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Stress granules (SGs), a type of RNA foci, were formed in the cytoplasm of eukaryotic cells upon 
some unfavorable environmental stress. Previously, we found that Tudor domain containing 1 (SND1)-
containing SGs actively communicate with the nuclear and cytosolic pool of HeLa cells. Here, we are 
interested to investigate the dynamic distribution of three nuclear proteins, including heterogeneous 
nuclear ribonucleoprotein A1 (hnRNP A1), Hu Antigen R (HuR) and T cell intracellular antigen 1 (TIA1), 
in the SG aggregation and nucleus/cytoplasm localization under stress condition. We found that hnRNP 
A1, HuR and TIA1-containing SGs were aggregated in the cytoplasm of HeLa cells, and accompanies the 
alteration of nucleus/cytoplasm localization during arsenite induced-oxidative stress. Increased hnRNP 
A1 fluorescence signal within cytoplasm was detected from 3% of normal cells to the 28% of stressed 
cells; in contrast, 87% of cells with strong hnRNP A1 signal within nucleus reduced to 50% during stress. 
In addition, transport receptor importin-β pathway seems to be involved in the nuclear import of hnRNP 
A1, rather than HuR and TIA1. However, the slightly enhanced cytoplasmic accumulation of hnRNP 
A1 can not influence the formation of hnRNP A1 granules during oxidative stress. Timely and effective 
dynamic distribution of specific stress-associated proteins in the section of nucleus, cytoplasm, and SG 
structure is more likely to contribute to the minimization of the detrimental condition-induced cellular 
damage.

INTRODUCTION

Eukaryotes tend to inhibit the global translation and 
modulate the synthesis, refolding, modification, 

turnover, kinetics of protein, in order to maintain the 
homeostasis of intracellular compartments and improve 
cell survival (Sfakianos et al., 2016; Mahboubi and Stochaj, 
2017). The assembly of stress granules (SGs), a type of RNA- 

*   Corresponding author:  s_c2010@126.com; 
gaoxingjie2009@163.com
0030-9923/2019/0005-1639 $ 9.00/0
Copyright 2019 Zoological Society of Pakistan

containing particle structure without membranous border 
in the cytoplasm, was considered as one conserved cell 
protective approach, targeting the transient harmful 
environmental assaults, such as oxidative stress, heat shock 
and virus infection (Thomas et al., 2011; Lloyd, 2016; 
Mahboubi and Stochaj, 2017). SGs harbor translationally 
arrested translation preinitiation complexes (PICs), and 
contain higher concentration of RNA transcripts and 
protein components, including eukaryotic translation 
initiation factor 2α (eIF2α), GAP SH3 domain-binding 
protein 1 (G3BP1), staphylococcal nuclease and Tudor 
domain containing 1 (SND1), heterogeneous nuclear 
ribonucleoprotein A1 (hnRNP A1), Hu Antigen R (HuR) 
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and T cell intracellular antigen 1 (TIA1) (Thomas et al., 
2011; Panas et al., 2016; Protter and Parker, 2016).

Several factors, including cell characteristics, stress 
type, time and intensity of stimulus, and post-translational 
modification of protein components, influence the 
accumulated size/number, and duration of SG structure 
(Kedersha et al., 2000; Buchan, 2014; Protter and Parker, 
2016). Pathogenesis and therapeutic strategies of cancer 
and some other clinical diseases, such as ischemia, 
amyotrophic lateral sclerosis (ALS) and Alzheimer’s 
disease (AD), were also linked to aberrant SG biology 
(Buchan, 2014; Anderson, et al., 2015; Protter and Parker, 
2016; Alberti et al., 2017; McCormick and Khaperskyy, 
2017).

The assembly and disassembly of SGs in mammalian 
cells were reported to be related to several biological 
processes or cellular activities, such as autophagy, 
apoptosis, mitochondrial stress and antiviral immune 
response (Takahashi et al., 2013; Fu et al., 2016; Monahan 

et al., 2016; McCormick and Khaperskyy, 2017). It 
is meaningful to investigate the dynamic distribution 
of stress-associated protein in the SG aggregation and 
nucleus/cytoplasm localization during stress. Previously, 
we found that SND1-containing SGs actively communicate 
with the nuclear and cytosolic pool of HeLa cells (Gao 
et al., 2015). Here, in order to further investigate the 
correlation between highly dynamic SG formation and 
nucleo-cytoplasmic transport in HeLa cells exposed to 
arsenite-induced oxidative stress, we focused on three SG-
associated protein components, namely hnRNP A1, HuR 
and TIA1, which are primarily nuclear.

MATERIALS AND METHODS

Cell culture and drug treatment
Dulbecco’s minimal essential medium (DMEM, 

Invitrogen Life Technologies) with 10% fetal bovine 
serum (FBS) was used for the culture of HeLa cells. 

Fig. 1. Image data for SG formation and nucleus/cytoplasm localization of hnRNP A1, HuR and TIA1 upon oxidative stress. HeLa 
cells were cultured and transiently transfected with plasmids of RFP-hnRNP A1 (A), RFP-HuR (B), RFP vector(C), GFP-TIA1 
(D), and GFP vector (E), respectively, as indicated. After 24 hours, cells were untreated (Normal) or treated with 0.5 mM sodium 
arsenite for 1 hour (Arsenite). The nuclenus section was stained by DAPI. An inverted research microscope Leica was then used 
to collect the image data. Bar=10 μm.
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Oxidative stress was induced to the treatment of 0.5 mM 
sodium arsenite. In addition, 10 μM Importazole (IPZ, 
Millipore/Merck, Germany) was utilized for the alteration 
of nucleus/cytoplasm location of targeting proteins

Plasmids and cell transfection
Two expression plasmids of RFP-hnRNPA1 and 

RFP-HuR were kindly provided by Prof. John Goodier 
(University of Pennsylvania School of Medicine, USA). 
Plasmid encoding GFP-TIA1 were kindly provided by 
Prof. Tom C. Hobman (McGill University, Montreal, 
Canada). Lipofectamine 2000 (Invitrogen, Barcelona, 
Spain) was used to transfect the above plasmids into HeLa 
cells, according to the manufacturer’s instructions.

Imaging collection and nucleus/cytoplasm location
4’,6-diamidino-2-phenylindole (DAPI, Sigma-

Aldrich, USA) was used for staining the nucleus region of 
HeLa cells. The image data was collected via an inverted 
research microscope Leica. The ratio of cells with the 
nucleus-localized signal, cytoplasm-localized signal, or 
full cell-localized signal of hnRNP A1, HuR, and TIA1, 
per all cells was calculated, respectively.

Granule quantification and statistical analysis
A total of 50~100 HeLa cells were randomly scored in 

each experiment. Calculation of the percentage of targeting 
granule positive cells was performed. SG number in 
selected cells was analyzed, and cell ratio of four different 
granule number ranges, namely 1~10, 11~20, 21~30 and 
>30 per cell, were calculated, respectively. Independent-
Sample Student’s T Test was performed via SPSS 16.0 
software. P value less than 0.05 means the existence of 
statistical significant difference.

RESULTS

Cytoplasmic SG formation was linked to nucleus/
cytoplasm localization of hnRNP A1, HuR and TIA1 
during arsenite induced-oxidative stress

In order to study the relationship between the nucleus/
cytoplasm localization and cytoplasmic SG formation, 
three nucleocytoplasmic shuttling protein components, 
including hnRNP A1, HuR and TIA1, were targeted. 
HeLa cells were cultured and transiently transfected with 
plasmids of RFP-hnRNP A1, RFP-HuR, GFP-TIA1, 
respectively. The RFP and GFP vectors were included 
as control. Treatment of 0.5 mM sodium arsenite for 1 
hour was used to induce the oxidative stress of HeLa cell.  
As shown in Figure 1A, RFP-tagged hnRNP A1 protein 
was mainly located in the nucleus section of cells under 
normal condition. Upon the oxidative stress, we observed 

the formation of hnRNP A1 positive (hnRNP A1+) SGs 
in the majority of HeLa cells (Fig. 1A, Fig. 2A, P<0.05) 
and the alteration of nucleus/cytoplasm localization signal 
(Fig. 2B). Increased hnRNP A1 fluorescence signal within 
cytoplasm was detected from 3% of normal cells to the 
28% of stressed cells; in contrast, 87% of cells with strong 
hnRNP A1 signal within nucleus reduced to 50% during 
stress (Fig. 2B). 

Fig. 2. Quantification analysis for nucleus/cytoplasm 
localization of hnRNP A1, HuR and TIA1 upon oxidative 
stress. The percentage of hnRNP A1 (A), HuR (C), TIA1 
(E) marked SG positive cells were measured, respectively. 
An independent-sample Student’s T Test was performed 
using SPSS 16.0. P<0.05 means significant difference. The 
ratio of cells with the nucleus-localized signal, cytoplasm-
localized signal, or full cell-localized signal of hnRNP A1 
(B), HuR (D), and TIA1 (F) in all selected cells was also 
calculated, respectively.

Furthermore, we also found that HuR-containing 
SGs were aggregated in the cytoplasm of HeLa cells 
exposed to oxidative stress (Fig. 1B; Fig. 2C, P<0.05), 
as expected. Similarly, 11% with strong cytoplasmic HuR 
signal under normal condition increased to 18% under 
stress condition, whereas 56% with strong nuclear HuR 
signal reduced to 49% upon the oxidative stress (Fig. 2D). 

SG Assembly and Nucleus/Cytoplasm Localization 1641
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Fig. 3. Image data for effect of IPZ on the nucleus/cytoplasm localization, SG formation of hnRNP A1, HuR and TIA1 during 
arsenite-induced oxidative stress. HeLa cells were cultured and transiently transfected with plasmids of RFP-hnRNP A1 (A), RFP-
HuR (B), RFP (C), GFP-TIA1 (D), and GFP (E), respectively, as indicated. After the pretreated with 10 μM IPZ for 6 hours [IPZ 
(+)] or not [IPZ(-)], cells were treated with 0.5 mM sodium arsenite for 1 hour. The nuclenus section was stained by DAPI. An 
Inverted research microscope Leica was then used to collect the image data. Bar=10 μm. 

The same trend was also observed for TIA1 protein (Fig. 
1D; Fig. 2E, P<0.05; Fig. 2F). However, this phenomenon 
was not detectable for the vector control of GFP (Fig. 1C) 
and RFP (Fig. 1E). These suggested that the cytoplasmic 
aggragation of hnRNP A1, HuR and TIA1-containing SGs 
was linked to the nucleus/cytoplasm localization during 
arsenite induced-oxidative stress. 

The effect of IPZ on the nucleus/cytoplasm localization, 
SG formation of hnRNP A1, HuR and TIA1 under stress 
condition

Next, we aim at analyzing whether altered nucleus/
cytoplasm localization can influence the SG formation 
during stress. HeLa cells were cultured in the presence 
(+) or absence (-) of 10 μM Importazole (IPZ), a small 

molecule inhibitor of the transport receptor importin-β 
(Soderholm et al., 2011). As shown in Figure 3A and 
Figure 4A, only a slight trend for the alteration of nucleus/
cytoplasm localization was observed for hnRNP A1, after 
the treatment of IPZ. 50% with strong nuclear hnRNPA1 
signal under normal condition reduced to 41%; whereas 
28% with strong cytoplasmic hnRNPA1 signal increased 
to 34% (Fig. 4A). Moreover, there is no difference for 
SG size (Fig. 3A) and the portion of cells with hnRNP A1 
positive (hnRNP A1+) SGs (Fig. 4B) in HeLa cells treated 
with IPZ or not. We also failed to observe the statistical 
significant difference for the cells with different granule 
numbers, including 1~10, 11~20, 21~30, >31, between 
the IPZ (-) and IPZ (+) group (Fig. 4C). These suggested 
that IPZ-mediated slight alteration of nucleus/cytoplasm 
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Fig. 4. Quantification analysis for the effect of IPZ on the nucleus/cytoplasm localization, SG formation of hnRNP A1, HuR and 
TIA1 during arsenite-induced oxidative stress. The ratio of cells with the nucleus-localized signal, cytoplasm-localized signal, 
or full cell-localized signal of hnRNP A1 (A), HuR (D), and TIA1 (G) in all selected cells was calculated, respectively. The 
percentage of hnRNP A1 (B), HuR (E), TIA1 (H) marked SG positive cells, and numbers of hnRNP A1 (C), HuR (F), TIA1 (I) 
marked granules per cell were also measured. Based on SG number per cell, there are four categories, namely 1~10, 11~20, 21~30 
and >30. An independent-sample Student’s T Test was performed using SPSS 16.0. P<0.05 means significant difference.

localization does not significantly affect the formation 
of hnRNP A1-containing SGs in HeLa cells during the 
arsenite-induced oxidative stress.

With regards to HuR protein, we are surprised to 
observe an increased nuclear aggregation in stressed HeLa 
cells (Fig. 3B and Fig. 4D). Even though no difference 
for the HuR positive (HuR+) SG formation (Fig. 4E) and 
HuR+ SG size (Fig. 4B), decreased portions of HeLa cells 
with the granule number of 11~20, 21~30, was observed 
in the group of IPZ (+), compared with IPZ (-) group (Fig. 
4F, P<0.05). In addition, there are similar change for the 
nucleus/cytoplasm localization (Fig. 4G), the portions of 
HeLa cells with TIA1 positive (TIA1+) SGs (Fig. 4H), 
TIA1+ SG size (Fig. 3D) and different granule numbers 
(Fig. 4I). No change was observed in the control group 
of RFP (Fig. 4C) and GFP (Fig. 4E). Overall, these data 

suggested that transport receptor importin-β pathway 
seems to be involved in the nuclear import of hnRNP 
A1, rather than HuR and TIA1. The slightly enhanced 
cytoplasmic accumulation of hnRNP A1 can not influence 
the formation of hnRNP A1-containing SGs during 
oxidative stress.

DISCUSSION

Nucleocytoplasmic shuttling system, including 
nuclear localization signal (NLS), nuclear export signal 
(NES) and importin-α/ importin-β pathway, is essential for 
the nuclear transport of many proteins among eukaryotes 
(Cardarelli, 2017). The environmental stress was linked 
to the dynamic flux of proteins between the nuclear and 
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cytoplasmic compartment. For instance, some stress 
conditions, such as starvation and heat shock, inhibit the 
importin α/ importin-β-mediated nuclear import of the small 
GTPase Gsp1p (Stochaj et al., 2000). In addition, nuclear 
transport factors, such as Importin-α1, Importin-α4 and 
Importin-α5, were reported to be recruited to SG structure 
(Mahboubi et al., 2013). Meanwhile, a number of nuclear 
protein components are involved in the formation of 
cytoplasmic SGs (Thomas et al., 2011; Protter and Parker, 
2016). In the present study, we quantitatively analyzed the 
correlation between SG assembly and nucleus/cytoplasm 
localization of nuclear hnRNP A1, HuR and TIA1 proteins 
during arsenite-induced oxidative stress.

hnRNP A1, a rapid nucleo-cytoplasmic shuttling 
protein and alternative splicing factor, binds nascent RNA 
polymerase II manuscripts in cytoplasm (Pinol-Roma 
and Dreyfuss, 1992), and functions in the pre-mRNA 
processing, RNA metabolism, cellular apoptosis, stress 
adaption, post-transcription modulation, microRNAs 
processing and telomere maintenance (Jean-Philippe 
et al., 2013). hnRNP A1 was found to be localized into 
SG structure during stress, and its recruitment into SGs 
depends on the existence of methylarginine residues within 
the arginine-glycine-glycine (RGG)-motif region (Guil et 
al., 2006; Wall and Lewis, 2017). In addition, RanGTP-
binding nuclear transport receptor transportin1 was 
involved in the nuclear reimport of hnRNP A1 (Rebane 
et al., 2004). Guil et al. (2006) reported that Mnk1/2-
mediated hnRNP A1 phosphorylation during stress fails 
to bind sufficiently transportin 1, which is helpful for the 
cytoplasmic aggregation of hnRNP A1 into SGs. Here, we 
found that the arsenite-induced oxidative stress induces 
the increased cytoplasmic signal, but the decreased 
nuclear signal of hnRNP A1. The inhibition of nuclear 
import or enhanced nuclear export may contribute to the 
cytoplasmic accumulation of hnRNP A1, when HeLa 
cells undergo the stress of sodium arsenite. Similarly, the 
treatment of osmotic shock can induce the cytoplasmic 
accumulation of hnRNP A1 in NIH 3T3 cells through the 
serine-specific phosphorylation of a C-terminal F-peptide, 
and the activation of the mitogen-activated protein kinase 
kinase 3/6-p38 signaling pathway (Allemand et al., 
2005). Previous FRAP results showed that hnRNP A1 
protein moves continuously in and out of SG structure 
(Guil et al., 2006). The high kinetic behaviour allows the 
cells to respond quickly to the adverse stress, by way of 
dynamically influencing and equilibrating the subcellular 
distribution of hnRNP A1.

We also utilized a small molecule inhibitor of the 
transport receptor importin β (IPZ) to analyze the effect 
of altered nucleus/cytoplasm localization on the assembly 
of hnRNP A1 granules. We observed the slightly increased 

cytoplasmic hnRNP A1 signal after the treatment of10 
μM IPZ, under the normal (data not shown) and stress 
conditions. However, we failed to observe the change 
of hnRNP A1 granule formation. It is possible that the 
increased amount of cytoplasmic hnRNP A1 protein 
was not up to the level of affecting the SG assembly. 
Previously, we found that the inhibition of nuclear export 
of SND1 protein could influence the efficient aggregation 
of SND1 granule in the cytoplasm of HeLa cells (Gao et al., 
2015). The effect of stress-responsive nucleus/cytoplasm 
localization on the SG formation may be protein-specific. 

TIA-1 recognizes adenine/uridine rich elements 
(AREs) within 3’-untranslated regions (3’-UTR) of RNA, 
and the prion-like aggregation of TIA1 was required for 
the formation of mammalian SGs under stress conditions 
(Kedersha et al., 2000; Gilks et al., 2004; Waris et al., 
2014). TIA1 exhibited the similar cellular kinetics with 
hnRNP A1 (Guil et al., 2006). Here, we observed the 
oxidative stress-induced slightly decreased nuclear 
accumulation of TIA1, however, IPZ treatment fails to 
influence the nucleus/cytoplasm localization of TIA1. 
HuR, a classical member of embryonic lethal abnormal 
vision (ELAV) family, recognizes AU-rich elements 
(AREs) sequences of targeting mRNAs, and is involved 
in the regulation of RNA metabolism (Grammatikakis et 
al., 2017). HuR shuttles between nucleus and cytoplasm, 
and heat shock inhibits the interaction between HuR and 
cytoplasmic mRNA (Gallouzi et al., 2000). HuR localized 
into SGs as well (Kedersha and Anderson, 2002), and 
RanGTP-binding nuclear transport receptor Transportin 2 
was shown as nuclear import factor of HuR (Guttinger et 
al., 2004). Even though a slightly increased cytoplasmic 
signal of HuR was observed under the oxidative stress, 
IPZ treatment did not alter the nuclear import of HuR 
but decrease the portions of HeLa cells with the granule 
number of 11~20, 21~30, which involved some unknown 
reasons.

CONCLUSION

Taken together, our study focuses on the association 
between stress granule formation and nucleus/cytoplasm 
location of hnRNP A1, HuR and TIA1. Cytoplasmic SG 
aggregation behavior is linked to the alteration of nucleus/
cytoplasm localization of hnRNP A1. In response to 
unfavorable environmental stress, timely and effective 
dynamic distribution of specific stress-associated proteins 
in the section of nucleus, cytoplasm, and SGs is more 
likely to contribute to the minimization of the detrimental 
condition-induced cellular damage.
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