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Abstract | Heavy metals such as As, Pb, Hg, Cd, Cr, Fe, Mn, Ni and Zn are usually toxic for the aquatic 
ecosystem. Exposure of heavy metals in the aquatic organisms is linked to the retardation of growth, lesions 
in liver and damages in kidney. They are also causing infertility in animals. Chronic exposure and excessive 
concentrations are also deleterious for the normal physiological functions of human. Consumption of fishes 
contaminated with toxic metals are neurotoxic and carcinogenic to blood, lungs, kidneys, bones, liver and 
other vital organs of human. The present review outlines the contamination of aquatic environment with 
heavy metals and their contagious effects on aquatic animals and their public health concerns.
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Introduction

Fish is considered as one of the most important 
protein sources for human (Balami et al., 2019; 

Karayakar et al., 2022). Fish may also concentrate large 
amounts of some metals from the water (Mansour 
and Sidky, 2002) and transfer throughout the web 
chain into human. Of late, aquatic environment is 
repetitively polluted through heavy metals (HMs) 
from a variety of sources and right now it has 
anticipated a dangerous scenario for aquatic life 
and fish species. HMs is usually available in natural 
waters and some are essential to living organisms 
even though they may become highly toxic when 

existing in high concentrations. U.S. Environmental 
Protection Agency listed metals of major interest in 
bioavailability studies, are Al, As, Be, Cd, Cr, Cu, Hg, 
Ni, Pb, Se and Sb (Abdel-Mohsien and Mahmoud, 
2015). A number of health risks can expose because 
of excessive intake of these metals. For instance, fish 
consuming heavy metals can seriously lessen some 
essential nutrients in the body causing a decrease 
in immunological defenses, intrauterine growth 
retardation, impaired psycho social behaviors, 
disabilities associated with malnutrition and a 
high prevalence of upper gastrointestinal cancer 
(Arora et al., 2008). There is limited comprehensive 
information about effects of heavy metals on aquatic 
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animals and public health significance in humans. In 
this review, we attempted to provide an updated and 
comprehensive knowledge on the heavy metals effects 
and human health hazards. 

Sources of heavy metals
HMs is introduced into the aquatic environment 
by means of natural and anthropogenic sources. 
They are naturally found in the earth’s crust, soil, 
air, water and all biological substances at various 
concentrations, from where they are being distributed 
widely through the anthropogenic activities such as 
rapid industrialization, overgrowing urbanization, 
globalization, intensive agricultural practices and 
environment manipulation (Gupta et al., 2009; Vaseem 
and Banerjee, 2016). Industrial sources of HMs 
pollution are refinery, smelter, lead-based paints, lead-
soldered food cans, lead plumbing pipes, auto mobile 
exhaust (tetraethyl lead) refinery, plastic, paints, 
antiseptic, scientific instruments, photography, fuel 
combustion, tannery, smelter, mining, electroplating, 
pigments (Cadmium yellow), plastics, pesticides, land 
application of fertilizers, animal manures, sewage 
sludge, pesticides, waste water irrigation, spillage of 
petrochemicals and Uranium mining etc. (Verma 
et al., 2018). However, the most common source of 
HMs pollution in the aquatic environments is come 
from the mining companies. Residues of toxic metals 
may persist in the environment and can accumulates 
in higher concentrations ranging from hundreds to 
thousands times than their concentration of water 
and sediments (Goodwin et al., 2003; Osman et al., 
2007). Toxic heavy metals are generally accumulates 
in fish body directly from the environment through 
the contact with water and diets of fish.

Toxic heavy metals
Toxic heavy metals are individual metals and 
metalloids that have negative effect on human 
health. Heavy metals are noteworthy environmental 
pollutants and their toxicity is a problem of increasing 
significance for ecological, evolutionary, nutritional 
and environmental reasons (Shah, 2017). Toxic 
effects of heavy metals include reduction in fitness, 
interference in reproduction leading to carcinoma 
and finally death. The toxic effects usually associated 
with chronic exposure by pollutant heavy metals 
are mutagenicity, carcinogenicity, teratogenicity, 
immunosuppression, poor body condition and 
impaired reproduction (Pandey and Madhuri, 2014). 
Toxicity of HMs can lower the energy levels and 

can damage the functioning of brain, lungs, kidney, 
liver and blood composition and other important 
organs (Shah, 2017). Long term exposure to the 
higher concentrations of HMs leads to the gradual 
and progressive physical, muscular and neurological 
degenerative processes that initiate disease like 
multiple sclerosis (Shah, 2017). 

Commonly encountered toxic heavy metals
• Arsenic (As)
•  Lead (Pb) 
• Mercury (Hg) 
• Cadmium (Cd) 
• Chromium (Cr)
• Iron (Fe)
• Manganese (Mn)
• Nickel (Ni)
• Zinc (Zn)

Arsenic
Arsenic (As) is an ubiquitous element, released into the 
aquatic environment through anthropogenic activities 
such as metal smelting, chemical manufacturing, 
and agricultural runoff (Schlenk et al., 1997; Singh 
and Banerjee, 2008). As and its compounds are very 
poisonous at higher concentrations. It is an important 
and ubiquitous environmental contaminant, that 
can exerts carcinogenic risks to the public health 
worldwide (Rossman, 2003). As exposure in the 
aquatic environment causes bioaccumulation in 
aquatic organisms and can lead to physiological and 
biochemical disorders, such as poisoning, liver lesions, 
decreased fertility, cell and tissue damage, and cell 
death (Bears et al., 2006; Ribeiro et al., 2005). 

Lead (Pb) 
Lead (Pb) is a dangerous environmental contaminant 
and due to its higher toxicity it can possess a great threat 
for human health (Afshan et al., 2014). Depending 
on the degree and duration of Pb exposure, a variety 
of consequences might occur. Lead accounts for 
most of the cases of pediatric heavy metal poisoning. 
Lead accumulates in the liver, kidney, brain and bone 
(Afshan et al., 2014). Newborns and young children 
are especially delicate to even low levels of lead (Elder 
and Collins, 1991). Acute Pb toxicity after absorption 
of contaminated seafood usually occurs in brain and 
kidney, and it is absorbed through the gastrointestinal 
tract (Markowitz, 2000) is regulated by nutritional 
calcium and iron status and age (children adsorb 
more, and consequently, are more vulnerable than 
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adults) of exposed humans and solubility and lead 
species, among others (Flegal, 1986).

Mercury (Hg) 
Mercury toxicity depends on its chemical form, methyl 
mercury is found to be more hazardous than metallic 
form of mercury (Verma et al., 2018). Mercury in 
the atmosphere has nearly tripled through human 
activities and the atmospheric burden is increasing 1.5 
percent per year (Clifton II, 2007). Natural mercury 
arises from volcanoes, land or water surfaces due to 
the use of land, biomass burning, by evaporation from 
the ocean, meteorological conditions and gaseous 
mercury at air water soil snow ice exchange (Boening, 
2000; Mason, 2009; Pirrone et al., 2001). Whereas,  
major anthropogenic source of mercury (~ 60% of 
the year 2000) is the combustion of fossil fuels (coal; 
stationary combustion) followed by gold mining, non-
ferrous metals manufacturing, cement production, 
waste disposal and caustic soda production (Pacyna 
et al., 2006; Pirrone et al., 2010). Fish is the primary 
source of MeHg poisoning in humans (Rice et al., 
2014) as well as various species of fish tend to have 
higher rates of MeHg bioaccumulation (Mozaffarian 
and Rimm, 2006).

Cadmium (Cd) 
Cadmium is known as the most toxic and non-
essential heavy metal ( Jaishankar et al., 2014) and 
enters the environment by natural sources, such as 
volcanism. Anthropogenic activities such as smelting, 
mining nonferrous metals, production of nonferrous 
metals, iron and steel and the production and disposal 
of Cadmium containing materials (electroplating, 
pigments, stabilizers and Ni-Cd batteries) use 
phosphate fertilizers, arsenic pesticides, herbicides, 
fungicides, plastic stabilizers, wood preservatives and 
others (Thornton, 1992). Additionally, Cd chronic 
toxicity affects bones, causing fractures, severe pain, 
malformations, hypercalciuria and impaired vitamin 
D metabolism (Bhattacharyya et al., 1992). Cd is 
transported by blood and distributed mainly to the 
liver and kidney where it is long-term stored in the 
organism. 

Chromium (Cr)
Chromium is one of the most common pollutants in 
the environment where Cr (VI) and Cr (III) being 
the most stable forms (Velma et al., 2009). The 
toxicity of chromium is mainly relate to its Cr (VI) 
form. In hexavalent [Cr (VI)] form, health risks of 

Cr exposure vary depending on its oxidation state, 
ranging from moderate toxicity to high toxicity 
(Velma et al., 2009). Chromium enters into aquatic 
environment from a wide variety of natural and 
anthropogenic sources like as industrial applications 
(leather tanning, electroplating, and corrosion 
protection) contaminate ground water (Palmer and 
Wittbrodt, 1991), discharges from manufacturing 
processes and cooling towers (Elwood et al., 1980). 

Iron (Fe)
Iron is mostly abundant metal which have basic 
roles in cellular respiration and metabolism. Iron 
can switch its redox state and in case of oxygen 
availability convert into ferrous to ferric iron (Fe2+ to 
Fe3+). This reaction generates the superoxide anion, 
which through a series of redox reactions leads to the 
generation of toxic hydroxyl radicals. Henceforth, 
iron can be both beneficial and toxic effects to 
organisms and it is mandatory to balance iron status 
in the body for maintaining biological functions, 
whereas excess Fe2+ which can lead to oxidative stress 
(Carriquiriborde et al., 2004).

Manganese (Mn)
Manganese is one of the vital elements for aquatic 
animals that have a negative effects on total erythrocyte 
count (TEC), haemoglobin (Hb), haematocrit 
(Hct), mean corpuscular volume (MCV) and mean 
corpuscular haemoglobin (MCH) concentrations 
(Sharma and Langer, 2014). Mn toxicity accounted 
for abnormal structure of nucleus in RBCs which 
finally impacts on RBCs production in blood levels. 
Several researchers reported that Mn toxicity is 
noticeable in some aquatic species such as goldfish 
(Carassius auratus) (Vieira et al., 2012). In addition, 
it caused oxidative stress and increases GPx activity. 

Nickel (Ni)
Initial effects of Ni on the respiratory system of aquatic 
animals are causing swollen gill lamellae, distress in the 
ventilation and respiratory system (Pane et al., 2003). 
Ni toxicity is highly prevalent in goldfish (Carassius 
auratus), streaked prochilod (Prochilodus lineatus) and 
mummichog (Fundulus heteroclitus) (Palermo et al., 
2015). Behavioral effects of Ni exposure were studied 
and found out that Ni affects locomotors activity in 
fish, thus causing hypo activity in goldfish (Carassius 
auratus) and round goby (Neogobius melanostomus) 
(Blewett and Leonard, 2017).
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Zinc (Zn)
Zinc is common heavy metals for aquatic toxicity 
worldwide. Geological rocks, industrial wastages 
and domestic garbage’s are the major source for Zinc 
pollution in freshwater and sea water (Adeyeye, 1996). 
Excessive levels of Zn causes reduce physical and 
growth performance of fish. Zn initially deposits in 
gills and resulting top hypoxia which leads to death. 
Alternations of hatchability and blood hematology 
also caused by excessive levels of Zn. Deficiency of Zn 
effects the fish behavior such as restless swimming, 
air guzzling, periods of dormancy and death (Kori-
Siakpere and Ubogu, 2008).

Public health hazards of heavy metals by fish and fish 
products intake
Arsenic: Arsenic contamination is an alarming 
issue in worldwide and has given a higher weight in 
Bangladesh. Arsenic is one of the crucial heavy metals 
causing public health hazards. Semi-metallic nature 
of As accounted for toxic and carcinogenic effects 
(Singh et al., 2007). The primary signs and symptoms 
of acute arsenic poisoning includes nausea, vomiting, 
abdominal cramping, muscle pain and diarrhea. This 
is followed by immobility and creeping of the head, 
hand and legs, muscle shivering and death. In case of 
chronic exposure due to contaminated drinking water 
resulting different lesions such as pigmentation in 
skins, and hyperkeratosis in palms and soles of the feet. 
Lower levels of arsenic exposure can cause decrease 
production of blood cells such as erythrocytes and 
leukocytes ( Jaishankar et al., 2014). Damaging blood 
vessels and heart beat abnormality also occurred 
due to low As exposure. Long time exposure of As 
can develop cancer in the skin, liver, kidneys and 
lungs. Cardiovascular and pulmonary complications, 
hypertension and neurotoxicity also outcomes of long 
term As consumption by human (Smith et al., 2000). 

Lead (Pb)
Fossil fuel burning, manufacturing and mining play 
vital role for accumulation of Pb in water, soil and air. 
According to the Environmental Protection Agency 
(EPA), lead is considered a carcinogen agents. Chronic 
exposure of lead by fish and fish products intake 
can cause in pregnancy difficulties, mental disorder, 
autism, dyslexia, hyperactivity, muscular atony, kidney 
and brain damage (Martin and Griswold, 2009). 
Acute exposure leads to anorexia, hypertension, 
abdominal pain, renal dysfunction, fatigue, arthritis 
and hallucinations. Plasma membrane influx into 

the interstitial spaces of the brain when the blood 
brain barrier is exposed to elevated levels of lead 
concentration, resulting edema (Teo et al., 1997). 
It also disturbs the intracellular second messenger 
systems and alters the central nervous system 
functions. 

Mercury
People mainly exposed to mercury when they 
continuous intake of fish and shellfish. Mercury 
is toxic for peripheral and central nervous system 
(Washington, 2005). It also harmful for digestive 
and immune systems, lungs and kidneys, and may be 
fatal. Symptoms include tremors, insomnia, memory 
loss, neuromuscular effects, headaches and cognitive 
and motor dysfunction. Mild, subclinical signs of 
central nervous system toxicity can be seen in workers 
exposed to an elemental mercury level in the air of 20 
μg/m3 or more for several years (Washington, 2005). 

Cadmium
Cadmium is a byproduct of zinc production 
( Jaishankar et al., 2014). Cadmium is highly deposited 
in proximal tubular cells of kidney which caused 
kidney toxicity and renal dysfunction (Bernard, 
2008). Hypercalciuria, renal stones formation and 
osteoporosis caused by continuous exposure of Cd. 
Deposition of excess concentrations in lungs may 
cause severe damage (Bernard, 2008). Inhaling higher 
levels of Cd have a detrimental effects in lungs. In 
gastrointestinal system, Cd causes irritation, vomiting 
and diarrhea. Pregnancy complications, premature 
birth and unexpected birth weights are occurred due 
to high levels of exposure during pregnancy period 
(Henson and Chedrese, 2004). 

Chromium 
Chromium derivatives are highly perpetual in water 
sediments. Cr(III) and Cr(VI) are the common stable 
forms and only their relation to human exposure is 
of high interest (Zhitkovich, 2011). Chromium 
derivatives such as lead chromates, strontium 
chromate, zinc chromates and calcium chromate 
are showed toxic and carcinogenic properties. Metal 
coatings and alloys, magnetic tapes, paint pigments, 
rubber, cement, paper, wood preservatives, leather 
tanning and metal plating are responsible for Cr 
contamination in freshwater and seawater (Martin 
and Griswold, 2009). Higher concentration exposure 
of chromium compounds caused decrease levels of 
erythrocyte glutathione reductase, which in turn lowers 
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the capacity to reduce methemoglobin to hemoglobin 
( Jaishankar et al., 2014). Chromate compounds also 
responsible for chromosomal aberrations, DNA 
adducts, exchange of sister chromatid, alterations in 
replication and transcription of DNA (Matsumoto et 
al., 2006).

Iron
Aquatic animals is the prominent source of iron and 
it shows various health benefits in humans (Rahmani 
et al., 2018). However, continuous high intake 
initiates toxic effects in human body (Ashraf et al., 
2006). Mammals are not capable for eliminate excess 
amount of Fe from body through secretions and 
continuous deposition of Fe causing organs failure 
with detrimental outcomes. The maximum permitted 
concentration of Fe in fish fillet established by FAO/
WHO 100 μg/kg ww, respectively (FAO/WHO, 
2009). 

Manganese (Mn)
Manganese is very pivotal elements for both animals 
and plants, especially for skeletal and reproductive 
system in mammals. Mn helps the body absorb 
vitamins B1 and E, and works with all B-complex 
vitamins in combating depression, anxiety, and other 
disorders of the nervous system (Eneji et al., 2011). 
Excess Mn interferes with the absorption of dietary 
Fe and long-term exposure may result in Fe-deficiency 
anemia and the impairment of the activity of copper 
dependent metalloenzymes. Significant increases in 
Mn concentrations have been observed in patients 
with severe hepatitis, dialysis patients, and patients 
who have had cardiac arrests. In addition, studies on 
mice injected with Mn chloride tetrahydrate during 
gestation have shown fetotoxicity.

Nickel (Ni)
Ni is considered one of the most important elements 
to perform functions of vital organs but excess 
amount is pernicious for human body (Genchi et 
al., 2020). In human body, Ni combines with thiol 
resulting in the formation of Ni-Thiol complexes. 
When these complexes react with molecular oxygen 
it results in free radicals production that ultimately 
causes Ni toxicity (Das et al., 2006). Researchers 
investigated that because of Ni exposure to human 
body its physiological chemistry is altered because of 
decreased excretion of calcium ions via urinary routes 
and also because retention of nitrogen is decreased 
following Ni exposure. Red Blood Cells in blood, 

packed cell volume (PCV) %, and the concentration 
of hemoglobin were increased due to raised synthesis 
of erythropoietin and this happened in response to 
tissue hypoxia produced by Ni exposure (Denkhaus 
and Salnikow, 2002). Placental membrane is disrupted 
because of peroxidation of lipids induced by prenatal 
Ni exposure. Because of this peroxidation pathway 
permeability of placenta is increased and toxic damage 
is induced in fetus (Cortijo et al., 2010).

Zinc
Zinc is an eccentric element that is little essential 
for human vital organs. Hence, lack of Zn resulting 
reduce in sense of taste and smell, slow wound 
healing, loss of appetite, and skin sores (Afshan et 
al., 2014). Although humans beings can manage 
large concentrations of Zn, too much Zn can cause 
prominent health problems such as skin annoyances, 
such as stomach cramps, anemia, vomiting and nausea. 
Excessive concentration of Zn is deleterious for 
pancreas, initiate disturbances in protein metabolism 
and resulting arteriosclerosis. Several researchers 
reported that adverse effects of the fish are neutralized 
in the process of cooking (Afshan et al., 2014). 

Conclusions and Recommendations

The concentration of HMs is dangerous for the aquatic 
animals as well as human health. Environmental 
contamination from HMs may damage the marine 
organisms at the cellular level and causes imbalance 
in the ecosystem. HMs in the aquatic organism might 
entered through the three ways: the body surface, gills 
and food. In aquatic environment, microorganisms 
accumulate metals and consequently, small fish 
become enriched with the accumulated substances. 
Predatory fish again, general display higher levels 
than their prey. Man at the end of food chain suffers 
from the results of an enrichment having taken place 
at each trophic level, where less is excreted than 
ingested. Therefore, preventive measures should be 
taken to reduce the intensity of aquatic pollution 
through the HMs. 
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