Research Article

Palynological Studies of Aconogonon (Polygonaceae) from Pakistan

Ghazalah Yasmin^{1*}, Mir Ajab Khan², Nighat Shaheen³, Umbreen Javed Khan⁴

¹Department of Plant Sciences, Quaid-i-Azam University, Islamabad. Govt College for Women, Jhelum; ²Department of Plant Sciences, Quaid-i-Azam University, Islamabad; ³Department of Plant Sciences, Quaid-i-Azam University, Islamabad; ⁴Department of Zoology, Punjab University, Lahore, Pakistan.

Abstract | To better understand systematic characters of Aconogonon (Polygonaceae), we studied pollen morphology in three (A. alpinum, A. rumicifolium and A. tortuosum) of five species distributed in Pakistan using light microscopy and scanning electron microscopy. Results showed that Aconogonon is characterized by tricolpate pollen with microspinulose type of exine ornamentation. One distinctive pollen type was recognized on the basis of aperture number and sculpturing of exine under SEM. Based on analyses in the present study, diagnostic keys to the three species were provided.

Editor | Tahir Sarwar, The University of Agriculture, Peshawar, Pakistan

*Correspondence | Ghazalah Yasmin. Quaid-i-Azam University, Islamabad, Pakistan; E-mail | ghazalahrizwan@yahoo.com

Citation | Yasmin, G., Khan, M. A., Shaheen, N., Khan, U. J. 2015. Palynological studies of *Aconogonon* (Polygonaceae) from Pakistan. *Sarhad Journal of Agriculture*, 31(1): 16-21.

Keywords | Aconogonon, Palynology, Pollen, Polygonaceae

Introduction

Dolygonaceae Juss., the Buckwheat, Smartweed or Knotweed family, are widely distributed from the arctic to the tropics although most species are found in the northern temperate region (Heywood, 1978). The family is represented by 48 genera containing 1,200 species (Freeman and Reveal, 2005; Sanchez and Kron, 2008) while in Pakistan it is represented by 103 species in 19 genera (Qaiser, 2001). Among 19 genera of the family, Aconogonon (Meisn.) Reichenb was treated as separate genus due to its characteristic pollen type (Haraldson, 1978, Hong and Hedgeberg, 1990). It is represented by 18-20 species, scattered from north to south Asia, Europe, Japan and North America, and only five species are recorded from Pakistan (Qaiser, 2001). The genus is characterized by having trifid venation, eight stamens 8 arranged in two whorls, clearly visible nectarines, free, short styles and trigonous, ribbed fruits (De Craene and Akeroyd, 1988; De Craene et al., 2000).

The systematic implication of pollen morphology March 2015 | Volume 31 | Issue 1 | Page 16 in Polygonaceae has been discussed by a number of workers. Wodehouse (1931) was the first who studied comprehensively palynological characters of the family Polygonaceae, identified different types of pollen grains which were related to each other and developmental tendencies in pollen. On the basis of qualitative and quantitative characters, diagnostic keys were prepared and proved with illustrations to show how tricolporate pollen with thick walls and broad furrow might have given rise to many pored pollen grains with thin walls and narrow or reduced furrow.

Thereafter, pollen morphology of the family was examined as systematic characters (Hedgeberg, 1946; Wang and Feng, 1994; Zhang and Zhou, 1998; Zhou et al., 1999; Zhou et al., 2002). However, pollen morphology of the species of *Aconogonon* from Pakistan has never been investigated. The purpose of the present study is to provide detailed palynological information on *Aconogonon* of the family Polygonaceae using LM and SEM and to find out taxonomic significance of pollen morphology in the delimitation of the species under study.

Sarhad Journal of Agriculture

Table 1: List of voucher specimens investigated for palynologicalstudies with locality, district, collector name and accession numbers arranged in alphabetical order of genera

Sr. No.	Species	Locality	District	Collector name	Acc. No.
1	Aconongononalpinum(All.) Schur	Dir BuraiBandi	Dir Hazara	Allahuddin Shoukat and Nisar	41998 34117
2	A. rumicifolium(Royle ex Bab.) Hara	Mount Makra (Northern side)	Hazara	Muqarrab Shah and Dilawar Khan	940044
3	A. tortuosum (D. Don) Hara	Naltar Jajoti	Gilgit Gilgit	ShahzadIqbalet al. Mir Ajab Khan et al.	116866 122639

Figure 1: A. tortuosum (D. Don) Hara. Flowering plant

Materials and Methods

Pollen samples of *Aconogonon* were obtained from herbarium specimens of three (*A.alpinum* [All.] Schur, *A. rumicifolium* [Royle ex Bab.] Hara and *A. Tortuosum* [D.Don] Hara) of the five species distributed in Pakistan, which are housed at Quaid-i-Azam University, Islamabad (Figure 1, 2, 3, Table 1). They were acetolysed following the modified procedure of Erdtman (1960). For light microscopy, pollen grains were mounted in glycerin jelly on a glass slide and stained with 1% safranin. The glass slide was placed on hot plate, where by glycerin jelly was melted-to remove bubble. A cover slip was placed on the pollen-glycerin jelly mixture. When cooled, the glass slide was labelled and edges of the cover slip were sealed with

March 2015 | Volume 31 | Issue 1 | Page 17

Figure 2: A. rumicifolium (Royle ex Bab.) Hara Flowering plant

transparent nail vanish. The pollen grains on glass slides were examined under the light microscope. Pollen type, its shape and diameter in polar and equatorial view, P/E ratio, exine thickness and its sculpturing, length of colpi and lumina size were examined. Details of pollen morphology were based on the measurements of 10-15 grains. The data were statistically analysed I-e., range; mean and standard error (±) were calculated using MS excel (Table 2). Their photographs were taken with the Nikon FX-35 microscope equipped with camera. For SEM studies, pollen grains suspended in a drop of 40% acetic acid were transferred to clean metallic stubs and coated with gold using a JEOL JFC 1100 E ion sputtering device. SEM observations were carried out on a JEOL microscope JSM5910. The work was carried out in the Centralized Resource Laboratory, University of Peshawar (Pakistan).

Terminology of pollen morphology followed by Faegri and Iversen (1964), Kremp (1965) and Punt et al., (1994, 2007).

Results

A summary of pollen morphological characters of the three species of *Aconogonon* is given in table 2. Quantitative observations are recorded under light microscope (Figure 4-7). Scanning electron micrographs of selected species of the genera are presented in figure 8-11.

Figure 3: A. alpinum (All.) Schur. Flowering plant

Pollen class

Tricolpate

Size

The size of pollen grains (polar axis × equatorial diameter) varies from $22 \times 21 \ \mu m$ in *A. rumicifolium* to $24 \times 22.5 \ \mu m$ in *A. alpinum* and $24 \times 21.8 \ \mu m$ in *A. tortuosum* (Table 2).

Symmetry and Shape

Pollen grains are radially symmetrical and isopolar. The outline is mostly prolate-spheroidal, occasionally prolate and sub-prolate in equatorial view while circular, sometimes semiangular in polar view (Figure 4-7). The P/E (polar diameter/equatorial diameter) ratios vary from 1.01 to 1.10. It is maximum in *A. tortuosum* (1.10) and minimum in *A. rumicifolium* (1.01), which shows that there is slight variation in the pollen size (Table 2). Columella is well developed and evenly distributed.

Aperture

Pollen grains are non-lacunate. Ora is elliptic or slightly elongated. Colpi are very long, depressed and their length varies from 15.04 μ m (*A. rumicifolium*) to 16.4 μ m (*A. alpinum*).

Exine thickness

Exine thickness among the taxa of *Aconogonon* ranges from 2.2 to 3.5 μ m. In *A. alpinum* (2.2 μ m) it appears to be smaller than that of *A. rumicifolium* (3 μ m) and *A. tortuosum* (3.5 μ m).

Exine Sculpturing

Under light microscope, exine appears granular (Figure 4-7) while scanning electron micrographs shows microspinulose type of ornamentation in all species of the genus (Figure 8-11).

Discussion

Not only general morphology of plant but also pollen morphology is of great taxonomic significance (Stix, 1960). Pollen morphological characters have been used for the identification of taxa (Erdtmann, 1966) and also for number of phylogenetic studies (Walker and Doyle, 1975).

Aconogonon is characterized by Aconogonon type pollen (Wang and Feng, 1994; Zhang and Zhou, 1998; Zhou et al, 2002). The pollen grains of the examined taxa of the genus were tricolpate, circular and circular-semiangular in polar view while equatorial outline was mostly prolate-spheroidal, rarely subprolate as in A. alpinum with slight variation in size (Figure 4-7, Table 2). The maximum average diameter in polar view was 24 µm in A. alpinum and A. tortuosum while 22 µm recorded to be the minimum in A. rumicifolium. Similarly, in equatorial view maximum diameter was noted in A. alpinum (22.5 μ m) and minimum in A. rumicifolium (21 µm). However, presently recorded dimensions for A. alpinum do not fall within the range specified by Wang and Feng (1994) I-e., 38.4-46.1×30.7-35.8 µm. Zhang and Zhou (1998) gave 28.9-34.0×20.4-28.9 µm size for A. alpinum and 30.6-40.8 µm equatorial diameter for A. tortuosum. Hong and Hedgeberg (1990) described pollen grains of A. rumicifolium as tricolpate grains, spheroidal to subpro

	Sarhad Journal of Agricultur								
* Mea:	03	02	01		Sr. No.	Table			
n values followed l	A. tortuosum	A. alpinum	A. rumicifo- lium		- 2: Summary o				
hy min-max in p	Tricolpate	Tricolpate	Tricolpate		Pollen class	of Pollen meas			
arentheses. P=1	Non- lacu- nate	Non- lacu- nate	Non- lacu- nate		Aperture Type	urements, sh			
* Mean values followed by min-max in parentheses. P=Polar, E=Equatorial, ± Standard error	Prolate-spheroidal	Prolate-spheroidal to subprolate	Prolate-spheroidal		Shape in Equa- torial view	Table 2: Summary of Pollen measurements, shape and sculpturing features in Aconogonon (Meisn.) Reichenb. species. (All measurements are in µm)			
: Standard error	Circular	Circular, semiangular	Circular, semiangular		Shape in Polar view	g features in 1			
	21.8±1.10 (20-24.5)	22.5±1.18 (20.5-27)	*21±0.61 (20-22.5)		Equatorial diameter µm	Aconogonon (N			
	24±0.61 (22.5-25)	24±0.85 (20-28.5)	22±1.22 (20-25)		Polar diam- eter μm	Aeisn.) Reichei			
	1.10	1.06	1.01		P/E ratio	nb. spec			
	16±0.44 (15-17)	16.4±0.8 (15-18.5)	15.04±0.1 (14.5-16)	Length of colpi µm		ies. (All meas			
	3.5	2.2	ယ		Exine thick- ness µm	wrements <i>o</i>			
	Granu- late	Granu- late	Granu- late	Under LM	Sculpturing	vre in µm)			
	Microspinulose	Microspinulose	Microspinulose	Under SEM					
ne 31 Issue 1 Page 19									

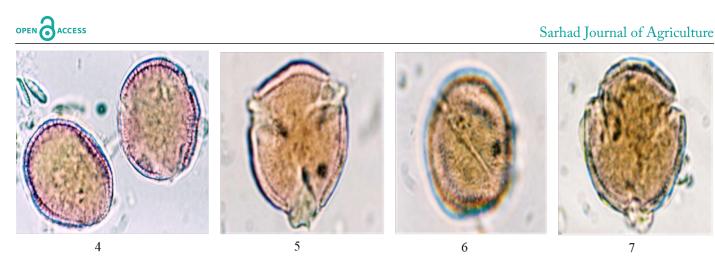


Figure 4-7: LM micrographs of the pollen grains of genus Aconogonon at 1000X. A. rumicifolium: 4. Polar and equatorial view. A. alpinum: 5. Polar view, 6. Equatorial view. A. tortuosum: 7. Polar view

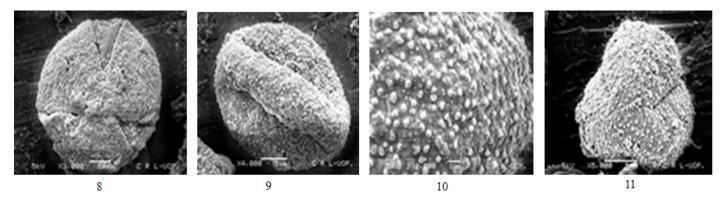


Figure 8-11: Scanning electron micrographs of the pollen grain of genus Aconogonon. A.rumicifolium: 8. Polar view. A. alpinum: 9. Polar view, 10. Equatorial view, 11: A. tortuosum. Exine ornamentation pattern

late or oblate to spheroidal-prolate in shape.

as follows:

Colpi were found to be deep, long and narrow with small variation in length (Table 2). Exine thickness varied between 2.2 µm to 3.5 µm and it proved to be helpful at specific level. When sculpturing of exine was examined with light microscope (LM) it appeared granular. With scanning electron microscope (SEM), microspinulose type of ornamentation was recorded in A. rumicifolium, A. tortuosum and A. alpinum (Figure 8-11). Wang and Feng (1994) recorded 3-4 µm thick exine in *A. alpinum* which appeared negatively reticulate when examined with LM and granulate-perforate under SEM. Zhang and Zhou (1998) and Zhou et al., (2002) measured $3.4\mu m$ thick exine in A. alpinum and 3.0 µm in A. tortuosum. Their observations on exine ornamentation for both species were similar to that of Wang and Feng (1994) observations. Aconogonon type pollen grains are widely accepted to be the basic and most primitive type (Zhou et al., 1999).

Based on the aforementioned analyses, diagnostic keys to the three species of *Aconogonon* are provided

Key to the species of Aconogonon

1a: P/E ratio 1.01.1. A. rumicifolium1b: P/E ratio more than 1.01.22a: Exine 2.2 μm thick.2. A. alpinum2b: Thickness of exine 3.5 μm.3. A. tortuosum

Conclusion

Based on the present study, it is shown that both qualitative and quantitative micro-morphological characters of pollen are solely sufficient for the characterization and delimitation of the genus *Aconogonon* at species level. There is much scope for further research on pollen morphology of the family Polygonaceae from Pakistan and these characters can be used in combination with other evidences derived from morphology, cytology and anatomy.

Acknowledgement

We are thankful to Higher Education Commission of Pakistan for financial support of this research work.

Also, thankful to Abdullah Jan, from Centralized Resource Laboratory, University of Peshawar.

References

- De Craene, R., L.-P.and J. R. Akeroyd. 1988. Generic limits in *Polygonum* L. and related genera (Polygonaceae) on the basis of floral characters. *Bot. J. Linn. Soc.* 98: 321-371.
- De Craene, R., L.-P., Hong, S.-P., Smets, E. 2000. Systematic significance of fruit morphology and anatomy in tribes Persicarieae and Polygoneae (Polygonaceae). *Bot. J. Linn. Soc.* 134: 301-337.
- Erdtmann, G. 1960. The acetolysis method, revised description. *SvenskBotaniskTidskrskrift*, 54: 561-564.
- Erdtmann, G. 1966. Pollen morphology and plant taxonomy. Angiosperms. New York.
- Faegari, K. and J. Iverson. 1964. Text book of pollen analysis. 2nd ed. Muksgaard, Copenhagen.
- Freeman, C. C. and J. L. Reveal, J. L. 2005.Polygonaceae.Vol. 5. Flora of North America, Oxford University Press: 216-221.
- Haraldson, K. 1978. Anatomy and taxonomy in Polygonaceae subfamily Polygonideae Meisn. Emend. Jeretzky. Symb. Bot. Upsal. 22: 1-95
- Hedgeberg, O. 1946. Pollen morphology in the genus *Polygonum* L. s. l. and it's taxonomical Significance. *SvenskBotaniskTidskrift*, 40: 371-404.
- Heywood, V. H. 1978. Flowering Plants of the World, Oxford University Press, Oxford: 336.
- Hong, S. P. and O. Hedgeberg. 1990. Parallel evolution of aperture numbers and arrangement in the genera *koenigia*, *persicaria* and *aconogonon* (polygonaceae). Grana, 29 (3): 177-184.
- Kremp, G. O. W. 1965. Encyclopaedia of Pollen Morphology.University Arizona Press, Tuscon, U.S.A.
- Punt, W., S. Blackmore, S. Nilsson and L. Thomas.

1994. Glossary of Pollen and Spore terminology. LPP Foundation, Utrecht. LPP contributions Series No. 1.

- Punt, W., P. P. Hoen, S. Nilsson and L. Thomas. 2007. Glosssary of Pollen and Spore Terminology. *Rev. Paleobotany and Palynology* 143: 1-81.
- Qaiser, M. 2001. Polygonaceae. In: Ali, S. I. and Qaisar, M. (Eds.). Flora of Pakistan. Department of Botany, Karachi University and Missouri Botanical Garden, St. Louis, Missouri, U.S.A. 205: 4-164.
- Sanchez, I. and K. A. Kron. 2008. Phylogenetics of Polygonaceae with an on the evolution of Eriogonoideae.*Syst. Bot.* 33(1): 87-96.
- Stix, E. 1960. Pollen morphologischeUntersuchungenanCompositen. Grana Palynologica 2(2): 41-104.
- Walker, J. W. and Doyle, J. A. 1975. The basis of angiosperm phylogeny: Palynology. Ann. Missouri Bot. Gard. 62: 664-723
- Wang, J. X. and Z. J. Feng. 1994. A study of the pollen morphology of the genus *Polygonum* L. in China. *ActaPhytotaa.Sin.* 32: 219-231.
- Wodehouse, R. P. 1931. Pollen grains in the identification and classification of plants VI. Polygonaceae. Am. J. Bot. 58: 749-764.
- Zhang, X. P. and Z. Z. Zhou. 1998. A study on pollen morphology and its phylogeny of Polyg-onaceae in china. University of Science and Technology of China Press, Hefei.
- Zhou, Z. Z. R. Lu and Y. Zheng. 1999. Parallel evolution of aperture numbers and arrangement of Polygonaceae in China. *J. China Univ. Sci. Tech.* 29 (5): 569-577.
- Zhou, Z.-Z., H.-L.Tao, Q. Ban, R.-X.Xu and Y.-C., Li, 2002. Pollen morphology of *Polygonum* section *Aconogonon* Meisn.in China. *ActaPhytotaxa*. *Sin.* 40 (2): 110-114.

