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To explore the gut microbial profile of blunt snout bream (Megalobrama amblycephala), fish were fed with 
a commercial diet for 16 weeks. Then high-throughput sequencing was applied to compare the microbiota 
between foregut and hindgut. The results showed that the microbial profiles between the foregut and 
hindgut were different based on the alpha-diversity and the cluster results. Dominant microbioorganisms 
of blunt snout bream at genus level were Cetobacterium spp., Lactococcus spp., CK-1C4-19, Rhodobacter 
spp. and Pseudomonas spp. Meanwhile it was found out that Lactococcus spp. preferred the foregut, 
while Cetobacterium spp. and Flavobacterium spp. preferred the hindgut. Dominant bacteria preferred 
different gut section may decided by its function and physiological characteristics.

INTRODUCTION

Gut microbiota has attracted increased attention in the 
past ten years after the use of 454 pyrotags to analyze 

the microbial profile began. It is accepted that the large 
and diverse bacterial community is very important to 
nutrient digestion and absorption, and to the health of the 
gut and the immunity of the host (Jiang et al., 2011; Desai 
et al., 2012; Wu et al., 2013; Ingerslev et al., 2014; Ye et 
al., 2014; Zhang et al., 2017). It has also been confirmed 
that microorganisms in the gut can improve the health of 
host gut cells by synthesizing important nutrients, such as 
short-chain fatty acids, peptide, amino acid etc. (Borsodi 
et al., 2017; Hao et al., 2017). It was well known that fish 
species (Li et al., 2012; 2014) and the daily diet (He et 
al., 2013; Ingerslev et al., 2014; Li et al., 2015) could be 
affected the composition and function of microbiota in the 
gut of fish (Reveco et al., 2014). 

The gut microbiota of the freshwater fish species such 
as grass carp (Ctenopharyngodon idella) was analyzed 
(Jiang et al., 2011; Wu et al., 2012), and then more studies 
of gut microbiota were conducted on gibel carp (Carassius 
auratus gibelio) (Wu et al., 2013; Li et al., 2017), bighead 
carp (Aristichthys nobilis) (Li et al., 2014) and black carp 
(Mylopharyngodon piceus) (He et al., 2013). There are 
a few reports on the gut microbiota of blunt snout bream 
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(Megalobrama amblycephala) (Li et al., 2012; He et al., 
2013). Moreover, there are few reports on the microbial 
community differences between different gut parts of the 
fish. Therefore, the aim of this study was to explore the 
microbial profile of blunt snout bream and to compare the 
microbiota between foregut and hindgut.

 
MATERIALS AND METHODS

Rearing system
The trail was conducted in the cylindrical fiber glass 

tanks (300 L water per tank) that were part of a recirculating 
system, equipped with a sedimentation tank that contained 
activated carbon and corallite stones as a biological filter. 
All tanks were equipped with aeration. Water temperature 
ranged from 27 to 29 °C, which was controlled by a water 
temperature control system. pH was 7.4-7.8 and dissolved 
oxygen was approximately 6 mg L-1 throughout the trial.

Fish and feeding
A total of 150 juvenile blunt snout breams (initial 

weight 1.31 ± 0.45 g) were divided into 5 tanks with 30 
fish in each tank, which were provided by the fish farm of 
Freshwater Fisheries Research Center, Chinese Academy 
of Fishery Sciences in China. Fish were fed with the 
commercial diet (330 g Kg-1 crude protein, 15.82 MJ Kg-1) 
(Tongwei Co., Ltd. Wuxi, China), which was formulated 
using the ingredients such as fishmeal, soybean meal, 
canola meal, cottonseed meal, wheat flour, rice bran etc. 
The feed trail lasted for 16 weeks. Fish were hand-fed four 
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times a day at 8:00, 10:30, 13:30 and 16:00 until apparent 
satiation on the basis of visual observation. Pellets were 
distributed slowly, permitting all fish to eat. The final body 
weight of the fish was varied from 9.66 g to 14.67 g, with 
average final weight 12.02 ± 1.64 g.

Sample collection
After 16 weeks, fish were fasted for 24 h before 

collecting samples. Six fish from each tank were sampled 
and anaesthetized by MS-222 (tricainemethanesulfonate, 
100mg L-1, Sigma, USA) and then dissected to obtain the 
whole gut without digesta. After the complete intestine 
was removed from the fish, the contents of the intestine 
were scraped off with a spatula to retain the slimy intestinal 
sample. The gut was divided into two sections based on the 
length, the anterior third of the intestine was considered 
as the foregut and the remainder was considered as the 
hindgut. Individual gut samples were placed in Eppendorf 
tubes, immediately put into liquid nitrogen and stored at 
-80 oC until DNA extraction. 

Thus, we got 5 foregut samples and 5 hindgut samples, 
that was S1F (foregut of sample 1), S1H (hindgut of sample 
1), S2F (foregut of sample 2), S2H (hindgut of sample 2), 
S3F (foregut of sample 3), S3H (hindgut of sample 3), S4F 
(foregut of sample 4), S4H (hindgut of sample 4) and S5F 
(foregut of sample 5), S5H (hindgut of sample 5).

DNA extraction, PCR amplification and pyrosequencing
DNA was isolated from the gut content samples using 

QIAamp Fast DNA Stool Mini Kit (QIAGEN, Gemany), 
according to the manufacturer’s instructions. DNA 
concentration was detected using Nanodrop (Thermo 
scientific, USA). 6 DNA samples from six different fish of 
the same tank obtained from the same section were mixed 
in equimolar amount to make a pooled sample. 

For the 454 pyrosequencing, an amplicon library 
was prepared using eubacterial universal primers. Primers 
with special barcodes were used to amplify 450 bps of the 
16S rRNA genes covering the V3 to V4 regions. Primers 
were as follows: 343F 5’-TACGGRAGGCAGCAG-3’, 
798R 5’-AGGGTATCTAATCCT-3’. PCR was carried out 
using polymerase (Trans Start Fastpfu DNA Polymerase, 
Transgen Biotech, Beijing, China) with an annealing 
temperature of 52oC and 30 cycles to minimize PCR biases. 
Purified PCR products were submitted for pyrosequencing 
as described in the PE300 protocol using Illumina Miseq 
(Illumina, USA) in the Shanghai Majorbio Co. Ltd 
(Shanghai, China).

Sequence processing, OUT assignment, identification and 
classification

Sequences generated by pyrosequencing were 

filtered to remove the ambiguous sequences, homologous 
sequences and short length sequences from the resulting 
raw data set, provided by Illumina Miseq, using 
Trimmomatic software (Bolger et al., 2014), then edited 
using FLASH software (Reyon et al., 2012). Operational 
Taxonomic Units (OTUs, the equivalent of species) were 
picked using a closed-reference protocol at 97% similarity, 
as described by CD-HIT software (Li and Godzik, 2006). 
Reads that did not match any reference sequence with at 
least 97% identity were discarded. OTUs were classified 
and assigned taxonomic identities based on their best 
match with database Greengenes and Genebank of NCBI 
using the softwares RDP classifier and PyNAST.

Statistical analyses
The relative abundance of micro community was 

assessed at phylum and genus level were calculated based 
on the OUT number using software QIIME. The dominant 
microorganism was identified based on its relative 
abundance among all other microorganisms. Alpha 
diversity indices were determined using the Shannon-
Wiener index, Simpson index for diversity and the Chao1 
index for species richness, which were calculated using 
software QIIME. P value were calculated using SPSS 19.0 
T test. A heatmap with cluster at genus level was draw based 
on the abundance of gut microbiota using the software Fast 
Tree. The dominant microbiota was selected based on the 
relative abundance. A boxplot was drawn based on the 
relative abundance of dominant microbiota using software 
SPSS 19.0, to compare the different distributions between 
the foregut and hindgut.

 
RESULTS

Based on the alpha-diversity analysis, the Chao1 
index, Shannon Wiener index and Simpson index were all 
higher in the hindgut than the foregut, but the difference 
was not significant.

Table I. Alpha diversity on foregut and hindgut 
microbiota of blunt snout bream.

Group Foregut Hindgut P value
Chao1 a 669.40±51.08 684.80±72.86 0.87
Shannon b 4.40±0.49 4.61±0.29 0.72
Simpson b 0.82±0.06 0.90±0.02 0.28

Note: a Chao1, estimated OTU richness; b diversity index (Shannon and 
Simpson). Data was shown as mean ± STDE. P value was obtained from T-test 
of SPSS (version 19.0). * means the significant difference when P < 0.05.

The dominant microbiota at the phylum level of blunt 
snout bream were Proteobacteria (30.1%), Tenericutes 
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(20.8%), Fusobacteria (18.4%), Firmicutes (15.9%) and 
Bacteroidetes (10.3%). The dominant microbiota at genus 
level included Cetobacterium (18.3%), Lactococcus 
(14.0%), CK-1C4-19 (9.1%), Rhodobacter (8.14%) 
and Pseudomonas (7.34%). Based on the cluster of all 
samples, they could be clustered into two broad categories 
of foregut and hindgut samples except S1H, which was 
clustered with foregut.

Fig. 1. Relative abundance (%) of the dominant taxa 
present in the foregut and hindgut of the blunt snout bream 
at genus taxonomic level with cluster. 

The dominant phylum was different between the 
foregut and hindgut, which was Firmicutes (25.88%) in 
the foregut and Fusobacteria (33.52%) in the hindgut. As 
shown in Table II and Figure 2, the percentage of core 
microbiota at the genus level varied greatly between the 
foregut and the hindgut. Lactococcus (22.62%) preferred 
the foregut, while Cetobacterium (33.42%), CK-1C4-19 
(14.52%) and Flavobacterium (7.82%) were usually found 
in the hindgut. 

DISCUSSION

The alpha-diversity was higher in the hindgut than 
the foregut. That means not only the microbiota diversity 
but also the species richness was high in the hindgut than 
in the foregut. This may be attributed to the different 
functions of foregut and hindgut and the differences in the 
chemical environment of these two sections (Sullam et al., 
2012). Meanwhile it is well known that high diversity of 
the microbiome could make this system more stable, this 
may be the reason why the alpha-diversity between the 

foregut and hindgut was not significant. The cluster results 
were showed that the microbiota of foregut and hindgut 
were different too. This may mean we should choose the 
part of gut to study based on the research purpose.

Fig. 2. Box plot of dominant microbiota at the genus level 
in foregut and hindgut of blunt snout bream.

Table II. Dominant gut microbiota in foregut and 
hindgut of blunt snout bream at phylum and genus level.

Foregut Hindgut P value
Phylum
Proteobacteria 34.36±5.67 25.82±4.21 0.26
Tenericutes 23.82±12.18 17.7±4.86 0.65
Fusobacteria* 3.32±0.87 33.52±10.48 0.02
Firmicutes* 25.88±6.17 5.84±2.28 0.02
Bacteroidetes 7.2±1.68 13.44±2.45 0.07
Genus
Cetobacterium* 3.24±0.86 33.42±10.47 0.02
Lactococcus* 22.62±5.55 5.38±2.14 0.02
CK-1C4-19* 3.7±2.33 14.52±2.68 0.02
Rhodobacter 10.46±3.12 5.82±0.40 0.18
Pseudomonas 10.18±2.95 4.5±1.30 0.12
Flavobacterium* 1.84±0.27 7.82±2.29 0.03

Note: Data was shown as mean ± STDE. P value was obtained from T-test 
of SPSS (version 19.0). * means the significant difference when P < 0.05.

The dominant microbiota at the phylum level of blunt 
snout bream was similar to previous studies carried out 
on the larvae of blunt snout from a commercial fish farm 
(Li et al., 2012) and on the blunt snout bream from Wuhu 
Lake (Li et al., 2014). However, performing the analysis 
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at genus level, results were different. Only Cetobacterium 
was considered as one of the dominant genera of blunt 
snout bream in the previous study (Li et al., 2015). 
Cetobacterium was also the dominant genera in several 
other fish species, including the herbivorous grass carp, 
the filter-feeding big head carp, omnivorous common carp 
(Cyprinus carpio), Japanese white crucian carp (Carassius 
cuvieri), bluegill (Lepomis macrochirus), the carnivorous 
channel catfish (Ictalurus punctatus) and largemouth bass 
(Micropterus salmoides) (van Kessel et al., 2011; Roeselers 
et al., 2011; Larsen et al., 2014; Li et al., 2015; Hao et al., 
2017). Lactoccus was one of the dominant bacterial genera 
found in the grass carp too (Li et al., 2015). Similar to 
the report on grass carp, Pseudomonas was another genus 
of core microbiota found in blunt snout bream (Li et al., 
2015). Previous studies have indicated that Pseudomonas 
is an important biological control agent in aquaculture that 
can degrade certain toxic compounds and remove harmful 
residual materials from fish intestines (Nam et al., 2003).

Based on the cluster result, microbiota in the foregut 
and hindgut were divided into two groups. But the 
microbiota in the hindgut of Sample 1 was clustered with 
foregut group. This might because the dominant genus 
of Cetobacterium in the S1H was as low as that in the 
foregut. On the other hand, it suggested that gut microbes 
vary greatly between individuals. 

It was found in this study that Lactococcus, 
Rhodobacter and Pseudomonas preferred the foregut, 
while Cetobacterium and Flavobacterium usually found in 
the hindgut. Lactococcus is a notable probiotic bacteria, 
which can not only help the host to maintain a healthy 
gut environment by producing antibacterial substances 
that inhibit the spread of harmful intestinal bacteria and 
suppress growth of competing bacteria (Dawood et al., 
2016), but it can also ferment α-galactosides, such as 
melibiose and raffinose (Boucher et al., 2003). Meanwhile, 
it preferred the foregut maybe decided by the chemical 
environment of gut, for it is a facultative anaerobe. 

Cetobacterium was considered to relate to protein 
digestion, for it could ferment peptone to produce acetic 
and propionic acids (Tsuchiya et al., 2008). Acetic and 
propionic acids are short chain fatty acids that can improve 
mucosal morphology, preserve enterocyte ultrastructure, 
and positively impact the host’s health via prevention of 
certain diseases (Hao et al., 2017). It was preferred the 
hindgut, which was in agreement with the report on grass 
carp (Hao et al., 2017). The preference of Cetobacterium 
to the hindgut can be attributed to its function in fermenting 
peptone to produce acetic and propionic acids (Tsuchiya et 
al., 2008).

In conclusion, this study provides an insight into the 
gut microbiota of the blunt snout bream. The results reveal 

that the diversity of the foregut and hindgut were similar, 
but the microbiota was different. Some dominant bacteria 
preferred to plant in different sections of gut, which decided 
by its function and physiological characteristics. More 
studies are still needed to identify the function of certain 
dominant genera in freshwater fish such as Cetobacterium 
and Lactococus.
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