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Vasoactive intestinal peptide plays double roles as gastrointestinal hormone and neuropeptide. Due to 
few reports on vasoactive intestinal peptide in pigeon, the present study was aim to further explore the 
correlation between its molecular bioinformatics characteristics and biological function. After the desired 
RNA was extracted from the intestine of Wahui pigeons, the complete CDS of vasoactive intestinal 
peptide was obtained by PCR amplification and sequencing, in addition, a variety of bioinformatics 
analysis was performed to evaluate its structural characteristics. CDS of vasoactive intestinal peptide, 
encoding 132 amino acids, is 399 bp long in Wahui pigeon. Vasoactive intestinal peptide probably belongs 
to a hydrophilic peptide without any signal peptide and transmembrane structure, and mainly plays its 
biological function due to occupying 89.6% in cytoplasm. Furthermore, it consists of one N-glycosylation 
site and 17 phosphorylation sites, and the secondary structure contains 50.76% of alpha helix, 5.30% of 
beta turn, 9.09% of extended strand, and 34.85% of random coil. Phylogenetic tree analysis shows that 
Wahui pigeon hold the close relative characteristics with chicken, turkey, and Taeniopygia guttata. Besides 
its conservative evolutional characteristic, the simple structure, subcellular localization, hydrophobicity 
and hydrophilicity indirectly account for its extensive distribution and various functions as expected.

INTRODUCTION

Vasoactive intestinal peptide (VIP) was initially 
isolated and characterized from porcine duodenum 

in 1970 (Said and Mutt, 1970). In vivo, VIP widely 
distributes in various tissues as gastrointestinal hormone 
and neuropeptide. VIP is considered as the paradigm 
of an endogenous neuroendocrine-immune mediator 
with therapeutic potential for a variety of inflammatory 
disorders such as inflammatory bowel disease (Abad et al., 
2012; Jönsson et al., 2012; Wu et al., 2015; Iwasaki et al., 
2019). VIP can inhibit the neurodegeneration due to loss 
of neurons, which may be mediated by glial cells through 
the production of neurotrophic factors and the inhibition 
of proinflammatory mediators (Deng and Jin, 2017). 
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In addition, VIP acts as an antimicrobial peptide in the 
pathological process of rheumatoid arthritis, reduces 
the expression of pattern recognition receptor and its 
inflammatory signal, down-regulates the production 
of proinflammatory cytokines and chemokines, and 
counterbalances Th subsets decreasing pathogenic Th17 
cells and their capacity to shift to Th1 profile (Villanueva-
Romero et al., 2018). In the recent study, the signal 
pathway between nervous system and immune system 
mediated by VIP opens up a new way for the treatment 
of allergy and plays an important role in the prevention 
of allergic diseases (Verma et al., 2017). Another study 
demonstrates an increased transepithelial passage of live 
commensal and pathogenic bacteria in the colon of irritable 
bowel syndrome subjects, the up-regulation of VIP is 
important in the regulation of this bacterial translocation 
through the mucosa (Bednarska et al., 2017). So far, VIP 
has continually been investigated as a known neuropeptide 
on its aspects, the structural characteristics and biological 
function of VIP have been abundantly acquired as well.

Pigeon is a kind of common poultry with tender 
meat, high protein, and low fat in China. In recent years, 
the market demand for pigeons has gradually increased. 
However, some bad managements, for example, wet 
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litter, bad ventilation, high density, improper coccidiostat 
consumption and contaminated feeders, exaggerate 
intestinal parasite problems (Ruff, 1993). The parasitism 
often brings about severe effects on birds including 
malnutrition, retarded growth, low egg production, 
susceptibility to other infections, and death in young birds 
(Radfar et al., 2012), these similar intestinal diseases 
account for a large part of pigeon’s disease, so as to seriously 
threaten pigeon’s normal breeding. As an effective anti-
inflammatory factor, VIP has the effect of inhibiting T 
cell proliferation (Gonzalez-Rey et al., 2007). In addition, 
VIP inhibits the production of inflammatory cytokines 
and chemokines by macrophages, microglia and dendritic 
cells via its receptors VPAC1 and VPAC2 (Gonzalez-Rey 
et al., 2007). VIP is also a signaling molecule between 
the nervous and immune system, and plays a role in 
immunity, especially in local mucosal immunity (Delgado 
and Ganea, 2013). However, there have been few reports 
on molecular bioinformatics of VIP such as the related 
functional structures. Here, Wahui pigeons’ intestines 
were used to obtain the coding region sequences of VIP 
by cloning and sequencing, and its sequence was analyzed 
and functionally predicted by bioinformatics software. 
The present results provide more detailed information for 
further exploration on the biological function of VIP in 
pigeon.

MATERIALS AND METHODS

Experimental animals
Ten healthy Wahui pigeons with half male and half 

female (26 days old, weighing 500±5 g) were purchased 
from Xixia Pigeon Farm (Nanchang, China) and provided 
with pigeon-starter feed and water. Raised in Animal 
Anatomy Laboratory for one day of fasting, pigeons 
were dissected after anesthetization on the next day. 
The intestines were quickly collected to put in liquid 
nitrogen, and then stored in refrigerator at -80oC. All of the 
procedures were performed in accordance with the Ethics 
Committee and Guidelines of Animal Experiments of our 
institute.

RNA extraction and cDNA synthesis
RNA was extracted from ileum according to Trizol 

method. Briefly, the frozen specimens were powdered 
in liquid nitrogen and homogenized in RNAiso Plus 
(TAKARA Bio Inc., Japan), from which 500 μl was 
transferred to EP tube. 200 μl chloroform was added to 
each tube, violently shaken for 15 s and centrifuged for 
15 min (4 oC, 12000 r/min). The sample was divided into 
three layers: the yellow organic phase, the middle layer and 
the upper colorless water phase. The upper water phase 

was transferred to a new 1.5 ml EP tube, and then 500 
μl isopropanol was added in this tube and mixed gently. 
The mixture was kept at room temperature for 10 min, 
was centrifuged for 10 min (4 oC, 12000 r/min). After the 
supernatant was discarded, total RNA was washed with 1 
ml 95% ethanol prepared by RNase-Free ddH2O. Then 30 
μl DEPC water (TAKARA Bio Corp., Japan) was added to 
fully dissolve and precipitate in refrigerator at -80  oC (Thermo 
Scientific, USA). RNA concentration and OD value were 
detected by ultraviolet spectrophotometer (Beckman Corp., 
USA). The first strand cDNA was synthesized using the 
EasyScript One-Step gDNA Removal and cDNA Synthesis 
SuperMix Kit (Transgen, China), and then placed in 
refrigerator at -20 oC.

PCR amplification and sequencing
PCR amplification primers were designed by Primer 

Premier 5.0 software according to VIP sequence of pigeon 
from GeneBank (Accession number: XM_021294865.1). 
CDS region of VIP was amplified by PCR using the above 
cDNA as a template. The PCR amplification mixture of 25 
μl was as follows: 12.5 μl of 2×EasyPfu PCR SuperMix, 
1 μl of each of the upstream and downstream primers 
(Table I), 2 μl of template, 8.5 μl of ddH2O. PCR reaction 
conditions was applied as follows: pre-denaturation at 95 
oC for 5 min, denaturation at 94 oC for 30 s, annealing at 
50.7 oC for 30 s, extension at 72 oC for 40 s, 35 cycles, 
extension at 72 oC for 8 min. The electrophoresis of PCR 
products was performed by using 1% agarose gel, and then 
the PCR products were sent to Sangon Biotech (Shanghai) 
Co., Ltd. for sequence detection.

Bioinformatic analysis
The biological information of VIP was obtained by a 

series of predictive analysis based on CDS above. These 
items and software are shown as Table II.

RESULTS

CDS region of VIP
After PCR amplification, the target CDS region 

are 511 bp long as agarose gel electrophoresis (Fig. 1), 
subsequently, the nucleotide sequence was obtained by 
sequencing, and the open reading frame is of 399 bp length 
according to the sequence analysis by NCBI online.

Physicochemical properties and hydrophobicity analysis 
on VIP

The physicochemical properties of VIP were predicted 
by ProtParam software. The peptide is encoded by 132 
amino acids (Fig. 2), the amino acid composition is shown 
in Table III, and the content of leucine is the highest with 
12.9%. The molecular formula and mass of VIP are
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Table I. The PCR primer sequences and predicted product length.

Item Primer sequences (5’→3’) Product length Tm Purpose
VIP-CDS TTGCTGTTTGGATGTT

CTTTGAAATACTATGTGGAA
511 50.7 PCR amplification

Table II. The software or tools applied in bioinformatic analysis.

Predicted subject Software Website
Physicochemical properties of 
protein
Hydrophobic analysis
Signal peptide analysis
Transmembrane analysis
Subcellular localization
Phosphorylation site
Glycosylation site
Secondary structure
Tertiary structure
Functional structure

ProtParam

Protscale
SignalP
TMHMM Serve v.2.0
Psort II
NetPhos 3.1 Server
NetNGlyc 1.0
SOPMA
Phyre2
SAMRT

https://web.expasy.org/protparam/

https://web.expasy.org/protscale/
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/TMHMM/
http://www.psort.org/psorb
http://www.cbs.dtu.dk/services/Net Phos/
http://www.cbs.dtu.dk/services/Net NGlyc/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automal. pl? Page=npsa_sopma.html
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi? id=index
http://smart.embl.de/smart/job_status.pl?-
Jobid=116547588181601533707646MhEAszEcjM

C654H1032N182O213S3 and 14948.66 u, respectively. The 
theoretical isoelectric point and the instability coefficient 
are 5.03 and 69.90, respectively. The fat coefficient and the 
average hydrophilicity are 78.33 and -0.703, respectively, 
therefore, it is probably unstable and hydrophilic peptide. 
According to the hydrophobicity prediction by Protscale 
program, it can be seen that Valine in the 67th position 
has the strongest hydrophobicity due to the hydrophobic 
value with 2.933, and Lysine in the 77th position has the 
strongest hydrophilicity due to hydrophilic value with 
-3.967. The hydrophilicity contributes to approximately 
70% with larger hydrophilic region; accordingly, it should 
be a soluble peptide.

Table III. The amino acid composition of VIP in Wahui 
pigeon.

Amino 
acids

Num-
ber

Frequency
(%)

Amino 
acids

Num-
ber

Frequency
(%)

Arg (R) 8 6.1 Phe (F) 6 4.5
Asn (N) 7 5.3 Pro (P) 7 5.3
Asp (D) 13 9.8 Ser (S) 16 12.1
Gln (Q) 4 3.0 Thr (T) 3 2.3
Glu (E) 10 7.6 Tyr (Y) 4 3.0
Gly (G) 5 3.8 Val (V) 6 4.5
His (H) 3 2.3 Ala (A) 8 6.1
Ile (I) 3 2.3 Cys (C) 0 0
Leu (L) 17 12.9 Trp (W) 0 0
Lys (K) 9 6.8 Pyl (O) 0 0
Met (M) 3 2.3 Sec (U) 0 0

Fig. 1. The electrophoresis for PCR product of VIP-CDS in 
Wahui pigeon. M: 2 kb ladder marker; 1, 2: CDS product.

Fig. 2. The predicted amino acid sequence encoded by 
VIP-CDS in Wahui pigeon. The first M and asterisk 
represent start codon and termination codon in VIP-CDS, 
respectively.
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The signal peptide, transmembrane structure and 
subcellular localization of VIP

The signal peptide of VIP was predicted using 
SignalP5.0 software, but no signal peptide was found 
in VIP of Wahui pigeon, it infers that VIP is not a 
secreted peptide. Meanwhile, the peptide does not have 
a transmembrane structure based on the prediction of 
TMHMM software (Fig. 3). 

According to the subcellular localization by PSORT 
II prediction, it distributes in the cytoplasm (89.6%), 
cytoplasmic membrane (5.1%), periplasm (2.6%), 
extracellular (2.6%), and outer membrane (0.1%), 
respectively, therefore, it can be inferred that VIP mainly 
exert its function in the cytoplasm.

Fig. 3. Transmembrane analysis on VIP in Wahui pigeon.

Other structure prediction of VIP
As to the N-glycosylation site prediction of VIP by 

using NetNGlyc1.0, it was found that VIP has a potential 
N-glycosylation site at the 71st amino acid with a score of 
0.7126 (Fig. 4). In the phosphorylation site prediction by 
using the NetPhos 3.1 server software online, when the 
threshold of potential phosphorylation site is set at 0.5, 
there are 17 potential phosphorylation sites in VIP, which 
consists of 12 Serine, 2 Threonine, and 3 Tyrosine sites 
(Fig. 5). There are probable six conserved protein kinase 
binding sites of unsp (including PKC, PKA, CKII, GSK3, 
and INSR in VIP), and its score has the highest value of 
0.991 at 120.

Fig. 4. N-glycosylation site analysis on VIP in Wahui 
pigeon.

Fig. 5. The predicted phosphorylation sites of VIP in 
Wahui pigeon.

The secondary structure of VIP in Wahui pigeon 
was predicted by ExPAsY’s SOPMA program. The Alpha 
helix of VIP has 67 amino acids, taking up 50.76%, and 
the Beta turn has 7 amino acids, taking up 5.30%. The 
extended strand has 12 amino acids, taking up 9.09%, and 
the Random coil has 46 amino acids, taking up 34.85%. 
The tertiary structural model was obtained by homology 
modeling of VIP with Phyre 2. The peptide is folded, bent 
and forms into a three-stage structure (Fig. 6).

Fig. 6. The predicted tertiary structure of VIP in Wahui 
pigeon.

The phylogenetic evolutionary analysis of VIP
VIP sequence of Wahui pigeon was compared with 

other nine different animals by using MUSCLE software 
including Gallus gallus (GeneID: NM_001177309.1), 
Meleagris gallopavo (GeneID: XM_010707199.3), 
Taeniopygia guttata (GeneID: XM_030268028.1), 
Danio rerio (GeneID: NM_001114553.3), Mus musculus 
(GeneID: XM_006512448.1), Rattus norvegicus (GeneID: 
NM_053991.1), Homo sapiens (GeneID: NM_003381.4), 
Bos taurus (GeneID: NM_173970.3), and Sus scrofa 
(GeneID: NM_001195233.1). According to the genetic 
sequence analysis established among ten different animals, 
the phylogenetic tree can be divided into three large groups, 
from which Wahui pigeon locates in the same small group 
with Meleagris gallopavo, Gallus gallus and T. guttata, 
the phylogenetic evolutionary trend indicates that there are 
the closest relative relationship between Wahui pigeon and 
other three kinds (Fig. 7).
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Fig. 7. The phylogenetic evolutionary analysis on VIP in 
Wahui pigeon.

DISCUSSION

VIP is a neuropeptide extensively distributed in tissues, 
it exerts pleiotropic functions in multiple systems, such as 
the gastrointestinal, cardiovascular, nervous, and immune 
systems (Villanueva-Romero et al., 2018; Kasacka et al., 
2015; Jayawardena et al., 2017; Benitez et al., 2018). It has 
been reported that VIP can participate in regulating immune 
balance as an immunomodulatory and anti-inflammatory 
factor (Benitez et al., 2018; Li et al., 2017). Therefore, it 
has been considered as a potential candidate for treating 
various autoimmune and inflammatory diseases, and also 
has been effective in prevention of autoimmune diseases, 
such as diabetes mellitus, rheumatoid arthritis, EAE, sepsis 
and inflammatory bowel disease (Villanueva-Romero et 
al., 2018; Jimeno et al., 2010; Ibrahim et al., 2012; Tan et 
al., 2015; Shi et al., 2016; Jayawardena et al., 2017). In the 
treatment of lupus erythematosus, VIP modulates immune 
homeostasis of Th17/Treg by down-regulating serum 
levels of autoantibodies and renal levels of IL-17 and IL-6, 
and up-regulating renal levels of Foxp3 and IL-10, thereby 
improves renal functional defects, proteinuria and renal 
damage (Fu et al., 2019). VIP and its receptors are over-
expressed in many common tumors, including bladder, 
breast, colon, liver, lung, pancreatic, prostate, thyroid, and 
uterine cancer, VIP and PACAP stimulate the growth of 
several cancer cell lines in vitro (Moody et al., 2016), as 
indicates VIP may affect tumor growth and differentiation. 
In addition, VIP widely distributes in the gastrointestinal 
mucosa, which has various functions such as regulating 
the physiology, biochemistry, immune function of the 
gastrointestinal tract, and resisting inflammation, taking 
on immunity, and relaxing muscles (Montagnese et al., 
2015). In studies on live Salmonella typhimurium instead 
of LPS, VIP can down-regulate inflammatory mediators 
in human monocytes and murine macrophages (Foster 
et al., 2006; Askar et al., 2015; Ibrahim et al., 2018), 
thereby S. typhimurium probably increase its survival 
rate in humans and mice by VIP. According to study on 
the immunomodulatory effects of VIP and the increase 

in survival and growth of S. typhimurium, VIP reduced 
cytokines over-expressed (IL-1β, IL-6, TNF-α, IFN-γ 
and IL-10) in sepsis, and confirmed that VIP can be used 
as an adjuvant therapy for antibiotics in sepsis (Askar et 
al., 2020). The above studies demonstrate that VIP has 
enormous potential for the treatment of inflammatory 
diseases in the immunomodulation of innate immune 
responses.

According to the bioinformatics analyses in present 
study, on the one hand, Wahui pigeon is clustered with 
chicken, turkey, and T. guttata. The close relationship 
suggests the structure of VIP is evolutionarily conservative 
among these species. On the other hand, this simple 
structure and fine solubility account for the whole 
physiochemical and biological properties of VIP, and 
also greatly explain its extensive distribution in different 
tissues. It is indicated that the molecular characteristics are 
appropriate to play its functions in various systems.

CONCLUSIONS

In conclusion, we obtained CDS region of VIP gene 
with 511 bp in Wahui pigeon, and analyzed its molecular 
characteristics and properties, this simple molecular 
structure and characteristics are appropriate to take various 
functions in multiple systems.
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