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Fenneropenaeus chinensis is an important fishery species in China. Hatchery-reared seeds have been 
released into the wild for improvement of shrimp productivity. Jinzhou bay is the major natural habitat 
and we used this location to temporally monitor the genetic effects of release of hatchery stocks on local 
F. chinensis populations across five years. A set of 13 microsatellite markers were used to evaluate genetic 
patterns across 2015, 2016 and 2019. We observed a significant Hardy-Weinberg disequilibrium across all 
stocks. The inbreeding coefficient (Fis) was positive (0.121–0.131) for all stocks. A loss of genetic diversity 
was detected in the 2019 stock and significant differences were observed for number of different alleles, 
number of effective alleles, allelic richness and unbiased expected heterozygosity in the 2019 stock (P < 
0.05). The highest pairwise relatedness and the lowest observed heterozygosity were also observed in 2019 
stock. Moreover, a small but significant genetic differentiation was detected between the 2019 stock and the 
stocks of the previous two years. Given the continuously large scale of artificial enhancements in this area, 
these data may indicate that releases of hatchery-reared F. chinensis individuals may be associated with 
inbreeding and potentially the reduction in genetic diversity of the F. chinensis population.

INTRODUCTION

Stock enhancement programs are widely applied to 
fishery, wildlife conservation and forestry sectors to: 

(i) replenish threatened stock species or increase resource 
yields (Taylor et al., 2017), (ii) mitigate environmental 
disturbances from anthropogenic stresses (i.e., fishery over-
exploring) and (iii) maintain ecological system balance 
(Lorenzen et al., 2010). From 2011 to 2016, it was reported 
that vast numbers of marine juveniles from approximately 
187 species were released into the wild in 20 countries and 
regions across the world (Kitada, 2018). In Japan, as part of 
the largest scale marine enhancement programs in the world, 
over nine million hatchery-reared red sea bream (Pagrus 
major) are released each year (Kitada, 2018). In China, 
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approximately 63.66 billion seedlings of various aquatic 
species, including fish, crustaceans and shellfish, were 
released from 2007 to 2009 (China Association for 
Science and Technology, 2012). Large-scale marine 
stock enhancement programs have rapidly grown across 
China; e.g., an excess of 29 billion Chinese shrimp 
(Fenneropenaeus chinensis) larvae were released into 
the inshore area of the Liaodong peninsula, from 2012 to 
2019, at a cost of 34.29 million US dollars (225 million 
RMB) (Fig. 1). A total of more than 2 billion F. chinensis 
were released around Chinese coastal waters in each year.

Due to economic requirements and benefits, the 
mass release of hatchery-reared juveniles into the marine 
environment has dramatically increased on a global 
scale. However, concomitant monitoring efforts and 
investigations have been weak and insufficient, when 
compared with the scale of enhancement (Gonzalez et 
al., 2015). Several researchers have voiced concerns 
that the artificial enhancement with hatchery-reared 
juveniles could exert ecological and genetic impacts on 
wild populations of salmonoid and other marine species 
because body size, adaption and genetic backgrounds 
are different between released individuals and their wild 
companions. Other complications include environmental 
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Fig. 1. Total F. chinensis release numbers and seed costs 
from 2012–2019 in Liaodong peninsula.

capability and food competition (Segovia-Viadero et 
al., 2016; Ozerov et al., 2016). For example, hatchery-
reared Japanese Spanish mackerel (Scomberomorus 
niphonius) were larger in size than wild fish. After 
release, they reduced the growth rate of wild fish and 
could replace them if stock enhancement exceeded the 
carrying capacity of the environment (Nakajima et al., 
2013). In contrast to wild populations, hatchery cultured 
Chinook salmon (Oncorhynchus tshawytscha), coho 
salmon (Oncorhynchus kisutch) and steelhead trout 
(Oncorhynchus mykiss) only showed half or reduced 
levels of relative reproductive success when released 
into the wild (Araki et al., 2007; Christie et al., 2014). 
Reductions in reproductive adaptation were also detected 
in hatchery-reared P. major (Kitada et al., 2019). Use 
of insufficient numbers of parental broodstocks leads to 
a limited proportion of the total gene pool of a species 
being represented. The domesticated populations usually 
originate from a small number of parental broodstock 
in stock enhancement programs. Hence, released seeds 
are likely to have a decreased effective population size, 
in contrast to the wild population (Hold et al., 2012; Liu 
et al., 2018). Consequently, Ryman-Laikre effects could 
initially decrease the effective population size of the local 
wild populations, then may reduce their genetic diversities 
or may change their genetic structure after release (Waples 
et al., 2016; Grant et al., 2017). Moreover, introgression 
(gene flow) from hatchery-reared individuals, caused by 
artificial release or escape from aquaculture facilities, 
may alter local population structures and composition, or 
even replace them (Jenkins et al., 2020). This is a serious 
concern for cultured Atlantic salmon (Glover et al., 2017), 
gilthead sea bream (Sparus aurata) and European sea bass 
(Dicentrarchus labrax) (Arechavala-Lopez et al., 2018). 
Hence, monitoring the population variations in their 

habitats and evaluating the potential genetic effects of 
stock enhancement on local wild populations are important 
for resource restoration and management.

F. chinensis is derived from the Penaeidae family. 
This species grows rapidly, has a relatively large body and 
is suitable for human consumption (Guo et al., 2014). Due 
to habitat destruction and diseases, the F. chinensis catch 
has dropped dramatically, from over 40000 tons in 1979 
to around 1000 to 2000 tons landed annually after 2000 
(Wang et al., 2006). To protect F. chinensis populations 
and improve production, hatchery-reared F. chinensis 
release programs were initiated. 

Since 2012, large-scale F. chinensis stock 
enhancement programs have been conducted every year in 
the Liaodong peninsula (Liu et al., 2016). However, most 
of the genetic research into this species has focused on 
the spatial evaluation of the population’s distribution (Liu 
et al., 2006; Cui et al., 2007; Meng et al., 2009). Thus, 
limited information is available on the genetic monitoring 
of specific enhancement programs and the temporal 
genetic assessment of these local wild populations. The 
genetic patterns of local populations can be influenced by 
anthropogenic factors, such as the offspring of hatchery-
reared individuals comprising a large percentage of the 
overall local wild population in the next generation (Laikre 
et al., 2010; Kitada, 2018). Hence, genetic monitoring 
efforts are required to properly evaluate enhancement 
programs and their implications for management. The 
Jinzhou bay sea area is a major habitat of F. chinensis and 
an artificial enhancement area of the Liaodong peninsula. 
In recent years, around 0.5–0.7 billion shrimp seeds, with a 
total length about 1 cm, have been released each year. This 
species has a life span of approximately one year and lives 
and forages in the Jinzhou bay area since birth, from June 
to October. They usually swim out to deep water, based on 
water temperature, to overwinter, and swim back in April 
to May of the following year for reproduction. 

In this study, although the individuals reared in 
hatcheries were not sampled, we used 13 microsatellite 
markers to evaluate temporal genetic variations in 
the local wild population of F. chinensis distributed 
throughout Jinzhou bay, from 2015 to 2019. Genetic 
changes in diversity and structure of wild populations 
can be influenced by stocking activities. Hence, our 
results will provide basic information for the assessment 
of potential genetic impacts on the local wild population 
from continuous enhancement activities.

MATERIALS AND METHODS

Ethics statement
All animal experiments and animal treatment 

protocols conformed to the regulations established by the 
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Fishery Resources Enhancement Laboratory at Dalian 
Ocean University.

Sampling
In total, 277 F. chinensis individuals at 3–4 months 

old, with a body length ranging from 91-130 cm, were 
sampled from Jinzhou bay in August 2015 (JZ2015), 
August 2016 (JZ2016) and August 2019 (JZ2019). All 
samples were collected by shrimp trawling, in gillnets. 
The sampling area is shown in Figure 2. In the laboratory, 
fresh muscle was clipped and DNA was isolated using 
the TIANamp Marine Animal DNA Kit (Tiangen, China). 
The quality of extracted DNA was assessed by 1% 
agarose gel electrophoresis. Thirteen highly polymorphic 
microsatellite loci that had been used previously were 
chosen for this study (Supplementary Table S1).

Fig. 2. Map of sampling locations. Red dot indicated the 
location of Jinzhou bay where F. chinensis were sampled.

The PCR reactions were performed in 15 μl volume 
reactions. These contained 10 ng genomic DNA, 1.6 μl 10 
× PCR buffer, 1.2 μl dNTPs (2.5 mM), 1.2 μl MgCl2 (2.5 
mM), 0.6 μL forward and reverse primers (10 μM), 0.12 
μl Taq polymerase Tap (5 U/μl) (Takara, Japan) and sterile 
water. The forward primers were labeled with the FAM, 
HEX or TAMRA fluorescent dyes at the 5’ end. The PCR 
was performed on an Applied Biosystems 2720 Thermal 
Cycler system (Thermo Fisher Scientific, USA), using an 
initial denaturation step of 94 °C for 5 min, followed by 
35 cycles of 94 °C for 40 s, 1 min at a specific annealing 
temperature, 72 °C for 1 min and 5 min at 72 °C for a 
final extension. Amplified PCR products were analyzed 
on an ABI Prism 3,730XL DNA Analyzer (Thermo 
Fisher Scientific, USA), with a ROX 500 size standard. 
Raw genotyping data were scored using GeneMarker 3.2 
(SoftGenetics, USA).

Estimation of genetic diversity 
MicroChecker software (Van Oosterhout et 

al., 2004) was used to check for null alleles. For 
microsatellite loci and stocks, deviation from Hardy-
Weinberg equilibrium (HWE) was assessed before 
sequential Bonferroni correction (Gaetano, 2018), 

based on Arlequin 3.5 (Excoffier and Lischer, 2010). 
Genetic diversity parameters, including number of 
different alleles (Na), number of effective alleles (ne), 
allele frequencies, observed heterozygosity (Ho), 
unbiased expected heterozygosity (uHe) and expected 
heterozygosity (He), were estimated by GenAlEx 6.503 
(Peakall and Smouse, 2006). Allelic richness (Ar) was 
calculated by HP Rare 1.0 (Kalinowski et al., 2006), in 
terms of sample size. The Wright’s inbreeding coefficient 
(Fis) was analyzed using Genepop 4.7 (Rousset, 2008). 
The mean polymorphism information content and null 
allele frequency (Null) were calculated by Cervus 3.0.7 
(Kalinowski et al., 2007). The individual relatedness 
within each population was estimated using ML-Relate 
(Kalinowski et al., 2006). Mean pairwise relatedness, 
with 95% confidence intervals, were performed in SPSS 
24.0 (IBM, USA).

Significance was adjusted by sequential Bonferroni 
correction under multiple comparisons (Gaetano, 2018). 
To understand genetic deviation across years, differences 
in ne, Ar, uHe and Fis between each year were compared. 
Shapiro-Wilk tests were initially computed for normality, 
before paired t-test or Wilcoxon signed-rank tests were 
conducted. All statistical analyses were performed on 
SPSS 24.0 (IBM, USA).

Genetic differentiation evaluations
To analyze the genetic subdivisions of F. chinensis 

populations in their natural habitat over a given period, 
molecular variance (AMOVA) and the fixation index 
(FST) between each pair of sampling stock were assessed 
using Arlequin 3.5.2 (Excoffier and Lischer, 2010). Gene 
flow (Nm) was also calculated in Arlequin 3.5.2. The 
software structure 2.3.4 (Falush et al., 2003; Pritchard et 
al., 2000) was used to identify the number of clusters (K) 
for our microsatellite genotypes. Ten independent runs 
were performed for different numbers of clusters, each 
with a burn-in period of 100,000, followed by 1,000,000 
Markov Chain Monte Carlo (MCMC) iterations. Structure 
Harvester Web (Earl and Vonholdt, 2012; Pritchard et al., 
2000) was applied to determine K values based on mean 
values of lnP(K). To investigate whether any F. chinensis 
stocks experienced a genetic bottleneck, sign tests and 
2-tailed Wilcoxon tests for heterozygosity excess were 
computed under the two-phased model of mutation 
(TPM), using Bottleneck 1.2.02 software (Cornuet and 
Luikart, 1996). In our analysis, a variance among multiple 
steps of 30 and a proportion of single-step mutations 
of 70% was set. To calculate the probability of the 
distribution, 1000 simulation replicates were conducted. 
Qualitative model-shift tests were also applied to compute 
allele frequency distribution.

Temporal Changes in Genetic Diversity of Fenneropenaeus chinensis Populations 1883
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RESULTS

Estimation of genetic diversity
Our data were analyzed across a five year period in 

Jinzhou bay (Table I, Supplementary Tables SII, SIII and 
SIV). We detected no evidence of genotypic errors induced 
by allele dropout or stuttering. In total, 510 different alleles 
were observed for all loci and samples. All loci exhibited 
high polymorphic levels, except locus FC22, which had 
five alleles. The highest polymorphic level was observed 
at locus EN0033, which had 78 alleles. The average 
number of Na, ne and Ar ranged from 20.923–30.308, 
10.529–15.869 and 19.953–29.350, respectively. For most 
loci (29 out of 39), the uHe was larger than Ho, which 
showed obvious homozygote excess. This result was in 
agreement with the Fis analysis, in which positive values 
were observed for all stocks. For all individuals collected 
in 2015, 2016 and 2019, from Jinzhou bay, a deviation 
from HWE was detected after sequential Bonferroni 
correction (Table I), especially for the EN0033, FC06, 
FCKR009, Hd3169 and Rs0676 loci (five out of 13), 
which exhibited Hardy-Weinberg disequilibrium in all 
the stocks. In general, the smallest mean values of Na, 
ne, Ar, Ho, He and uHe were observed in JZ2019 stocks. 
Moreover, although there was no significant difference in 
Fis, significant differences appeared for Na, ne, Ar and uHe 
between JZ2019 and the two stocks from previous years, 
following sequential Bonferroni correction (P < 0.05) 
(Tables II, III). In addition, the mean relatedness value in 
JZ2019 was higher than in JZ2015 and JZ2016 (Table I).

Population genetic differentiation
Weak but significant genetic differentiation between 

JZ2019 and the other stocks (for JZ2015 and JZ2019, 
pairwise Fst = 0.03291; for JZ2016 and JZ2019, pairwise 
Fst = 0.02875) was observed (P < 0.05), even though 
samples were taken from the same locality. Gene flow 
(Nm) results agreed with Fst evidence, which suggested 
that limited Nm occurred between JZ2019 and the two 
stocks of previous years (JZ2015 and JZ2016) (Table IV). 
An AMOVA hierarchical analysis showed that 89.13% of 
genetic variation could be attributed to within individuals. 
However, the variance was significant when considering 
among stocks, among individuals within stocks and 
within individuals (Table V). Structure analyses revealed 
the highest support for two clusters, based on the delta K 
value (Supplementary Fig. S1). Our results showed that 
almost all the individuals from JZ2019 were assigned 
to the first cluster, while the individuals from JZ2015 or 
JZ2016 stock were evenly assigned to the first and second 
cluster (Supplementary Fig. S2). Both sign and Wilcoxon 
tests were not significant in estimating the probability of 
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 C
I

JZ2015
Jinzhou B

ay
2015.8

91
30.308

15.869
28.506

0.788
0.893

0.898
0.131

0.881
***

0.0372 ± 0.002
JZ2016

Jinzhou B
ay

2016.8
92

31.154
14.889

29.35
0.793

0.893
0.898

0.126
0.882

***
0.0349 ± 0.002

JZ2019
Jinzhou B

ay
2019.8

94
20.923

10.529
19.953

0.738
0.841

0.846
0.121

0.827
***

0.040 ± 0.002
Significant levels of H

W
E deviation test are presented by asterisks as ns: conform

 to H
W

E, *: P ≤ 0.05, **: P ≤ 0.01, ***:P ≤ 0.001.
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Table II. Paired t-test of Wright’s inbreeding coefficient (Fis), the number of different alleles (Na) and allelic richness 
(Ar) between each year of studied F. chinensis stocks in Jinzhou Bay.

Paired differences
Mean standard 

deviation
95% CI of difference t df P (2-tailed) P'

Upper Lower
Wright's inbreeding coefficient (Fis)
JZ2015-JZ2016 0.005 0.022 -0.045 0.055 0.223 12 0.827 1
JZ2015-JZ2019 0.01 0.046 -0.089 0.11 0.226 12 0.825 1
JZ2016-JZ2019 0.005 0.039 -0.079 0.09 0.135 12 0.895 1
No. of different alleles (Na)
JZ2015-JZ2016 -0.846 1.067 -3.171 1.479 -0.793 12 0.443 0.443
JZ2015-JZ2019 9.384 2.229 4.528 14.241 4.21 12 0.001 0.002
JZ2016-JZ2019 10.23 1.772 6.368 14.093 5.771 12 0 0
Allelic richness (Ar)
JZ2015-JZ2016 -0.844 0.84 -2.675 0.986 -1.005 12 0.335 0.335
JZ2015-JZ2019 8.552 1.973 4.253 12.852 4.334 12 0.001 0.002
JZ2016-JZ2019 9.397 1.625 5.855 12.939 5.78 12 0 0

Significance without (P) or with sequential Bonferroni correction (P’) are shown in bold.

Table III. Wilcoxon signed-rank test of no. of effective 
alleles (ne) and unbiased expected heterozygosity 
(uHe) between each year of studied F. chinensis stocks 
in Jinzhou Bay.

JZ2015-
JZ2016

JZ2015-
JZ2019

JZ2016-
JZ2019

No. of effective alleles (ne)
Z -1.013 -3.11 -3.18
P 0.311 0.002 0.001
P′ 0.311 0.004 0.003
Unbiased expected heterozygosity (uHe)
Z -0.245 -3.112 -3.185
P 0.806 0.002 0.001
P′ 0.806 0.004 0.003

Significance without (P) or with sequential Bonferroni correction (P’) 
are shown in bold.

Table IV. Estimation of FST (below the diagonal) and 
Nm (gene flow, above the diagonal) of studied F. 
chinensis stocks distributed in Jinzhou Bay.

Stocks JZ2015 JZ2016 JZ2019
JZ2015 / 486.84 7.35
JZ2016 0.00051 / 8.45
JZ2019 0.03291 0.02875 /

Significance with sequential Bonferroni correction (P) are shown in bold.

Table V. The AMOVA analysis of studied F. chinensis 
stocks distributed in Jinzhou Bay.

Source of 
variation

df Sum of 
square

Variance 
composi-
tion

Percent-
age of 
variation

P

Among populations 2 51.08 0.1078 Va 2.04 0
Among individuals 
within populations

274 1544.077 0.46567 Vb 8.82 0

Within individuals 277 1303 4.70397 Vc 89.13 0
Total 553 2898.157 5.27744 0

Significance with sequential Bonferroni correction (P) are shown in bold.

heterozygote excess under the TPM model, which 
suggested that all stocks were at mutation-drift equilibrium 
(Supplementary Table SV). These statistical data also 
supported the L-shaped allele frequency curves and 
therefore indicated no genetic bottleneck in recent years. 
The above results indicated that weak temporal genetic 
differentiation had appeared in Jinzhou bay after continued 
stock enhancement programs over the study years.

DISCUSSION

Genetic diversity
The JZ2019 population had substantially lower Na, ne, 
Ar and uHe values than other years, following sequential 
Bonferroni correction (P < 0.05). Although the significant 
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test was not compared within populations, the highest 
pairwise relatedness value and the lowest Ho were also 
observed for JZ2019. These analyses suggested that long-
term, large-scale stock enhancement may be related to 
the reduction of genetic diversity in local F. chinensis 
populations. Similar results were also observed for other 
high intensity enhancement programs, i.e., black sea 
bream (Acanthopagrus schlegelii), P. major and salmonid 
fish (Utter, 1998; Christie et al., 2012; Kitada et al., 2019; 
Shan et al., 2020). We observed significant deviations from 
HWE in all of our collected stocks. Meanwhile, five out of 
13 microsatellite markers showed consistently significant 
Hardy-Weinberg disequilibrium across JZ2015, JZ2016 
and JZ2019 stocks. This HWE deviation phenomenon 
also existed in other farmed populations, such as P. major, 
the swimming crab (Portunus trituberculatus) (Perez-
Enriquez et al., 2001; Liu et al., 2018) and recently in 
F. chinensis wild populations in China (Wang et al., 
2016; Song et al., 2018). Indeed, null alleles may cause 
heterozygote deficits and Hardy-Weinberg disequilibrium 
(Dharmarajan et al., 2013). In our study, in most cases, our 
microsatellite markers exhibited low null allele frequencies 
and only seven out of 39 cases showed relatively large 
allele frequencies (null > 0.2). Moreover, Fis values were 
positive for all of the stocks and ranged from 0.121–
0.131, which inferred a heterozygote deficit in this study. 
The above results suggested that F. chinensis population 
inbreeding behaviors may have been widespread over 
the study period (Dakin and Avise, 2004). Due to a 
lack of genetic monitoring in F. chinensis enhancement 
programs, there is practically no regulation on how many 
parent shrimps are required to make up a broodstock 
suitable to produce one million seeds for release. At 
present, the number of parental spawners is determined 
by enhancement scale rather than genetic conservation 
assessment. Each female parent F. chinensis can spawn 
approximately 700,000 eggs and in some enhancement 
programs not all female broodstocks spawn. This can 
lead to parental reproduction bias (Dong et al., 2006) in 
this species as well in other stock enhancement species, 
i.e., jungle perch (Kuhlia rupestris) (Hoskin et al., 2015).  
These scenarios may aggravate the inbreeding behaviors 
of hatchery-reared seeds in enhancement programs 
(Wang et al., 2016; Song et al., 2018). In our study, it 
was reasonable to infer that the large-scale release of the 
seeds over a given period may contribute to the positive 
Fis, Hardy-Weinberg disequilibrium and declining genetic 
diversity in local F. chinensis populations in Jinzhou 
bay, although the precise mixing proportions of hatchery 
shrimp populations was not estimated here. Previous 
research has also shown that fitness could decrease with 
increasing inbreeding coefficients, such as in the banner-

tailed kangaroo rat (Dipodomys spectabilis) (Willoughby 
et al., 2019), and inbreeding behaviors of shrimp appeared 
to reduce their survival and growth performances (Moss et 
al., 2007; Goyard et al., 2008). Another factor that cannot 
be ignored is that shrimp catch may also affect genetic 
diversities (Pinsky and Palumbi, 2014), despite the lack of 
real evidence in the present study.

 
Genetic differentiation

Our pairwise Fst data demonstrated that small but 
statistically significant levels of genetic differentiation 
were identified between JZ2019 and the two stocks of 
previous years. This finding was consistent with our 
genetic diversity comparisons. In addition, the value 
of Nm between JZ2015 and JZ2016 was larger than the 
values between JZ2019 and the two stocks of previous 
years. In considering the short life span of this species, the 
genetic structure of wild populations may be influenced 
by temporal genetic drift from hatchery release individuals 
replacing or mating with wild populations in the present 
study (Willoughby and Christie, 2019). The structure 
analysis showed two clusters, which suggested that 
JZ2019 may share a weak genetic structure with the two 
stocks of previous years. Our bottleneck data demonstrated 
that populations in Jinzhou bay did not undergo a recent 
genetic bottleneck.

CONCLUSIONS

Overall, our results indicated that long-term stock 
enhancement may be related to inbreeding and potentially 
the reduction of genetic diversity in F. chinensis populations. 
More sampling locations and more evaluation periods are 
required in the future to better understand the impacts of 
artificial stock enhancement on local populations. 
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