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Abstract | Monitoring crop bio-physical characteristics through non-destructive methods enable us to 
understand the different environmental impacts and help to respond to them precisely and rapidly. Chlorophyll 
pigmentation in plants is a supreme factor to assess the health of plants and ultimately leads to crop yield 
estimation. The present experiment evaluated the capacity of high-resolution satellite imagery to estimate 
wheat chlorophyll content coupled with ground-based information for accurately monitoring crop chlorophyll 
status under rainfed conditions. Images with zero clouds from LANDSAT 8 and ground data collection 
were carried out in a simultaneous time frame. Vegetation indices (VI) comprised of normalized difference 
vegetation index (NDVI), green normalized difference vegetation index (GNDVI), chlorophyll absorbed ratio 
index (CARI), modified chlorophyll absorbed ratio index (MCARI), and transformed chlorophyll absorbed 
ratio index (TCARI) were derived by LANDSAT 8 imagery for chlorophyll determination. Validation of 
the chlorophyll contents was performed (43 locations under rainfed conditions) nondestructively using a 
chlorophyll meter (SPAD-502 Minolta) along with GPS positions during Mid-March, 2017 for the wheat 
crop. Regressional models were plotted amongst the ground-truthed statistics and the VIs originated from 
satellite images to assess the accuracy. High sensitivity for chlorophyll determination was reported for NDVI 
and MCARI with R2 values of 0.81 and 0.80 respectively. Results proposed the real-time application of 
satellite imagery with high spatial resolution at wider regions. This will help the scientists to monitor and 
manage the nutrient requirements of plants as well as will enable them to accurately and rapidly respond to 
plant health by determining chlorophyll contents in plants.
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Introduction

Wheat (Triticum aestivum L.) is a most 
imperative nourishment cereal for more than 

33% of the world. It is viewed that wheat contributes 
around 60 percent of the world’s protein requirement 
and a larger number of calories to the world eating 
routinely than whatever other food crop (Conway, 
2012). In plants, chlorophyll is known as the 
fundamental element during photosynthesis (Yuan 
et al., 2007). The determination of vigor for crops 
suggests the crop management significantly which is 
proposed by the ratio of chlorophyll content per unit 
area of the leaf. Chlorophyll converts solar energy in 
the form of chemical energy in plants, thereby creates 
direct impact on plant development and final yield. 
Literature has cited significantly encouraging results 
between the leaf nitrogen and chlorophyll ratios. 
Therefore, quantifying chlorophyll contents can 
indirectly measure nitrogen status (Filella et al., 1995; 
Moran et al., 2000).

Spectrophotometry, high-performance liquid 
chromatography (HPLC), and extraction are some 
conventional techniques to analyze plants’ pigments. 
A leaf when measured in these techniques is 
destructed and sequential changes over time are not 
observable in it. Moreover, conventional methods 
are not cost-effective and are time taking, thereby 
unfeasible for large-scale measurements of landscapes 
and ecosystems. Thus, precise, effective, and feasible 
methods are needed to predict and measure the 
biophysical variables (Grassino et al., 2022).

Remote sensing gave a novel and important method 
to connect remote sensing assessments with the 
biochemistry of the earth’s surface in an authentic 
and viable manner. However, the correlation 
between ground data and satellite information is 
dependent on the experimental territory and its state 
of reflectance collection. The expansion of remote 
sensing technology favors new scope for predicting 
the chlorophyll contents of crop growth stages 
(Buschmann and Nagel, 1993; Gitelson and Merzlyak, 
1994; Markwell et al., 1995; Gamon and Surfus, 1999; 
Gitelson et al., 2001, 2002). Numerous effective and 
modern remote sensing techniques are in practice to 
achieve precise, efficient, cost-effective, and less time 
consuming such as multispectral, light detection and 
ranging techniques, unmanned aerial vehicle system, 
satellite, etc. More and more efforts are concentrated 

to understand the correlation between the optical 
characteristics of vegetation and the concentration 
of photosynthetic pigments in green leaf tissues (i.e., 
chlorophyll and carotenoids).

Leaf reflection-based novel, simple, and substitute 
nondestructive method was recommended to quantify 
pigments in leaves (Richardson et al., 2002; Sims 
and Gamon, 2002; Gitelson et al., 2003; Hu et al., 
2004; Le Maire et al., 2004) and canopies (Barton, 
2001; Gitelson et al., 2005). However, when using the 
chlorophyll content values   of individual leaf to express 
the chlorophyll content of canopy, there was still an 
important uncertainty. Precise, fast, and practical 
methods in the quantification of canopy chlorophyll 
contents per unit ground area were still unavailable. 
To cover this gap, a current experiment was 
conducted, and various spectral chlorophyll indices 
were evaluated to precisely estimate the chlorophyll 
contents on the basis of LANDSAT 8 imagery under 
rainfed conditions of district Chakwal. The leading 
aims of this experiment were to estimate the wheat 
chlorophyll contents in real-time on the basis of VIs. 
Further, the validation of field data procured using 
SPAD chlorophyll meter was performed, and the 
accuracy was determined with results of remotely 
sensed estimation in wheat crop.

Materials and Methods

Study site and chlorophyll determination
The proposed experiment was carried out under 
rainfed condition of district Chakwal. The Chakwal 
district is located at 33°40’ north latitude and 72°51’ 
east longitude, with an altitude ranging from 500 m to 
1200 m and total area of   6,524 square kilometers. The 
total area depends upon rainfall for agriculture. The 
Chakwal district has total four tehsils and 68 union 
councils. Wheat data collection (crop chlorophyll 
content) was performed in mid-March, 2017 (Mid-
Crop season) by implementing the SPAD-502 
Minolta chlorophyll meter for in vivo detections in 
wheat leaves from 43 union councils. 10 m x 10 m 
field was marked, seven plants were selected at one 
site, and mean was calculated for them. A GPS meter 
was used to geo-tag the locations of the study and 
sample area.

Remote sensing data and digital image analysis
Remote-sensing information was obtained through 
the USGS website. To process and analyze the digital 
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images, ground-truthing information collection 
was very important for subsequent image analysis. 
The satellite imagery was geo-corrected by applying 
the Ground Control Points (GCPs). Atmospheric 
correction of satellite imageries was performed using 
ArcMap and ERDAS Imagine software for noise 
removal by applying noise cancelation models on 
satellite data. After atmospheric correction of satellite 
imagery, spectral vegetation indices were applied to 
remotely sense the wheat chlorophyll indices.

Spectral vegetation indices
Green normalized difference vegetation index 
(GNDVI): GNDVI is recognized as the most robust 
vegetation index. Studies recommended the GNDVI 
as a highly correlated index to chlorophyll content. It 
also has been shown that it can be a promising index 
for determining the status of N uptake in wheat 
during growth stages (Moges et al., 2005; Tahir et al., 
2013). GNDVI can be calculated using the equation 
below:
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Normalized difference vegetation index (NDVI): 
NDVI was suggested by Rouse et al. (1974) and was 
used in this study considering its various advantages as 
proposed in many studies. The index is very responsive 
to green vegetation and can estimate the crops and 
predict precipitation in semi-arid areas. Following 
equation expresses the NDVI index.
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Chlorophyll absorbed ratio index (CARI): Kim et 
al. (1994) described this index with the following 
formula:

CARI = [(0.8*R700+0.2*R550)-R670)]

Modified chlorophyll absorbed ratio index 
(MCARI): This is the modified version of CARI and 
calculated with the following equation (Daughtry et 
al., 2000).

MCARI = [(R700-R670)-0.2*(R700-R550)*(R700/
R670)]

Transformed chlorophyll absorbed ratio index 
(TCARI): Transformed chlorophyll absorption ratio 

was proposed by (Haboudane et al., 2002).

TCARI = 3 x [(R700-R670)-0.2 x (R700-R550) x 
(R700/R670)]

Mapping and statistical analysis
Regression models were developed, and results were 
demonstrated for the significant relationship between 
satellite data and the ground data of the chlorophyll. 
The correlation coefficient R2 of all the indices 
and ground data was mapped. The probability and 
spatial variations around the study site were mapped 
by upscaling and interpolations for chlorophyl 
estimation in wheat crop. The reflectance values 
derived from satellite data determined the R2 values 
which were obtained using the regression equations 
that determined the most efficient VIs for chlorophyll 
estimation remotely at mid-crop stages. Linear 
regression analysis was then performed to evolve 
relationships among satellites-derived vegetation 
indices and ground-truthing wheat leaf chlorophyll 
content.

Results and Discussion

Land cover classification
Classification of land cover was mapped for 
experimental area using the LANDSAT 8 satellite 
imagery. Supervised classification was performed 
to create six main surface classes including water, 
buildup, barren lands, mountains, high vegetation and 
low vegetation. Land classification is shown in Figure 
1.

Figure 1: Land Cover classification of Chakwal district 2017-18.

Mean reflectance values of green, red, and NIR 
electromagnetic spectrum were used to compute 
different VIs. The obtained VIs; NDVI, GNDVI, 
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CARI, MCARI, and TCARI suggested different 
band ratios which explained the estimation ability 
of wheat chlorophyll contents. All vegetation indices 
were implemented to develop regression models 
based on ground-truthed information to evolve the 
equations that predicted the chlorophyll content of 
wheat crops.

GNDVI and chlorophyll contents: GNDVI 
analyses the greenness of crops. The GNDVI map 
showed variation across the district Chakwal. The 
minimum value was -1 and the maximum value 
was 0.42. In land cover classification, the area was 
classified into different classes in which a lot of areas 
were comprised of non-vegetation area as shown in 
the map of GNDVI due to which that area reflected 
the low value of GNDVI (Figure 2).

Figure 2: GNDVI map of 2017-18.

The output of the regressional model suggested the 
efficient relationship between GNDVI and wheat 
chlorophyll contents. The regressional model (Y= 
225.44X) showed a 75% data variation (R2 = 0.75) 
that is a sign of chlorophyll variations in the leaves 
obtained from GNDVI index. The ground data 
obtained from the field and the GNDVI values are 
in a 75% accuracy that determines the model’s fitness 
(Figure 3). Some researchers are also in the support 
of these positive correlations (Blackburn and Steele, 
1999; Bell et al., 2004; Li-Hong et al., 2007) with R2 

value of 0.72, 0.88, and 0.82, respectively.

In NDVI we calculated the photosynthtically 
absorbed radiation. The NDVI map showed the 
status across the whole study area. The map signifies 
the NDVI index for vegetation and chlorophyll 
determination with its lower reflectance value of –1 
that is for built-up and water bodies. The strongest 

values that determined the vigorous crop health and 
good vegetation cover were recorded as +0.46 (Figure 
4).

Figure 3: GNDVI graph and ground chlorophyll content.

Figure 4: NDVI map of 2017-18.

Figure 5: NDVI graph and ground chlorophyll content.

Significant and strong linear relationship was observed 
amongst NDVI and wheat chlorophyll contents. 
The ground data obtained from the field and the 
NDVI values are in an 80% accuracy that determines 
the model’s fitness (Figure 5). Y= 188.93X model 
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determined the corelation variations amongst the 
NDVI and wheat chlorophyll contents. The results 
are also supported by (Hashmi et al., 2011) with R2 
values of 86%.

CARI determines the depth of chlorophyll absorption. 
Map of CARI presented the variations among values 
for the study area. Figure 6 shows the lowest value as 
zero and the highest as 2.5 across the district Chakwal. 
These vegetation indices help us to understand how 
much the depth of chlorophyll absorption is. Some 
areas have high vegetation so in those areas, the CARI 
value was also higher. Some areas of district Chakwal 
comprised of high mountains, low vegetation, and 
water bodies, so CARI showed low value for those 
areas.

Figure 6: CARI map of 2017-18.

Figure 7: CARI graph and ground chlorophyll content.

CARI showed a positive relationship with the wheat 
chlorophyll yet the lower in comparison to NDVI 
and GNDVI. Figure 7 represented R2 value of 0.65 
and regressional model Y=92.4X. 

TCARI and chlorophyll contents: TCARI is an 

amended version of MCARI. TCARI was mapped to 
present the chlorophyll strength in the study area. The 
distribution of vegetative area from lowest to highest 
using TCARI was mapped with the values from 0 – 4 
(Figure 8). The lowest value of TCARI map indicated 
the presence of water and barren land.

Figure 8: TCARI map of 2017-18.

Figure 9: TCARI graph and ground chlorophyll content.

The correlation between TCARI and wheat 
chlorophyll values showed very low significance as 
compared to GNDVI, NDVI, CARI, and MCARI. 
The linear regressional model (Y= 21.46X) between 
the TCARI and wheat chlorophyll contents showed 
R2 value of 0.61 (Figure 9). The study results are also 
supported by (Haboudane et al., 2004; Zhang et al., 
2014) with R2 of 55% and 66.74%, respectively.

MCARI and chlorophyll contents: CARI index 
was amended with certain modifications to obtain 
the enhanced vegetation distribution in the study 
area and MCARI index was developed. MCARI 
ultimately proved significant for the current study 
with the highest estimation of chlorophyll contents. 
MCARI values varied across the whole study area. The 
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minimum value was 0 and the maximum value was 5 
with the lowest and highest vegetation, respectively 
(Figure 10).

Figure 10: MCARI map of 2017-18.

Figure 11: MCARI graph and ground chlorophyll content.

Above all indices, GNDVI, NDVI, CARI, and 
TCARI showed a positive and linear relationship. 
Regression model Y=14.96X amongst chlorophyll 
content and MCARI reflectance values determined 
with the 81% fitness of the model (Figure 11). 
Literature regarding the efficacy of MCARI was not 
in accordance with the current study. Current study 
found the MCARI as the most effective index for 
chlorophyll determinations (Haboudane et al., 2008; 
Wu et al., 2009; Liao et al., 2013).

Probability map of chlorophyll contents
Vigorous crop health is based on chlorophyll 
contents. The probability map to determine the 
contents around the study area of district Chakwal 
is a clear contribution to chlorophyll estimation. The 
prediction of the chlorophyll content is based on the 
threshold values. The map shows a range between 0 
and 1 which is a clear demonstration of the higher and 

lower vegetation areas in Chakwal district. Red color 
in the map is the demonstration of higher chlorophyll 
contents and most of the Chakwal area is comprised 
of it. Blue color is the lowest vegetative area, while 
the values that fall between them are the variations 
of chlorophyll contents due to the plant health or the 
vegetation pattern under rainfed conditions in the 
district Chakwal (Figure 12).

Figure 12: Probability map of for the prediction wheat chlorophyll 
content.

The current experiment analyzed the feasibility of 
high-resolution remote sensing data to map the 
wheat chlorophyll content under rain-fed conditions. 
Vigorousness of the crop and crop health can visually 
be assessed by its greenness and chlorophyll is the 
critical element responsible for it. Its determination can 
help to estimate the yield and plant health at an early 
stage of crop production. VIs were extracted from the 
imagery of LANDSAT 8 including NDVI, GNDVI, 
CARI, TCARI, and MCARI and then validate 
with the ground-truthing data of wheat chlorophyll 
contents (Tahir et al., 2018). Linear regression 
analysis between different vegetation indices and 
wheat chlorophyll contents was performed to derive 
regression equations to determine more robust index. 
MCARI showed strong relationship with value of 
R2 = 0.81) when compared with GNDVI, NDVI, 
CARI, and TCARI used in the study (Naqvi et al., 
2018). MCARI index exhibited significantly higher 
values for accurate and real-time predictions of wheat 
chlorophyll. The effectiveness of high spatial resolution 
satellite imagery for mapping spatial differences in 
chlorophyll content at the regional scale proved to be 
detrimental and significant (Naqvi et al., 2021).

Conclusions and Recommendations

The current experiment is conclusively a one-step 
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forward to analyze the chlorophyll contents of the 
plants remotely. Remote estimations help the farmer 
to take predictive measures to enhance crop yield 
and mitigate food security issues. The best-suited 
vegetation indices can help to evaluate the remote 
sensing data very rapidly. The future impact of the 
current study is that Landsat 8 can become the 
rapid and efficient source for remote estimation of 
chlorophyll contents as well as for yield parameters. 
This can help to fight the risk of global food risks as 
well.
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