± 0.11 and 6.80 ± 0.09, respectively 
(Table II).

Table II. Chao1 and Shannon indices of rhizosphere 
soil bacterial community at four different stages in the 
coupled rice-crab system.

Indices TS JS HS MS
Chao1 4373.45± 

199.03
4770.05± 
274.37

4784.3± 
165.89

4689.98± 
303.17

Shannon 6.85±0.04 6.78±0.11 6.80±0.09 6.87±0.06
Notes: Values are mean ± standard deviations (SD).

Factors driving rhizosphere soil bacterial communities in 
different stages of paddy fields

The influence of all driving factors including 
rhizosphere soil chemical properties and different stages 
on the bacterial communities was investigated. The result 
of Mantel test (Supplementary Table SI) indicated that the 
rhizosphere soil chemical properties had little correlation 
with bacterial communities (Mantel test, R2 = 0.227, P 
>0.05), whereas the different stages explained 55.7% of 
variance in bacteria (PERMANOVAs, R2 = 0.557, P = 
0.034 <0.05). The PCA results showed that the structure 
of bacterial communities at four growth stages were 
significantly different (Fig. 1, R2 = 0.5663, Adonis test, P 
= 0.001).
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Fig. 1. Principal component analysis (PCA) based on Bray-
Curtis Distance Matrix for soil samples collected from the 
rhizosphere of the four different stages.
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Composition of the rhizosphere soil bacterial community
Dynamic changes of species at different classification 

levels were assessed (Fig. 2). There were 10 dominant 
bacterial phyla accounted for 91% of the whole 
rhizosphere soil bacterial composition. Chloroflexi, 
Actinobacteriota, Proteobacteria and Acidobacteriota were 
the top four predominant phyla in all samples, accounting 
for 18.72~28.25%, 13.20~22.61%, 12.27~19.41%, 
11.29~14.04% respectively (Fig. 2A). Chloroflexi was the 
most dominant bacterial phylum in all four samples, but 
with no significant difference at four stages. In addition, 
Actinobacteriota, Proteobacteria, Desulfobacterota, 
Firmicutes and Genmatimonadota were significantly 
different among four different stages (ANOVA, P <0.05) 
(Supplementary Fig. S3A). The most abundant classes 
were Anaerolineae (12.56%), Gammaproteobacteria 
(9.18%), Actinobacteria (8.99%), Alphaproteobacteria 
(6.56%) and KD-4-96 (6.33%) (Fig. 2B).

Across the four stages in the main bacterial 
class, Gammaproteobacteria, Actinobacteria, 
Alphaproteobacteria and Bacteroidia were remarkably 
different (ANOVA, P <0.05) (Supplementary Fig. S3B). The 
norank_fnorank_o_norank_c_KD4-96 (3.86%~8.38%), 
norank_f_norank_o_RBG-13-54-9 (2.43%~4.10%), 
norank_f_norank_o_Gaiellales (2.73%~3.97%), 
norank_f_norank_o_Vicinamibacterales (2.03%~3.36%), 
norank_f_Anaerolineaceae (1.84%~3.48%) were the top 5 
genus at four stages in all samples (Fig. 2C) and norank_f_
norank_O_RBG-13-54-9 was the only genus with notable 
difference among the four stages (ANOVA, P <0.05) 
(Supplementary Fig. S3C).
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Fig. 2. Rhizosphere soil bacterial taxonomic composition 
at phylum (A), class (B) and genus (C) levels in four 
growth stages. 
Note: The top 10 relative abundances were shown, while 
the remaining abundance were indicated as others.

 

 

A

B 0   0.5    1   1.5    2   2.5    3   3.5 4   4.5  5
LDA SCORE (log10)

Fig. 3. Cladogram showing the phylogenetic distribution 
of the bacterial lineages associated with rhizosphere soil 
from four growth stages in the rice-crab paddy field. (A) 
Indicator bacteria with LDA scores of 3.5 or greater in 
bacterial communities associated with soil from four 
stages in the coupled rice-crab paddy field. (B) Different 
coloured regions represent different constituents. Circles 
indicate phylogenetic levels from phylum to genus. The 
diameter of each circle is proportional to the abundance 
of the group.

LEfSe of the bacterial communities in the rhizosphere of 
the four stages in the crab-rice paddy fields

Taxa with significant differences among TS, JS, 
HS and MS were detected by LEfSe (Fig. 3). The 
LEfSe results indicated that 32 taxa were enriched 
among the four stages when the LDA score was higher 
than 3.5. 17 were distinctly abundant at TS, notably the 
phylum Actinobacteriota and Bacteroidota, the class 
Actinobacteria, Alphaproteobacteria and Bacteroidia and 
the order Micrococcales. The differentially abundant taxa 
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at JS was the order Frankiales. The phylum Chloroflexi 
and the class, order, family and genus of KD4-96 were 
enriched taxa in HS. The class Gammaproteobacteria, 
the phylum Proteobacteria and the family Gallionellaceae 
were amplified in MS. 

Function prediction of rhizosphere soil bacterial 
community at different growth stages of rice-crab paddy 
field

We used PICRUSt to predict KEGG pathways based 
on the OTU data. In total, 46 KEGG pathways at the 
2nd level were found by PICRUSt analysis. The results 
demonstrated that the relative abundance of 43 pathways 
at HS were higher than other three stages, and the relative 
abundance of 8 metabolic pathways was dramatically 
different such as amino acid metabolism, biosynthesis 
of other secondary metabolites, energy metabolism, 
translation, replication and repair, signal transduction, 
lipid metabolism, cellular community-prokaryotes at four 
different stages (Fig. 4).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Global and overview maps

Amino acid metabolism
Metabolism of cofactors and vitamins

Biosynthesis of other secondary metabolites
Metabolism of other amino acids

Metabolism of terpenoids and polyketides
Translation

Folding, sorting and degradation
Membrane transport

Cellular community - prokaryotes
Cell motility

Drug resistance: antimicrobial
Cancer: overview

Endocrine and metabolic disease
Infectious disease: viral

Cancer: specific types
Substance dependence

Endocrine system
Circulatory system

Development and regeneration
Nervous system
Immune system

F
E

D
C

B
A

MS HS JS TS

Fig. 4. The relative abundance of rhizosphere soil bacterial 
community functions at four different stages in the coupled 
rice-crab system. A, organismal system; B, human diseases; 
C, cellular processes; D, environmental information; E, 
genetic information processing; F, metabolism.

DISCUSSION

Many studies have been conducted on various 
co-culture systems for a long time, which bring many 
positive effects on both crops and the environment, 
showing significant sustainability (Herlambang et al., 
2021; Bashir et al., 2020; Fierro-Sañudo et al., 2020; Feng 
et al., 2016; Hu et al., 2016). The rice-crab co-culture 

system effectively enhances rice yield and quality, while 
concurrently reducing the use of fertilizers and pesticides; 
it also improves soil quality, optimizes land use, and 
safeguards biodiversity (Hu et al., 2020; Jin et al., 2020; 
Bao et al., 2022). The co-culture of crabs can impact 
the composition of soil microbial communities in rice 
paddies (Li et al., 2021). To gain a better understanding 
of the dynamic changes associated with this co-culture 
system, this study investigated the chemical properties 
and bacterial communities in the rhizosphere soil, 
clustered at different growth stages in the coupled rice-
crab paddy field. The results showed that there was no 
significant correlation between chemical properties and 
bacterial communities in rhizosphere soil. Furthermore, 
PERMANOVAs result showed that the different growth 
stages of rice explained 55.7% of the variance in bacteria. 
Rasche et al. (2006) indicated that bacterial community in 
rhizosphere of Solanum tuberosum varied significantly at 
different vegetation stages. Zhao et al. (2022) proved that 
rhizosphere bacterial community in orchard soil under a 
cover crop at different periods was obviously different. 
Thus, we deduced that the growth stage of rice may be 
the main factor driving rhizosphere bacterial community 
of the coupled rice crab system. Different growth stage 
had different bacterial diversity in the rhizosphere soil of 
the coupled rice-crab system (Chen et al., 2019; Wang et 
al., 2021). Previous study demonstrated that the number, 
species and diversity of rhizosphere microorganisms 
showed a dynamic change trend (Lauber et al., 2009). 
In our study, soil samples of the same kind of rice in the 
rice-crab paddy field were collected at the four different 
stages, to invest whether the growth stage was the main 
factor influencing rhizosphere bacterial diversity. The 
results showed that, there were the most OTUs and Chao1 
index at the heading stage, indicating there were the largest 
number of species, meanwhile, Shannon index at maturity 
is the highest, showing that the species are most abundant 
in this period. Similarly, Xu et al. (2009) demonstrated that 
diversity of rhizosphere bacterial community in soybean 
changed with a progression in growth stage and full maturity 
had the highest diversity. This may be due to that the 
component and content of plant root exudates in different 
growth stages were different, which might prohibit specific 
rhizosphere bacterial groups, consequently affecting 
the diversity of bacterial community in the rhizosphere. 
Despite slight differences in the α-diversity indices across 
the different growth stages, no significant differences 
were observed among them, which is consistent with the 
results of other rice co-culture studies, including rice-fish 
(Arunrat et al., 2022), rice-frog (Yi et al., 2019), and rice-
crab (Li et al., 2021).

In this study, in the rice-crab co-culture system, the 
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relative abundance of the bacterial community varied with 
the growth stage at different taxonomic levels, and that of 
some predominant bacterial groups showed remarkable 
difference at the four stages. Distinct differences were 
found in the abundances of dominant bacterial phyla, 
Actinobacteriota was significantly abundant at TS, and the 
abundance of Proteobacteria at MS was high. Similarly, 
Ding et al. (2021) demonstrated that Proteobacteria 
and Actinobacteriota were the rhizosphere donimant 
phyla in the rice-turtle co-culture system. Moreover, 
Desulfobacterota was significantly enriched at MS, 
Firmicutes and Gemmatimonadota were also more 
abundant at TS than in the other stages., Actinobacteria, 
widely existed in soil and water ecosystems, played a key 
role in decomposition and humus formation, controlling 
plant disease, promoting plant growth and regulating the 
biological interactions among the microenvironment, 
plants, and pathogens (Buée et al., 2009; Gao et al., 
2019). Johnston-Monje et al. (2016) had confirmed that 
environment with rich nutrient was suitable for the rapid 
growth of Proteobacteria. Most of Proteobacteria are 
gram negative bacillus, many of which are responsible 
for nitrogen fixation and polycyclic aromatic hydrocarbon 
degradation. Desulfobacterota is a kind of sulfate-reducing 
bacteria which is widely existed in the paddy fields. It 
can not only reduce sulfate to sulfide, participating in 
the biogeochemical cycle of sulfur soil, but also degrade 
cresol, biphenyl and other pollutants in paddy soil (Shibata 
et al., 2007; Yang et al., 2008). Firmicutes can inhibit the 
production and emission of methane by inhibiting the 
activity of methanogens and improving the redox potential 
of methanogenic environment through Fe(III) reduction 
process. (Cheng et al., 2007; Frenzel et al., 1999). Bay 
et al. (2021) identified phylum Gemmatimonadeota 
potentially capable of aerobic methanotrophy. Significant 
enrichment in rhizosphere soils at different stages 
suggested the rhizosphere could attrack specific bacteria 
in the different growth stages. All these results showed 
that growth stages could influence the composition of 
the rhizospheric bacterial community. LEfSe analysis 
showed that there were more bacterial taxa with significant 
differences at TS than that in other samples, which might 
be related to the vigorous metabolic activity of rice roots 
at TS (Zhang et al., 2015). PCA analysis showed that the 
structure of bacterial communities at four growth stages 
were significantly different, but the community structure 
between JS and HS was similar, indicating the bacterial 
community structure inclined to be stable and the variation 
was small in the middle stage of rice development. The 
community structure between TS and MS was a little 
different. Moreover, the community structure of TS and 
MS was different from that of JS and HS, explaining that 

growth stage of rice had an impact on the rhizosphere 
bacterial community structure.

Soil microorganisms can affect soil nutrient 
cycling and regulate soil function by participating in the 
decomposition and mineralization of soil organic matter 
(Romaniuk et al., 2011). Yuan et al. (2015) deduced that 
the continuous changes of some physicochemical factors 
such as the change of root structure and rhizosphere 
secretion caused the succession of bacterial functional 
structure. In this study, the PICRUSt results showed 
metabolic pathways at 3 levels in different growth stages 
of rice-crab paddy field were similar, and the metabolic 
function of bacteria changed in four different stages of 
rice development. Furthermore, the abundance of 43 
metabolic pathways at the 2nd level was higher in HS than 
those in the other three stages and there were significant 
differences in 8 metabolic pathways. The rice HS is an 
essential phase of rice production because it can affect 
the rice yield directly (Bai et al., 2018). Previous study 
demonstrated that the community structure in the middle 
and late stages of rice development was relatively stable, 
which was different from that in the early stage (Noll et 
al., 2005). In this paper, the number of OTU and Chao1 
index at HS were also the highest among the four growth 
stages, revealing that the total number of species in this 
period was the largest. Taken together, HS had the highest 
number of species and the strongest metabolic functional 
potentials, indicating the interrelation between bacterial 
community composition and function. Future studies 
may further explore the correlation between rhizosphere 
bacterial communities structure and function and rice yield 
in the coupled rice-crab system.

CONCLUSION

In conclusion, the results showed that the rhizosphere 
bacterial communities were more influenced by growth 
stage than chemical properties, and the bacterial community 
structure differed significantly among the four growth 
stages. At the heading stage, the bacterial community had 
the largest number of species and strongest metabolic 
function potentials. Specifically, with the OTU number 
and Chao1 index of 5139 and 4784.3, respectively, which 
were the highest at the four stages. Moreover, the relative 
abundance of 43 among the total 46 metabolic pathways 
at heading stage was higher than that of the other three 
stages. This study highlights the impact of rice growth 
stages on the composition and functional potentialities 
of rhizosphere bacterial communities in the coupled rice-
crab system. These results provide data reference for 
the practical application of this co-culture system, and 
essential insights for maintaining soil ecosystem balance.
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