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Intramuscular fat (IMF) content has become an important determinant of meat quality for raisers and 
consumers in modern society. The objective of this work was to investigate the roles of the peroxisome 
proliferator-activated receptor (PPAR) and fatty acid metabolism signaling pathways in determining the 
IMF contentin the longissimus dorsi (LD) muscle of pigs. The expression profile of candidate genes 
involved in the PPAR and fatty acid metabolism signaling pathways were detected in the LD muscle of 
two pig breeds with different IMF contents (Large White and Min) by a quantitative real-time reverse-
transcription polymerase chain reaction (qRT-PCR) array. Our results showed that three lipid metabolism-
related biological processes lipogenesis, fatty acid transport and fatty acid oxidation in these two pathways 
showed significant differences in activation between Large White and Min pigs. The activation of the PPAR 
and fatty acid metabolism signaling pathways may play a positive role in reducing IMF content in pigs.

INTRODUCTION

Pork is a major meat source for humans in modern society 
(Puig-Oliveras et al., 2014). Intramuscular fat (IMF), 

also known as marbling, is an important determinant of pork 
quality. IMF content is positively correlated with several 
pork quality traits such as tenderness, juiciness, and flavor 
(Li et al., 2018). Moreover, many studies have indicated 
that pork quality is significantly improved when the IMF 
content obviously increases (Hamill et al., 2013; Madeira 
et al., 2013). In fact, pork with a suitable IMF content is 
favored by consumers (Font-i-Furnols et al., 2012; Wang 
et al., 2017). Therefore, we should aim to improve the IMF 
content of pork in the modern pig industry. It is well known 
that IMF content varies among different pig breeds (Dai et 
al., 2009; Gao et al., 2011; Casellas et al., 2013; Wu et al., 
2013; Cui et al., 2016; Li et al., 2016; Lim et al., 2017). 
For example, the Large White pig, which is a famous 
commercial lean pig breed worldwide, has very low IMF 
content in their skeletal muscles. In contrast, the Chinese  
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indigenous pig breeds have higher IMF content and superior 
quality pork. The Min pig is an excellent indigenous 
breed raised in the northeastern China (Gao et al., 2011) 
Min pigs breed prolifically and have strong tolerance to 
extreme environment, such as diseases, cold, crude and 
poor-quality feed. They also have high IMF content and 
better meat quality. Compared with Large White, the Min 
pig has a lower growth rate and lean meat ratio. Thus, 
these two pig breeds are ideal models for investigating the 
molecular mechanisms responsible for differences in fat 
deposition between Chinese indigenous pigs and famous 
commercial lean pigs.

To the best of our knowledge, the IMF content of pigs 
depends on the balance between lipogenesis and lipolysis, 
which includes fatty acid uptake, fat mobilization, fatty 
acid transport and fatty acid oxidation (Zhao et al., 
2009; Zhang et al., 2015). As a complex porcine trait, 
IMF content may be affected by multiple genes and 
metabolic processes. Over the past decades, many studies 
are focus on the relationship between IMF content and 
single or multiple candidate genes. In several studies, 
the expression levels of PPARA, LPL, ACSL1, SCD and 
PPARγ genes are correlated with IMF content (Yang et al., 
2012; Wang et al., 2013, 2016). In fact, these genes are 
involved in the peroxisome proliferator-activated receptor 
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(PPAR) (ssc03320) or fatty acid metabolism (ssc01212) 
pathways, which are two well-known signaling pathways 
affecting lipid metabolism (KEGG Pathway Database). 
The activation of these two signaling pathways is critical 
to IMF deposition in pigs. However, fewer studies have 
focused on identifying essential genes related to porcine 
fat deposition at the whole-pathway level. Fortunately, 
with the release of porcine genome, we can identify all 
the genes in one pathway at once, enabling us to study 
IMF content trait based on whole signaling pathways 
rather than single genes. Therefore, although there are 
many factors that could participate in regulating the 
development of IMF, the transcriptional levels of related 
genes in these two pathways may partly illustrate the 
difference in IMF content between these two diverse pig 
breeds. Consequently, the objective of this study was to 
detect the expression of all genes involved in the PPAR 
and fatty acid metabolism signaling pathways in two pig 
breeds with different IMF contents. 

Over the last decade, microarray and next-generation 
sequencing (NGS) technologies have been widely used 
in transcriptomic studies of different porcine tissues. 
For many researchers, the quantitative real-time reverse-
transcription polymerase chain reaction (qRT-PCR) has 
been widely considered the gold standard for measuring 
gene expression of a small group of selected genes due to 
its rapidity, simplicity and low cost (Morales-Prieto et al., 
2017). In addition, the qRT-PCR array has been used in 
many studies and is an ideal and reliable tool for analyzing 
the expression levels of pathway-related genes (Tao et al., 
2012; Morales-Prieto et al., 2017). Thus, in this study, all 
genes of the PPAR and fatty acid metabolism signaling 
pathways were detected in Min and Large White pig breeds 
by a qRT-PCR array. Our results may provide valuable 
information for elucidating the molecular mechanisms of 
different IMF contents in pigs.

MATERIALS AND METHODS

Ethics statement
All experiments were performed according to the 

guidelines of the University Committee on the Use 
and Care of Animals at Jilin University (approval ID: 
201706030).

 
Animals and sample collection

The experimental pigs were raised under standard 
conditions at the Institute of Animal Husbandry Research, 
Heilongjiang Academy of Agricultural Sciences (Harbin, 
China). Two different breeds: Large White(n=3) and Min 
(n=3) pigs at an average age of 180 days were chosen 
randomly and slaughtered in a local abattoir. Samples 

of longissimus dorsi (LD) muscle between the 10th and 
12th ribs were collected and divided into two parts, one 
part was quickly frozen in liquid nitrogen, and stored at 
-80°C until they were used in the qRT-PCR array, and 
another part was stored in 4 °C for determination of the 
IMF content.

Determination of IMF content 
For LD muscles of Large White and Min pigs, the 

IMF content was determined as crude fat using the Soxhlet 
extraction method with petroleum ether (Supakankul and 
Mekchay, 2016) and each sample was repeated three 
times. In details, the LD samples were dried in an oven 
at 65 °C until constant weight; and the dried LD samples 
were cooled to room temperature and ground into powder. 
About 1g dried LD samples weighed was dried in an oven 
at 105 °C and then put into a fat package. This sample 
was extracted with petroleum ether for 6-7 hours, and 
then refluxed the petroleum ether. The statistical formula 
used for the determination of IMF content was as follows: 
IMF content=(W3-W1)/(W2-W1)* 100%, where W3-the 
weight of fat package+ sample after extraction and drying, 
W1– the weight of fat package, W2– the weight of fat 
package + sample after drying.

RNA extraction and qRT-PCR array
A total of six LD samples were used to perform 

the qRT-PCR array. Total RNA from the LD samples 
was extracted using TRIzol-A+ Reagent (TIANGEN, 
Beijing, China), and first-strand cDNA was then 
synthesized using a BioRT cDNA First Strand Synthesis 
Kit (Bioer Technology, Hangzhou, China) following the 
manufacturer’s instructions. The primers of genes in the 
selected pathways (KEGG Pathway Database) are listed in 
Supplementary Table I. The qRT-PCR array was performed 
with a Bio Easy SYBR Green I Real Time PCR kit (Bioer 
Technology) on an iQ™5 real-time PCR detection system 
(Bio-Rad) according to the manufacturer’s instructions 
(Qiagen).

 
Bioinformatics and statistical analysis

In this study, the LD muscles of Large White pigs 
were used as experimental group, the LD muscles of Min 
pigs were used as control group. Different statistical tools 
were used for analyzing the data. Graph Pad Prism 6.01 
(Graph Pad Software, San Diego, CA, USA) was used 
for analyzing our results. Student’s t-tests were used to 
compare the control and experimental groups. For all 
comparisons, *p < 0.05, **p < 0.01, ***p <0.001, ****p 
< 0.0001, were considered significant difference. An 
MS-Excel sheet (Supplementary Table II) with macros 
downloaded from the manufacturer’s website (http://www.
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sabiosciences.com/pcrarraydataanalysis.php) was used to 
analyze the qRT-PCR array data based on a protocol (http://
pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php) 
provided by SABiosciences (Qiagen). The 2−ΔCT method 
was used to calculated the Ct values from the qRT-PCR 
array data. Five genes (B2M, GAPDH, HPRT1, ACTB and 
RPL13A) were used as reference genes. A p value less than 
0.05 and |logFold Change(FC)| ≥1 were regarded as the cutoff 
thresholds for differentially expressed genes(DEGs). TB 
tools (https://github.com/CJ-Chen/TBtools) was used to 
construct the heat map of the qRT-PCR array and the Venn 
diagrams of differentially expressed genes (DEGs). The 
STRING database was used to predict protein interactions 
and construct the network for DEGs (Szklarczyk et al., 
2015). The protein-protein interaction (PPI) network was 
visualized by Cytoscape (Shannon et al., 2003).

RESULTS

IMF content of LD muscles in the large white and min pigs
The IMF content assay indicated that the IMF 

content of Large White LD muscles was significantly 
lower than that of Min pig LD muscles (1.693% and 
4.963%, respectively, P < 0.0001) (Fig. 1). These results 
indicated that these two pig breeds were fit for identifying 
the expression of genes in these two signaling pathways 
associated with different IMF content.

Fig. 1. Detection of IMF content in LD muscles of Large 
White and Min pigs. Data represent means ± SEM (n=3), 
****P < 0.0001.

Identification of the PPAR signaling pathway in the LD 
muscles of the two pig breeds

The PPAR signaling pathway (ssc03320) consists 
of 69 genes (KEGG Pathway Database). In this study, 
these genes had their expression detected by the qRT-
PCR array. The gene expression profile is significantly 

different between Large White and Min group, set of genes 
can be successfully clustered (Fig. 2A). A colored map 
shows a graphical representation of DEGs in Large White 
group against Min group, red and green color represent 
upregulated and downregulated genes respectively (Fig. 
2B). Our results showed that 42 out of the 69 examined 
genes were differentially expressed between the Large 
White and Min group, with 20 being upregulated and 22 
being downregulated in the LD muscle of Large White 
pigs (Table I). Among the 42 DEGs, some genes related 
to fatty acid transport (FAT/CD36, FABP1, ACSL1, LPL, 
and ACSBG2), fatty acid oxidation (CPT1A, CPT1B, 
ACAA1, ACADM and ACADL), and fatty acid biosynthesis 
(SCD and SCD5). In addition, we used STRING database 
and Cytoscape software to construct the PPI network 
for 42 DEGs. The PPI network contained 40 nodes and 
245 edges, the most significant 10 node degree genes 
(PPARA, PPARG, ACSL1, CPT1A, CPT1B, FABP1, 
CD36, LPL, SCD, and FABP4) were selected as hub genes 
(Fig. 3 and Table II). Moreover, taken into account the 
results of colored map and PPI network, 12 genes in the 
PPAR signaling pathway (PPARA, CD36, FABP1, LPL, 
ACSL1, CPT1A, CPT1B, ACAA1, ACADL, ACADM, 
PPARG and SCD) were selected as key hub genes, and 
their expression patterns are presented in Figure 4, these 
genes are associated with fatty acid transport, fatty acid 
oxidation, fatty acid biosynthesis and IMF deposition. 
Taken together, these results show that the PPAR signaling 
pathway is more active in the Large White breed than in 
the Min breed.

GO BP enrichment of DEGs in the PPAR signaling 
pathway

As shown in Figure 5, the BPs participated by 
upregulated genes were mainly involved in fatty acid 
β-oxidation, fatty acid oxidation, lipid oxidation, fatty acid 
transport and fatty acid catabolic processes. These results 
indicated that compared with the LD muscle of Min pigs, 
the LD muscle of Large White pigs consumes more fat 
during energy metabolism, and this may explain the lower 
fat deposition in Large White pigs.

Identification of the fatty acid metabolism signaling 
pathway in the LD muscles of the two pig breeds

The fatty acid metabolism signaling pathway 
(ssc01212) consists of 47 genes (KEGG Pathway 
Database). In this study, these genes had their expression 
detected by the qRT-PCR array. For heatmap, the genes 
showed significant expression patterns between Large 
White and Min group, and they successfully clustered 
into several sets (Fig. 6A). For colored map (Fig. 6B), 
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Fig. 2. qRT-PCR array results for the PPAR signaling pathway in two pig breeds. (A) A heatmap of all qRT-PCR array genes in the 
PPAR signaling pathway. The colors (blue, black, and red) represent the gene expression level in the LD of two pig breeds (Min 
and Large White). (B) Colored map of the PPAR signaling pathway. Upregulated and downregulated genes are colored in red and 
blue, respectively.

Fig. 3. PPI network for the DEGs in the PPAR signaling 
pathway. Upregulated and downregulated genes are colored 
in red and blue, respectively. Node stands for the protein 
(gene); edge stands for the interaction of proteins(genes).

Fig. 4. Comparisons of the expression levels of twelve key 
hub genes (PPARA, CD36, FABP1, LPL, ACSL1, CPT1A, 
CPT1B, ACAA1, ACADL, ACADM, PPARG and SCD) in 
the PPAR signaling pathway in the two pig breeds. A p 
value less than 0.05 and |logFold Change(FC)| ≥1 were regarded 
as the cutoff thresholds for DEGs. All data are shown as 
means ± SEM (n=3), ***P<0.001.

C. Yao et al.
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Fig. 5. GO Biological Process (BP) enrichment of upregulated (A) and downregulated (B) genes in the PPAR signaling pathway.

Fig. 6. qRT-PCR array results for the fatty acid metabolism signaling pathway in two pig breeds. (A) A heatmap of all qRT-PCR 
array genes in the fatty acid metabolism signaling pathway. The colors (blue, black, and red) represent gene expression levels in 
the LD of two pig breeds (Min, and Large White); (B) Colored map of the fatty acid metabolism signaling pathway. Upregulated 
and downregulated genes are colored in red and blue, respectively.
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Table I. qRT-PCR array results for the PPAR signaling 
pathway (Large White-Min).

Gene symbol Fold-change P-value Regulation
PPARA 8.084412043 9.72E-06 Up
PLIN5 6.840235862 8.62E-09 Up
ANGPTL4 5.217036652 1.14E-11 Up
GK 5.00157363 7.51E-12 Up
RXRB 4.921137382 1.99E-02 Up
RXRG 4.131238515 1.61E-03 Up
CPT1B 4.096161077 2.79E-06 Up
FABP1 3.961630498 3.89E-10 Up
AQP7 3.919214964 9.43E-11 Up
ACADL 3.843627184 6.38E-09 Up
LPL 3.748782175 7.94E-08 Up
PLIN1 3.542042156 1.87E-07 Up
CPT1A 3.348062077 5.37E-10 Up
PLIN2 3.188133697 2.38E-10 Up
ACSL1 3.007946783 5.34E-09 Up
CD36 2.988137088 5.04E-10 Up
ACADM 2.967591733 2.26E-06 Up
ACAA1 2.56635317 1.60E-13 Up
PPARG 2.348890709 4.72E-06 Up
PLTP 2.02949545 7.26E-10 Up
DBI -2.05013384 2.67E-08 Down
CYP4A24 -2.12501151 2.04E-13 Down
APOA1 -2.14154421 1.20E-09 Down
MMP1 -2.1442043 1.10E-11 Down
CYP7A1 -2.1442043 6.87E-14 Down
GK2 -2.1442043 1.47E-13 Down
SLC27A4 -2.14516778 3.75E-09 Down
FABP6 -2.15185161 8.05E-09 Down
FABP4 -2.16469078 7.06E-09 Down
CYP27A1 -2.16783714 9.70E-12 Down
SCD -2.17054507 1.23E-04 Down
ACSBG1 -2.23209128 7.14E-02 Down
OLR1 -2.64415442 1.18E-08 Down
ACSBG2 -2.78828039 7.69E-04 Down
ADIPOQ -2.79931981 5.91E-05 Down
SCD5 -2.9605646 6.16E-06 Down
FABP2 -3.12676057 1.73E-11 Down
NR1H3 -3.37368493 1.17E-09 Down
PCK2 -3.76994247 2.40E-07 Down
SLC27A6 -4.03289334 4.30E-07 Down
LOC100522145 -4.63203509 5.65E-12 Down
APOA5 -5.63906119 1.58E-03 Down

Table II. The summary for the PPI network of DEGs in 
the PPAR signaling pathway.

Gene symbol Degree
LPL 26
PPARA 25
PPARG 25
CPT1A 23
SCD 22
ACSL1 22
FABP1 22
FABP4 22
CPT1B 19
CD36 18
ACADM 17
NR1H3 17
ADIPOQ 17
SLC27A6 16
PLIN2 15
CYP7A1 15
APOA1 14
PCK2 13
ACADL 13
SLC27A4 11
PLIN1 11
FABP2 10
ACSBG1 9
ACSBG2 9
APOA5 9
ANGPTL4 9
FABP6 7
DBI 6
GK 6
PLTP 6
ACAA1 6
SCD5 5
RXRG 5
RXRB 5
CYP27A1 4
PLIN5 3
AQP7 3
MMP1 2
OLR1 2
GK2 1

The top ten degree genes were shown in bold.
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upregulated and downregulated genes in the Large White 
group were in tuitively presented by colored in red and 
blue, respectively. The results showed compared with 
Min group, there are 18 genes upregulated and 13 genes 
downregulated in Large White group (Table III), these 
including several genes related to fatty acid oxidation 
(ACAA2, ACADS, ACADM, ACADL, ACADVL, CPT1A, 
CPT1B, HADHA, and HADHB), fatty acid transport 
(ACSBG2 and ACSL1) and fatty acid biosynthesis (SCD 
and SCD5). Moreover, PPI networks of 31 DEGs were 
established by using STRING database and Cytoscape 
software, which included 31 nodes and 178 edges (Fig. 7 
and Table IV). In the PPI networks, the most significant 13 
node degree genes (ACAA2, ACACA, ACADL, ACADM, 
ACADS, ACSBG2, ACSL1, CPT1A, CPT1B, EHHADH, 
HADHA, HADHB, and HSD17B12) were defined as hub 
genes. Moreover, taken into account the results of colored 
map and PPI network, 13 genes, 6 genes only in the fatty 
acid metabolism signaling pathway (ACACA, ACAA2, 
ACADS, ACADVL, HADHA and HADHB) and 7 genes 
(ACAA1, CPT1A, CPT1B, ACADL, ACADM, ACSL1 
and SCD) shared by the PPAR and fatty acid metabolism 
signaling pathways, were selected as key hub genes, and 
their expression patterns are presented in Figures 8 and 4, 
respectively. These 13 genes are also involved in fatty acid 
transport, fatty acid oxidation, fatty acid biosynthesis and 
IMF deposition. After analyzing these results, we could see 
that the fatty acid metabolism signaling pathway is more 
active in the Large White breed than in the Min breed.

Fig. 7. PPI network for the DEGs in the fatty acid metabolism 
signaling pathway. Upregulated and downregulated genes 
are colored in red and blue, respectively. Node stands 
for the protein (gene); edge stands for the interaction of 
proteins(genes).

Fig. 8. Comparisons of the expression levels of six key 
hub genes (ACACA, ACAA2, ACADS, ACADVL, HADHA 
and HADHB) in the fatty acid metabolism signaling 
pathway in the two pig breeds. A p value less than 0.05 and 
|logFold Change(FC)| ≥1 were regarded as the cutoff thresholds 
for DEGs. All data are shown as means ± SEM (n=3), 
***P<0.001.

GO BP enrichment of DEGs in the fatty acid metabolism 
signaling pathway

As shown in Figure 9, the BPs participated by 
upregulated genes were mainly involved in fatty acid 
β-oxidation, fatty acid oxidation, lipid oxidation and fatty 
acid catabolic processes. These results indicated that the 
upregulated genes of the fatty acid metabolism signaling 
pathway mainly participated in reducing the fat deposition 
in the LD muscle of Large White pigs.

The DEGs shared by the PPAR and fatty acid metabolism 
signaling pathways

The PPAR and fatty acid metabolism signaling 
pathways shared 20 genes (Fig. 10, Table V). Of these 20 
shared genes, 10 were differentially expressed in the LD 
muscle of Large White pigs, with 6 being upregulated and 
4 being downregulated (Table V). As shown in Figures 
10 and 6 upregulated genes (ACAA1, ACSL1, ACADM, 
ACADL, CPT1A, and CPT1B), which were related to 
fatty acid oxidation, were shared by these two signaling 
pathways. These findings suggest that these 6 upregulated 
genes may play important roles in activating these two 
signaling pathways and regulating IMF deposition in pigs.

DISCUSSION

In the modern pig breeding industry, IMF content has 
become an important determinant of meat quality for raisers 
and consumers. There was significant difference in IMF 
content between Chinese local pigs and famous commercial 
lean pigs. As a typical lean-type pig breed, the Large White 
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Fig. 9. GO Biological Process (BP) enrichment of upregulated (A) and downregulated (B) genes in the fatty acid metabolism 
signaling pathway.

Fig. 10. The upregulated genes shared by the PPAR and 
fatty acid metabolism signaling pathways.

grows faster and has lower IMF content. By contrast, the 
Min pig is a well-known Chinese fat-type pig breed and 
characterized by high intramuscular fat (IMF) content, and 
in our results, we also found that the Min pig had higher IMF 
content than that in Large White pig (Fig. 1). Unfortunately, 
the differences in IMF content of these two pig breeds are 
not fully understood. The search for candidate genes and 
signaling pathways associated with IMF deposition is 
necessary. The IMF deposition is known to be regulated 
by multiple genes and signaling pathways. At present, 
many studies have focused on finding candidate genes and 
potential mechanisms associated with regulation of IMF 
deposition in pig, few studies focus on the correlation of 
signaling pathways with IMF content in different pig breeds. 
Therefore, in the present research, the expression levels of 

all genes in the PPAR and fatty acid metabolism signaling 
pathways were detected by a qRT-PCR array. Our research 
will help cultivate more valuable commodity pig breeds.

PPAR signaling pathway has long been considered 
important for fatty acid metabolism and meat quality in 
mammals (He et al., 2013; Wang et al., 2016), genes of which 
are involved in three biological processes: lipogenesis, 
fatty acid transport and fatty acid oxidation, that have been 
reported to associate with IMF deposition. The DEGs we 
obtained from our experiment are all involved in the three 
biological processes: (1) fatty acid transport (FAT/CD36, 
FABP1, FABP3, FABP5, ACSL1, ACSBG2, and LPL) 
(Bonen et al., 2004; Campbell et al., 2004; Jiang and Li, 
2006; Luo et al., 2009; Ellis et al., 2010; Liu et al., 2011; 
Serao et al., 2011; Widmann et al., 2011; Jeong et al., 2015; 
Wang et al., 2017), (2) fatty acid oxidation (CPT1A, CPT1B, 
ACAA1, ACADM, and ACADL) (Kim et al., 2000; Zha et 
al., 2005; Wu et al., 2013; Puig-Oliveras et al., 2014; Zhang 
et al., 2014; Chen et al., 2017; Qiu et al., 2017; Wang et al., 
2017), (3) lipogenesis (SCD) (Wang et al., 2013, 2015; Ros-
Freixedes et al., 2016). Compared with the Min pig group, 
four fatty acid transport-related genes (FAT/CD36, FABP1, 
ACSL1, and LPL) and five fatty acid oxidation-related genes 
(CPT1A, CPT1B, ACAA1, ACADM, and ACADL) were 
highly upregulated, and the lipogenesis-related gene (SCD) 
was downregulated in the Large White pig group (Fig. 4, 
Table I), which indicated that the ability of transport fatty 
acids and fatty acid oxidation in Large White was stronger 
than Min, and the rate of fatty acid synthesis in Large White 
was weaker than Min. The dynamic balance between fatty 
acid synthesis and degradation affects the IMF content in 
pigs, the different ability of fatty acid oxidative degradation 
and synthesis could contribute to the difference in IMF 
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content between Large White than Min pig breeds.

Table III. qRT-PCR array results for the fatty acid 
metabolism signaling pathway (Large White-Min).

Gene symbol Fold-change P-value Regulation

ACADVL 4.1670828 2.00E-08 Up

FADS1 4.14549659 2.01E-07 Up

CPT1B 4.09616108 2.79E-06 Up

ACADL 3.84362718 6.38E-09 Up

MECR 3.65267791 8.44E-08 Up

CPT1A 3.34806208 5.37E-10 Up

ELOVL2 3.20952208 2.99E-09 Up

ACACA 3.05264456 1.26E-03 Up

ACSL1 3.00794678 5.34E-09 Up

ACADM 2.96759173 2.26E-06 Up

MCAT 2.75248718 4.25E-06 Up

ACAA1 2.56635317 1.60E-13 Up

HSD17B12 2.55652762 1.26E-10 Up

ELOVL5 2.4520947 1.41E-03 Up

ACADS 2.36525946 2.93E-11 Up

ACAA2 2.08178922 1.38E-07 Up

HADHA 2.04896505 2.05E-08 Up

HADHB 2.03345962 1.52E-08 Up

FADS2 -2.1272039 1.00E-04 Down

SCD -2.1705451 1.23E-04 Down

HACD3 -2.1842869 7.22E-07 Down

ACSBG1 -2.2320913 7.14E-02 Down

HACD4 -2.3350926 4.12E-07 Down

ACSL6 -2.4473721 1.98E-08 Down

EHHADH -2.5648137 1.28E-03 Down

ACSBG2 -2.7882804 7.69E-04 Down

CPT1C -2.7955525 8.71E-06 Down

ACAT2 -2.9258849 6.10E-05 Down

SCD5 -2.9605646 6.16E-06 Down

ELOVL6 -3.1983219 2.50E-09 Down

PECR -6.4503496 7.49E-08 Down

Table IV. The summary for the PPI network of DEGs in 
the fatty acid metabolism signaling pathway.

Gene symbol Degree
ACSL1 18
ACADL 17
ACADM 17
EHHADH 16
ACAA2 16
HADHB 16
CPT1A 15
ACACA 15
HADHA 14
ACSBG2 13
CPT1B 13
HSD17B12 13
ACADS 13
SCD 12
ELOVL6 12
ACAT2 12
ACADVL 12
ACSL6 11
CPT1C 11
ELOVL5 11
ACAA1 11
FADS1 10
FADS2 10
ACSBG1 9
MECR 8
ELOVL2 8
SCD5 7
PTPLAD2 5
PTPLAD1 5
PECR 4
MCAT 2

The top ten degree genes were shown in bold.

Moreover, as one of the key regulators in the PPAR 
signaling pathway, the peroxisome proliferator-activated 
receptor α gene (PPARα) plays a critical role in fatty acid 
oxidation and IMF deposition in pigs and rats (He et al., 
2013; Wang et al., 2016; Zhang et al., 2016). In addition, 
many studies have reported that PPARα regulated lipid 
metabolism through targeting genes involved in fatty acid 
uptake (FABP1, LPL), fatty acid transport (FAT/CD36, 
ACSL1, and FABP1) and fatty acid oxidation (ACADS, 
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ACADM, ACADL, ACADVL, CPT1A, CPT1B and ACAA1) 
(Rakhshandehroo et al., 2010; Gessner et al., 2015; Xu et 
al., 2015; Zhang et al., 2016). Consistent with these findings, 
PPARα was highly expressed in the Large White pig group 
(Fig. 4, Table I), implying that PPARα has a positive role in 
reducing the IMF content in pigs. Taken together, all these 
results above make it tempting to suggest that the activation 
of the PPAR signaling pathway may play positive role in 
reducing the IMF content in the LD muscle of Large White 
pigs.

Table V. The Venn diagram summaries for the PPAR 
and fatty acid metabolism signaling pathways.

The genes shared by the PPAR and fatty acid metabolism 
signaling pathways
CPT1A, ACSL1, SCD5, ACSL6, ACSL5, ACSL4, ACSL3, 
CPT1C, CPT1B, FADS2, CPT2, ACADL,
ACOX1, SCD, EHHADH, ACSBG1, ACADM, ACOX3, ACAA1, 
ACSBG2
The DEGs shared by the PPAR and fatty acid metabolism 
signaling pathways
CPT1A, ACADL, ACSL1, SCD, ACSBG1, ACADM, ACAA1, 
CPT1B, ACSBG2, SCD5

The shared upregulated genes were shown in bold.

At the same time, the fatty acid metabolism signaling 
pathway also plays an important role in regulating fatty acid 
metabolism and growth traits in pigs (Yang et al., 2012). 
The biological processes lipogenesis, fatty acid transport 
and fatty acid oxidation are also critical to this fatty acid 
metabolism-related signaling pathway, and many genes 
in this signaling pathway have been widely studied. In 
our results (Fig. 8, Table III), fatty acid transport-related 
gene (ACSL1) (Ellis et al., 2010; Widmann et al., 2011), 
the first step of mitochondrial fatty acid β-oxidation-
related genes (ACADS, ACADM, ACADL, and ACADVL) 
(Puig-Oliveras et al., 2014; Chen et al., 2017; Wang et 
al., 2017), the last three steps of mitochondrial fatty acid 
β-oxidation-related genes (HADHA and HADHB) (Zha 
et al., 2005), the last step of the mitochondrial fatty acid 
β-oxidation-related gene (ACCA2) (Doi et al., 2003; Zha 
et al., 2005), the gene involved in peroxisomal fatty acid 
oxidation (ACAA1) (Wu et al., 2013) and the rate-limiting 
genes of mitochondrial fatty acid β-oxidation (CPT1A and 
CPT1B) (Kim et al., 2000; Zhang et al., 2014; Qiu et al., 
2017) were all highly expressed in the LD muscle of Large 
White pigs, and the fatty acid synthesis-related gene (SCD) 
had a low expression level in the Large White group. These 
results indicated that the Large White pig has stronger 
ability of fatty acid oxidation, which might lead to fatty 
acid degradation and low IMF content in the LD muscle 

of Large White pig breeds. Finally, taking into account the 
results above, our results indicate that the activation of the 
fatty acid metabolism signaling pathway may reduce the 
IMF content in the LD muscle of Large White pigs.

Interestingly, among the upregulated genes in these 
two signaling pathways, six genes (ACAA1, ACSL1, 
ACADM, ACADL, CPT1A, and CPT1B) (Fig. 10) were 
shared by them. Notably, acyl-CoA synthetase-1 (ACSL1), 
one member of the long chain acyl-CoA synthetase family 
(ACSLs), is essential for fatty acid uptake, oxidation and 
degradation. ACSL1 is required for the initial step of fatty 
acid oxidation and specifically directs fatty acids towards 
mitochondrial β-oxidation (Ellis et al., 2010; Widmann et 
al., 2011). Carnitine palmitoyltransferase-1 (CPT1) has 
been regarded as a rate-limiting enzyme of mitochondrial 
fatty acid β-oxidation and is closely related to fat deposition. 
In addition, a high expression level of CPT1 could promote 
fatty acid decomposition and decrease fat deposition. 
Additionally, CPT1A and CPT1B, two common isoforms 
of CPT1, play prominent roles in fatty acid oxidation and 
lipid accumulation in human, chicken and pigs (Kim et al., 
2000; Zhang et al., 2014; Qiu et al., 2017), the decrease 
in fat deposition are associated with high expression levels 
of these two genes. Acyl-CoA dehydrogenase medium 
chainand long chain (ACADM and ACADL) encode the acyl-
CoA dehydrogenases (MCAD and LCAD) and catalyze the 
first step of mitochondrial fatty acid β-oxidation (Hashimoto 
et al., 1999; Wang et al., 2017). Several researchers have 
reported that these two genes are closely related to IMF 
deposition in pigs (Puig-Oliveras et al., 2014; Chen et 
al., 2017; Wang et al., 2017). Acetyl-CoA acyltransferase 
(ACAA1), also called peroxisomal 3-ketoacyl-CoA thiolase, 
is encoded by the ACAA1 gene and involved in peroxisomal 
fatty acid oxidation (Zha et al., 2005). In addition, this gene 
is also related to the IMF content trait in the LD of pigs 
(Wu et al., 2013). In this study, these six genes were all 
upregulated in the LD muscle of Large White pigs, which 
appears to show that these six genes are important for the 
activation of the PPAR and fatty acid metabolism signaling 
pathways, and they might be potential candidate genes to 
identify mechanisms that regulate IMF deposition in pigs.

 

CONCLUSIONS

In conclusion, our study reports the expression profiles 
of the PPAR and fatty acid metabolism signaling pathway-
related genes in two pig breeds. Although the abundance 
of mRNA has been determined in our study, it is necessary 
to investigation DEGs with multi-omics analysis in the 
subsequent studies. Our results suggest that the activation 
of these two signaling pathways may play a positive role 
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in reducing IMF content in pigs. These findings may also 
provide new insights into the key signaling pathways 
involved in fat deposition in pigs.
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