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Endocrine hormones and other significant paracrine variables regulate ovarian follicle growth from the 
preantral to the antral stages. Growth differentiation factor 9 (GDF9), which is secreted by oocytes, 
is a paracrine factor that plays a vital role in follicular development. We performed a computational 
biology analysis to determine the role of GFD9 in mammalian ovarian function. We constructed a three-
dimensional model of GDF9 using I-TASSER and human GDF9 protein sequences obtained from UniProt. 
We also analyzed GDF9 gene expression levels using GENEVESTIGATOR. Furthermore, we identified 
the proteins that interact with GDF9 using the Biological General Repository for Interaction Datasets 
and investigated their network formation using the STRING database. Finally, we performed a pathway 
analysis for GDF9 using the Kyoto Encyclopedia of Genes and Genomes databases and Wiki Pathways. 
Our results showed that GDF9 was composed of a protein, signal peptide, and mature protein and was 
highly expressed in oocytes. The interaction between GDF9 and other proteins was shown to activate 
various biological processes in the follicle, including the bone morphogenetic protein pathway, SMAD 
protein signaling, and the regulation of progesterone secretion. We concluded that GDF9 is important for 
female gonad development, ovulation cycle mechanisms, ovarian follicle growth, and female fertility.

INTRODUCTION

The ovary is the primary female reproductive organ, 
comprising follicles as its functional units. The 

ovarian follicles consist of somatic components (thecal 
and granulosa cells) and a germ cell (oocyte) (Edson et 
al., 2009). The granulosa cells are critical to reproductive 
function because of their role in estradiol and progesterone 
synthesis (Wen et al., 2010), ovulation (Dupuis et al., 
2013), and the expression of luteinizing hormone receptors 
(Zhang et al., 2018). Thecal cells cannot produce estrogen. 
Instead, they release androstenedione, which granulosa 
cells convert to estrogen (Young and McNeilly, 2010).

The ovarian follicles occur in four stages during 
reproductive life: primordial, primary, preantral, and antral 
follicles (Hsueh et al., 2015), which is controlled by pituitary 
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gonadotropins (Orisaka et al., 2009) and paracrine factors 
(Knight and Glister, 2006). Growth differentiation factor 
9 (GDF9) is a paracrine factor released by oocytes during 
folliculogenesis that supports in the growth, development, 
and selection of follicles (Knight and Glister, 2006). GDF9 
was shown to play a vital role in the process of cumulus 
expansion of porcine oocytes (Lin et al., 2014). In women, 
the high expression of GDF9 in granulosa cells has a 
positive correlation with oocyte maturation, successful 
fertilization, and the oocyte cleavage rate (Li et al., 
2014), and GDF9 expression in oocytes was found to be 
reduced in patients with the polycystic ovarian syndrome 
(PCOS) (Wei et al., 2014). Furthermore, GDF9 deficiency 
in female mice was found to cause infertility because of 
an early block of folliculogenesis at the primary follicle 
stage (Elvin et al., 1999), and a GDF9 gene mutation was 
associated with increased fecundity and infertility in ewes 
(Otsuka et al., 2011). Thus, GDF9 is required for optimal 
follicular development and fertility. In this study, we 
performed a computational biology analysis to investigate 
the role of GFD9 in mammalian ovarian function.

MATERIALS AND METHODS

Determination of GDF9 molecule structure
The three-dimensional structure of GDF9 was 
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constructed utilizing the I-TASSER server using protein 
sequences obtained from the UniProt database that were 
coded as O60383 (GDF9_HUMAN). I-TASSER software 
is widely used for determining the structure and function 
of proteins (Roy et al., 2010; Yang and Zhang, 2015). We 
displayed the structure of GDF9 using PyMOL software 
(Dey et al., 2021). The variation information was obtained 
from the UniProt database, containing information 
about proteins, their sequences, and variations and other 
information related to their functions and networks (The 
UniProt Consortium, 2017).

GDF9 expression
We used Genevestigator (https://genevestigator.com/

gv/), a Web-based tool for examining gene expression 
of various species (Hruz et al., 2008), to analyze GDF9 
expression levels.

Protein interactions and networks
Proteins interacting with GDF9 were identified 

using the Biological General Repository for Interaction 
Datasets (BioGRID) database (https://thebiogrid.org/), 
which contains >one million biological interactions that 
are curated from >55,000 publications covering 71 species 
(Oughtred et al., 2019; Chatr-Aryamontri et al., 2017) 
The proteins identified from the BioGRID database as 
interacting with GDF9 were examined to determine the 
networks formed using the STRING database (http://
string-db.org/) (Szklarczyk et al., 2017), which is widely 
used to determine interactions between molecules and 
understand the function of protein interactions in cells.

Pathway analysis
The proteins interacting with GDF9 were analyzed 

using STRING, and their role in cellular mechanisms and 
pathways was also investigated. The pathway analysis for 
GDF9 was performed using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG; http://www.genome.jp/kegg/) 
databases. KEGG has a variety of molecular pathway 
databases that can be employed to understand gene functions 
and a collection of gene sequences with up to date annotation 
of gene functions. The KEGG databases are updated on a 
daily basis and are open to the public (Kanehisa et al., 2017). 
Moreover, the role of GDF9 in the reproduction process was 
tracked down from the WikiPathways biological pathways 
database, which provides curated omics data and is a reliable 
and rich pathway database (Slenter et al., 2018).

RESULTS AND DISCUSSION

GDF9 protein model
The structure of the GDF9 protein was successfully 

predicted using I-TASSER software, based on O60383 
UniProt sequences (GDF9_HUMAN). The GDF9 protein 
comprised three parts, viz., protein, signal peptide, and 
mature protein (Fig. 1). The mature GDF9 has a palm-like 
structure and is predominantly sheet-shaped. The structure 
of the modeling results resembled those obtained for 
MBP15 and GDF9 modelling using MODELLER software 
(https://salilab.org/modeller/) (Monestier et al., 2014); 
both of these proteins are essential for the development of 
follicle and pellucid zone structures, which are considered 
the cause of infertility in PCOS (Karagül et al., 2018). A 
homozygous mutation in GDF9 has been shown to cause 
premature ovarian failure 14, an ovarian disorder defined 
as the cessation of ovarian function under 40 years old 
(Laissue et al., 2006; Kovanci et al., 2007).

Fig. 1. The structure of GDF9 protein. GDF9 protein model 
(A) Red, helix; cyan, sheet; gray, coil. Components of the 
GDF9 protein (B) Red, signal peptide; gray, propeptide; 
green, mature GDF9. Natural variations of GDF9 (C). 
Protein processing by glycosylation, disulfide bonds, 
and post-translational modification by creatine kinase 
phosphorylation as shown in Golgi (D).

GDF9 gene expression
According to genevestigator analysis, GDF9 was 

shown to be strongly expressed in oocytes, but moderately 
expressed in lymphocytes and testicular cells (Fig. 2). 
GDF9 protein belongs to the transforming growth factor-
beta (TGF-ß) family. Oocytes and granulosa cells both 
express it (Knight and Glister, 2006) as well as in many 
organs, including rabbit liver and kidney (Sun et al., 2017), 
rat testis (Nicholls et al., 2009), and sheep hypothalamus 
and pituitary gland (Tang et al., 2018).

GDF9 plays a role in folliculogenesis. Oocyte-
expressed GDF9 interacts with BMR2 receptors found in 
granulosa cells to induce granulosa cell proliferation and 
differentiation during folliculogenesis (Russell and Robker, 
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2007). It also helps the cumulus cell act in glycolysis and 
cholesterol production, which is important for ovulation. 
Many steroid hormones, including progesterone, are 
constituted of cholesterol (Sugiura et al., 2005). GDF9 
also plays a role in expanding cumulus cells by inducing 
the expression of the hyaluronan synthase 2 gene and the 
synthesis of hyaluronan and prostaglandin E2, which are 
essential for normal ovulation (Russell and Robker, 2007).

Fig. 2. GDF9 expression levels in different cells and 
organs, extracted from the Genevestigator database (Hruz 
et al., 2008).

Protein interaction and pathway analysis
The binding of proteins to GDF9 was investigated 

using the BioGRID database. This analysis was essential to 
map and resolve the functions of proteins that interact with 
GDF9. The results could be used in further pathway analysis 
to help elucidate the role of GDF9 in ovarian function. The 
results of the BioGRID analysis showed that GDF9 protein 
interacted with 51 proteins in various biological processes, 
including the bone morphogenetic protein (BMP) signaling 
pathway, SMAD protein signaling, and the regulation of 
progesterone secretion (Fig. 3). Furthermore, biological 
process analysis showed interactions between several 
proteins and GDF9 in the BMP signaling pathway (bone 
morphogenetic protein receptor [BMPR] type 2) (Vitt et al., 
2002), the regulation of apoptotic processes (amyloid-beta 
precursor protein-binding family B member 1; dynamin 
2; growth arrest and DNA-damage-inducible protein; 
proteasome 26S subunit, non-ATPase 11; S100 protein A; 
Tribbles homolog 3; and cyclin-dependent kinase inhibitor 
1A) (Vinayagam et al., 2011), the TGF-ß receptor signaling 
pathway, and the regulation of progesterone secretion 
(c-Myc-binding protein) (Stelzl et al., 2005). GDF9, which 
is secreted by oocytes, is a specific ligand of the TGF-β 
group and promotes follicular growth and ovulation (Juengel 
et al., 2004). GDF9 also binds to BMPR2 in cumulus cells 

to activate the SMAD2/3 pathway (Gilchrist et al., 2008).

Fig. 3. GDF9-binding proteins. (A) GDF9 protein 
interaction results from the BioGRID database. (B) 
The role of GDF9 protein in gene ontology biological 
processes. (C) List of proteins that interact with GDF9, 
based on results from the BioGRID database.

The proteins in this network have two pathways 
associated with ovarian function signaling, ovarian 
steroidogenesis and cytokine-cytokine receptor interaction. 
Several proteins play a role in these pathways, including 
BMP15, follicle stimulating hormone receptor (FSHR), 
luteinizing hormone/ choriogonadotropin receptor, 
BMPR1B, and KIT ligand (Fig. 4). These pathways are 
involved in female gamete generation, oogenesis, and the 
ovulation cycle (Li et al., 2014). Based on the pathway 
analysis, the results show that GDF9 plays a role in ovarian 
steroidogenesis and cytokine-cytokine receptor interaction 
(Bornstein et al., 2004).
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GDF9 is synthesized and secreted by oocytes 
to communicate with granulosa cells. GDF9 binds to 
BMPR and activates cascades via SMAD3 protein in the 
cytoplasm. SMAD3 protein is an activator capable of 
regulating several genes, such as Bax and Bcl-2, and is 
essential for regulating ovarian follicle growth and female 
fertility (Tomic et al., 2002, 2004). Research on Smad3−/− 
animal models has demonstrated growth retardation 
of follicles and increased atresia. Smad3 is assumed 
to interact with follicle-stimulating hormone signaling 
downstream of FSHR in the mouse ovary (Gilchrist et al., 
2008) (Fig. 5).

Fig. 4. GDF9 protein interaction network. (A) The network 
of GDF9 interaction based on the STRING database (B) 
Pathway description of GDF9 based on gene ontology and 
KEGG pathways.

Fig. 5. GDF9 is produced by oocytes. It is involved in 
communication with granulosa cells and activates various 
genes via SMAD3 signaling. (Adapted from Ovarian 
Infertility Genes (Homo sapiens) in Wiki Pathways).

CONCLUSION

GDF9 was highly expressed in oocytes that interact 
with proteins involved in the biological processes of 
female gonad development, ovulation cycle processes, and 
female sexual development. Female gonad development, 
ovulation cycle processes, ovarian follicle growth, and 
female fertility are all affected by this protein. GDF9 
regulates ovarian follicle formation and female fertility by 
activating SMAD3 through BMPR.
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