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Insecticides are a quick tool to suppress insect pests and an important element of integrated pest 
management (IPM). λ cyhalothrin, a pyrethroid, is commonly used to manage economic insect pests in 
agricultural crops since long. An assay was designed to evaluate the efficacy of λ cyhalothrin on biological 
parameters of generalist predator, Coccinella septempunctata. Results indicated that λ cyhalothin has no 
significant impact on developmental life stages of larvae of ladybird beetle but it significantly reduced the 
span of total adult longevity (30.8 to 26.91 d), female adult longevity (31.5 to 27.79 d), and male adult 
longevity (29.4 to 25.56 d) as compared to control. Among population parameters, λ cyhalothin had a 
non-significant impact on adult preoviposition (APOP), total preoviposition period (TPOP), oviposition 
period, intrinsic rate of increase, finite rate of increase, and mean generation time (T). However, it had 
significantly reduced the fecundity of females from 294.00 to 262.43 eggs/female and net reproductive 
rate (R0) (174 to 91.85 d). Our results showed that C. septempunctata had adopted to manage λ cyhalothrin 
and it could be used in experiments involving C. septempunctata as a natural biocontrol agent.

INTRODUCTION

Ladybird beetles are the member of class insecta and 
belongs to the family Coccinellidae (Atta et al., 2019). 

The lady bird beetle (Coleoptera: Coccinellidae) is common 
to a wide range of natural and agricultural habitats with 
worldwide distribution. Coccinellids are Holometabolous 
insects possess four stages in their life cycle i.e., egg, 
larva, pupa, and adult. There are three molting and four 
larval instars (Pervez, 2004). All motile stages are predator 
but the larval and adult stages are very good predators of 
aphids and other small insects (Hangay and Zborowski, 
2010). Its 3rd and 4th instars larvae are more voracious as 
compared to 1st and 2nd instar (Atta et al., 2019). Predatory  
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potentials of females are more than males and laboratory 
reared adults are also more voracious than the field 
collected. Wheat (Triticum aestivum L.) is the main 
cereal staple crop of Pakistan and affected by aphids 
(Anonymous, 2018; Atta et al., 2019). Therefore, aphids 
attained the status of regular pest in Pakistan and regular 
monitoring of wheat crop is very important during the 
crop season (Abdulkhairova, 1979; Atta et al., 2019). 
Biological control is the action of parasitoids, predators 
and pathogens in maintaining density at a lower average 
than would otherwise occur. According to Sathe and 
Bhosale (2001), predators are the organism which directly 
attack, kill, and eat one of the other species (prey of host). 
Biological control agents comprises an important elements 
of many integrated pest management (IPM) program but 
many synthetic pesticides affect them negatively (Mordue 
and Blackwell, 1993). Natural enemies/ biological control 
agents are the most important factors to regulate the pest 
population for keeping the insect pests below economic 
threshold level (Atta et al., 2019). Ladybird beetles are 
very common for controlling many insects and different 
studies have been done on them (Singh and Bras, 2004; 
Ullah et al., 2012; Farooq et al., 2018; Atta et al., 2019). λ  
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cyhalothrin is commonly used insecticides for insect pest 
management on wheat, rice, and other crops (Atta et al., 
2019).

Arthropods resistance to insecticides is of great 
concern in integrated pest management programs for 
applied entomologist. More than 600 species of insects 
and mites have been reported to develop resistance to one 
or more chemicals (Whalon et al., 2012). The development 
of resistance in insect pests lower the agronomic value of 
the insecticides (Jiang et al., 2011; Whalon et al., 2015). 
On the other hand, fewer insects from natural enemies have 
shown resistance to insecticides (Croft, 1990; Whalon et 
al., 2012). The repeated exposure to same to pesticides can 
evolve resistance in natural enemies like agricultural insect 
pests (Croft and Morse, 1979;  Pathan et al., 2008;  Pree 
et al., 1989;  Rodrigues et al., 2013a). The development 
of resistance to certain pesticide could be attributed to 
intrinsic factors such as genetic makeup, behavioural 
patterns, and metabolic physiology, in addition to 
extrinsic factors such as pesticide properties and exposure 
frequency and coverage (Forgash, 1984;  Georghiou and 
Taylor, 1977a;  Rosenheim and Tabashnik, 1990;  WHO, 
1957). It is therefore of interest that certain predator 
insects appear less susceptible as compared to other insect/ 
groups (Tillman and Mulrooney, 2000;  Williams et al., 
2003), their prey (Gesraha, 2007), or even key pest species 
(Spíndola et al., 2013). 

To use beneficial arthropods as bio-control agents or 
preserve their local natural populations in integrated pest 
management, their susceptibility to the pesticides used 
must be taken into account. In order to save released or 
local beneficial fauna and to augment and exploit their 
performance, several well-known strategies needed to be 
exploited. Looking for preparations harmless to biological 
agents among the existing pesticides; developing novel 
selective active ingredients finding (collecting/selecting) 
tolerant or resistant strains of natural enemies. The success 
of biological control may be enhanced by preventing the 
careless use of pesticides by having direct and indirect 
toxic effects on natural enemies. These adverse effects 
on the bio-agents can be minimized by considering and 
implementing some tactics which may play important 
role in expanding the function of biological control. The 
goal of IPM is to select such chemicals that are having 
compatibility. So, this study had been carried out to 
evaluate the sublethal impact of λ cyhalothrin on biological 
parameters of ladybird beetle.

MATERIALS AND METHODS

Insects
Coccinella septempunctata adults were collected 

from experimental area Rice Research Institute Kala Shah 

Kaku, Pakistan during the season 2018. Adults collected 
were reared in laboratory and Aphis gossypii were supplied 
as diet on daily basis collected from field. One generation 
(F0) was reared in the laboratory. Forty-five eggs were 
used in this study for each treatment. Grubs were supplied 
with sufficient number of A. gossypii as food. 2nd stage in 
stars were introduced into treated petri dishes to record the 
impact of insecticide life table parameters.

Insecticide
λ cyhlothrin (Karate 5EC), a commercial product 

of Syngenta, Pakistan, was used for sublethal studies 
against C. septempunctata larvae for biological parameters 
studies. Stock solution of 0.1% ml/L was prepared in 
distilled water. Then further two dilutions were made viz., 
0.05 and 0.025 ml/L. Central doses 0.05 ml/L was selected 
for sublethal studies. For control only distilled water was 
used.

Bioassay
15 ml of selected dose were poured in the perti dishes 

and then it was shaked for 10-15seconds so that dose may 
be distributed to entire surface of the flask. The remaining 
liquid was wasted and petri dish was kept in front of fan to 
let it dry. Distilled water was used for control treatment. 45 
eggs were used in this study. Due to higher mortality of 1st 
instar, 2nd instar larvae were put inside petri dish. Data for 
life stage and mortality was collected after 12 h (0900 and 
2100 h). Adults of the same treatment were sexed to record 
the fecundity and life span for each treatment till death of 
each individual.

Statistical analysis
The basic life table parameters such as age-stage 

survival rate (Sxj), reproductive value (Vxj), age-stage 
specific life expectancy rate (Exj), intrinsic rate of increase 
(r), reproductive rate (R0), Finite rate of increase (λ), 
and mean generation time (T), were analyzed using the 
computer program TWOSEX-MS Chart (Chi and Liu, 
1985; Chi, 2016a, b). The standard errors were calculated 
using the bootstrap technique included in the program with 
100,000 random sampling (Efron and Tibshirani, 1993). 
Adult longevity, adult pre-oviposition period (APOP), 
total pre-oviposition period (TPOP), fecundity and 
population parameters (r, λ, R0, and T) were compared 
using the paired bootstrap test based on the confidence 
interval of the differences. Survival rate and reproductive 
value curves were plotted using MS Word software-2013.

RESULTS AND DISCUSSION

Age-stage two sex life tables
The development duration for each stage of C. 
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septumpunctata are presented in Table I. The development 
period was the shortest in λ cyhalothrin (33.52d) followed 
by control (33.6 d). Moreover, the females’ life periods 
were longer than males in both treatments. Adult male 
longevity decreased in λ cyhalothrin treatment (25.56 d) 
as compared to control (29.40). In the same way, female 
longevity and total adult longevity was significantly lower 
(27.79 d) and (26.91 d) for insecticide treated grubs as 
compared to control (31.5 d) and (30.80 d), respectively. 
Age-stage, two sex life tables parameters describes the 
probability of a new born to survive to specific age (x) and 
stage (j) (Figs. 1-3). The age-stage curve (Sxj) describes a 
higher survival rate on control as compared to treatment. 
The lx, fxj, and mx curves indicate that C. septempunctata 
had higher survival on control as compared to lamnda 
cyhalothrin. While the highest fecundity was recorded 
in control treatment as compared to sublethal dose of λ 
cyhalothrin.

Table I. Effect of λ cyhlothrin on duration of 
development of C. septumpunctata (days) reared on A. 
gossypi.

Development
stage

N Control N λ cyhalothrin

Egg 45 5.00 ± 0.00 a 45 5.00 ± 0.00 a
L1 44 4.00 ± 0.00 a 43 4.00 ± 0.00 a
L2 40 5.10 ± 0.12 a 40 5.08 ± 0.12 a
L3 34 5.56 ± 0.20 a 33 5.61 ± 0.17 a
L4 30 6.53 ± 0.15 a 28 6.64 ± 0.15 a
Pupa 30 7.07 ± 0.15 a 23 7.17 ± 0.16 a
Preadult 30 33.6 ± 2.30a 23 33.52 ± 0.32 a
Adult longevity 30.80 ± 0.57 a 26.91 ± 0.63 b
Female 20 31.50 ± 0.60 a 14 27.79 ± 0.79 b
Male 10 29.40 ± 1.13 a 9 25.56 ± 0.88 b

SEs were estimated by bootstrapping (100,000 replications). N, number 
of individuals completing a specific stage.

Age stage specific life expectancy curves (Exj) 
were plotted in Figure 2. The newly hatched eggs of C. 
septempunctata were expected to survive for a longer 
period in control as compared to treated larvae. Both, 
males and females are expected to live a longer life when 
treated with distilled water as compared to λ cyhalothrin. 

Age-stage-specific reproduction rate (Vxj) for different 
treatments plotted in Figure 3. Adult females contributed 
more to the population as they are the most productive 
stages of a population. Moreover, the successful adult 
emergence recorded more females as compared to males 
in all treatments. The highest age-stage reproductive value 
was recorded in control (1.1427) treatment, followed by 

λ cyhalothrin (1.1295). The fecundity of an individual 
is affected by the conditions in which it is raised. The fxj 
curve explains the highest fecundity in λ cyhalothrin treated 
individuals was 19.8 eggs/day at 40th day while in control 
peak value 17.8 eggs was recorded on 42th day (Fig. 4). 

Fig. 1. Effect of λ cyhlothrin on age stage specific survival 
rate (Sxj) of Coccinella septumpunctata.

Fig. 2. Effect of λ cyhlothrin on age stage specific life 
expectance (exj) of Coccinella septumpunctata.

Sublethal Impact of λ Cyhalothrin on Ladybird Beetle 1395
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Fig. 3. Effect of λ cyhlothrin on age stage specific 
reproductive rate (Vxj) of Coccinella septumpunctata.

Fig. 4. Effect of λ cyhlothrin on age stage specific survival 
rate (lx), age stage specific fecundity (fxj), age specific 
fecundity (mx), and age specific maternity (lxmx) of 
Coccinella septumpunctata.

Population parameters
Population were recorded for control and sublethal 

dose of λ cyhalothin insecticide. SEs were estimated 
with bootstrap technique with 100,000 replicatons. Net 
Reproductive rate (R0) was highest for control (147.00) 
followed by λ cyhalothin (91.85). Intrinsic rate of 
increase (r) was maximum for control (0.1339) followed 
by λ cyhalothin (0.1218). Mean generation time (T) was 
maximum for control (37.41) followed by λ cyhalothin 
(37.13) but statistically insignificant. Finite rate of increase 
(λ) values were highest to lowest for control (1.1427) as 
compared to λ cyhalothin (1.1295) (Table II).

Table II. Effect of λ cyhlothrin on fecundity and life 
table parameters (Mean ± SE) of C. septumpunctata 
reared on A. gossypi.

Parameters Control λ cyhalothrin
APOP 4.60 ± 0.11 a 4.14 ± 0.23 a
TPOP 29.20 ± 0.533 a 28.57 ± 0.40 a
Oviposition period 14.20 ± 0.2634 a 13.36 ± 0.41 a
Fecundity (eggs/female) 294.00 ± 5.835 a 262.43 ± 4.98 b
R0 (offspring individual-1) 147 ± 23.4808 a 91.85 ± 43.72 b
T (d) 45.41 ± 0.652 a 45.13 ± 0.365 a
r (d-1) 0.13387±0.0052a 0.1218±0.0066 a
λ (d-1) 1.14269±0.0059a 1.1295±0.0074a

APOP, adult pre-oviposition period; TPOP, total pre-oviposition period; 
R0, net reproductive rate; T, mean generation time; r, intrinsic rate of 
increase;  λ, finite rate of increase. SEs were estimated by bootstrapping 
(100,000 replications).

DISCUSSION

IPM includes the integration of insecticides with other 
natural controlling agents such as predators, parasitoids, 
and parasites (Bilal et al., 2019), but it has been seldom 
achieved due to incompatibility of parts of IPM especially 
insecticides and biocontrol agents (Tabashnik and Johnson, 
1999). Insecticides are found equally toxic to natural 
enemies (Bilal et al., 2019) and less toxicity to natural 
enemies other than pest is viewed as a rare exception 
(Croft, 1990). With the advancement in insect pests’ 
management techniques, insecticides are still primary tool 
for insect pest management. The impact of insecticides on 
beneficial fauna helping in pest management without an 
additional cost to IPM is an important matter (Atta et al., 
2019) (Fig. 1). 

λ cyhalothrin is a pyrethroid used on a wide scale for 
insect pest controlling programs. The results indicated that 
sublethal dose of λ cyhalothrin had a non-significant on 
developmental stages of ladybird beetle, however, pre-
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adult period was shorter than control. These results suggest 
development of tolerance in C. septempunctata against λ 
cyhalothrin, a pyrethroid. The development of resistance in 
coccinellid species field populations against λ cyhalothrin 
and pyrethroids was reported earlier by researchers in other 
countries (Torris et al., 2015; Rodrigues et al., 2013a, b). 
Bozsik (2006) reported that λ cyhalothrin is moderately 
harmful to C. septempunctata adults that is fairly similar 
to our results. The less survival of C. septempunctata as 
compared to the control might be attributed to the outbreak 
of aphids after pyrethoids application in field (Deguine et 
al., 2000; Godfrey et al., 2000) (Fig. 2).

λ cyhalothrin is among type-II pyrethroids which are 
more toxic due to presence of cyano group in molecule 
as compared to type-I pyrethroids such as permthrin 
and bifenthrin (Sattelle and Yamamoto, 1988; Khambay 
and Jewess, 2010; Torres et al., 2015). Wilis and Jepson 
(1994) reported the same for deltamethrin pyrethroid that 
C. septempunctata moved to lower parts of the shelter 
when exposed to deltamethrin. It may be due to that it 
had adopted to manage with the situation when exposed 
to λ cyhalothrin. Our results indicated that λ cyhalothrin 
had long term impact on C. septempunctata such as adult 
longevity of the male and female adult. This may be 
attributed to variable biological, operational, and genetic 
influences (Georghiou and Taylor, 1977a, b) (Fig. 3).

The sublethal application may have a suppressive or 
vice versa impact on fecundity of an insect. It means that 
it may reduce or augment its fecundity (Ali et al., 2017). 
The reduced fecundity of the female may be attributed to 
this factor. However, the population parameters such as 
generation time (T), intrinsic rate of increase (r), finite rate 
of increase (λ), and net reproductive rate were remained 
non-significant for control and λ cyhalothrin which 
may be attributed to development of resistance in field 
population of C. septempunctata against λ cyhalothrin. 
The development of resistance to an insecticide is not a 
permanent character in case of insects. An insect resistant 
to a certain insecticide may become susceptible again if 
raised in an insecticide free environment over generations 
(Ya-jun et al., 2014). The number of generations have not 
been reported for an insect for loss of resistance against an 
insecticide. This may be due to specific biology of an insect. 
The loss of resistance could be evaluated in the laboratory 
by producing a resistant biotype for a specific chemical. 
However, this evaluation may require an additional cost 
which depends on the biology of biocontrol agent under 
study (Fig. 4).

CONCLUSION

Our results revealed that C. septempunctata may have 

developed to manage λ cyhalothrin, and the insecticide 
may have not a significant damaging impact upon field 
population of ladybird beetle, C. septempunctata. It can 
be used in IPM programs involving C. septempunctata as 
a biological control agent.
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