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Introduction

The common wheat (Triticum aestivum L.) 
has been cultivated since the beginning of 

civilization. It is the topmost staple food for more 
than 1/3rd of the world’s population (Abd-El-Haleem 
et al., 2009). Being staple food, it is used as the main 
food commodity by more than 200 million people in 
Pakistan. Wheat grains provide 20% of world’s diet 

calories. It contains 70% carbohydrates, 22% crude 
fibers, 12% proteins, 12% water, 2% fat and 1.8% 
minerals gram-1 (Mahpara, 2008).

Water is very essential for smooth running of various 
metabolic activities inside plants. In absence of water, 
the growth and development of plants decreases 
substantially. Water deficiency in arid and semi-arid 
areas is a serious concern for sustainable agriculture 
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all over the world (Sharafi et al., 2011). In semiarid 
areas, drought causes significant reduction in wheat 
production (Ali et al., 2011). Statistical data represent 
that drought stress affects more than 99 million 
hectares in developing countries and 60 million 
hectares in developed countries (Rajaram, 2000). In 
Pakistan, an area of 15 million hectares is affected by 
water deficiency (Mujtaba and Alam, 2002). Water 
deficiency can reduce grain yield from 17 to 70% 
in wheat (Nouri-Ganbalani et al., 2009). Besides 
appropriate irrigation system, about 1.2 billion 
hectares cultivated area of the world is rainfed and 
have very low yield potential.

Drought is a big challenge for plant breeders around 
the world. To feed the increasing population of the 
world under such environmental conditions, plant 
breeders need to develop cultivars which could sustain 
such stress conditions without significant yield loss 
(Edgerton, 2009). Water stress adversely affects 
the plant growth, development and slow down the 
process of optimal productivity (Farooq et al., 2011a; 
Ahmadizadeh, 2013). In drought conditions, plants 
usually respond in the form of stunted growth due to 
its adverse effects on different molecular, biochemical, 
physiological and morphological processes of the 
plant. Such changes are totally related to the growth 
stage, time and severity of environmental stresses 
(Cao et al., 2011). For screening and selection of 
tolerant genotypes to uphold productivity under water 
stress conditions, the understanding of physiological 
mechanisms is very essential (Zaharieva et al., 2001). 
For instance, it is reported that drought stress had 
severely minimized germination and development 
of seedling in wheat (Nezhadahmadi et al., 2013). 
Similarly, drought related physiological parameters 
were dramatically reduced under water stress conditions 
as compared to control (Maqbool et al., 2015).

Plants typically show a large number of physiological 
responses under water deficit conditions including 
relative water content (RWC) (Machado and 
Paulsen, 2001). Plant exposure to moisture stress 
lowers down the relative water content, leaf water 
potential and osmotic potential (Grover et al., 2004). 
Relative water content is a good indicator of drought 
tolerance in plants than leaf water potential (Merah, 
2001). Different studies revealed that RWC is the 
best measure for classification and screening of water 
stress-tolerant genotypes (Lugojan and Ciulca, 2011; 
Farshadfar et al., 2012; Hasheminasab et al., 2012) 

as it is associated with high yield and other yield 
related components (Akram, 2011). Under abiotic 
stresses, wheat varieties with higher cell membrane 
stability (Blum et al., 2001) and chlorophyll content 
(Khakwani et al., 2012) tended to produce higher yield. 
The use of such physiological traits at seedling and 
vegetative stage for drought evaluation is an effective 
and economical way to identify tolerant genotypes at 
early stage (Rehman et al., 2016). Keeping in view the 
above narrated facts, the objectives of this research 
work were to; i) study the impact of drought stress 
on physiological traits of wheat genotypes, and ii) 
identify drought tolerant genotypes for arid, semiarid 
and rainfed areas of Pakistan.

Materials and Methods

Experiment layout and design
This study was carried out during 2015-16 at the 
experimental site of the Department of Plant 
Breeding and Genetics, PMAS Arid Agriculture 
University Rawalpindi. List of 30 common wheat 
genotypes is presented in Table 1. Experimental 
material was raised in transparent polythene bags 
in the shelter. Polythene bags (6 × 27 inches) were 
filled with homogenized mixture of loam, sand and 
compost. Eight seeds per polythene bag were sown 
to a depth of 2-3 cm and after emergence, seedling 
numbers per pot were reduced to four. The experiment 
comprised of two treatments (control and stress) with 
three replications. All polythene bags were watered 
equally with tape water. For stress treatment, water 
stress was imposed by holding water after tillering 
stage. Each bag (four seedlings) was considered as 
single replication. Hence in each treatment, there 
were 12 seedlings per genotype. The experiment 
was conducted following a completely randomized 
design. Data from three plants per polythene bag were 
recorded at vegetative stage for different physiological 
traits viz. estimation of proline, osmotic adjustment, 
relative water content, excised leaf water retention, 
cell membrane stability, canopy temperature and 
chlorophyll content as detailed below.

Chlorophyll Content (%)
Chlorophyll content was measured by chlorophyll 
meter Minolta SPAD 502. Chlorophyll meter was 
placed on flag leaf base, center and the tip and readings 
were noted. Three plants from each replication of both 
treatments were randomly selected and then averaged 
to note chlorophyll content for each treatment.
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Table 1: List of 30 wheat genotypes studied.
Sr. No. Genotypes Sr. No. Genotypes
1 Pakistan-13 16 Chakwal-97
2 Shahkar-13 17 Sariab-92
3 Anmol-91 18 Inqalab-91
4 AARI-011 19 Pirsabak-91
5 Punjab-011 20 AUR-10
6 AAS-011 21 Bahawalpur 2000
7 Millat-011 22 Bwp-97
8 NARC-09 23 Chakwal-86
9 Chakwal-50 24 Barani-83
10 Pirsabak-08 25 Sarhad-82
11 Lasani-08 26 Pak-81
12 AUR-09 27 SA-75
13 Pirsabak-05 28 Lyp-73
14 Bhakkar-02 29 Mexipak
15 Fakhre-Sarhad 30 LU-26

Relative water content (%)
Fresh leaves from each treatment were collected and 
weighed to record fresh weight (FW). Turgid weight 
(TW) was measured after placing it in distilled water 
for 4 hr. Thereafter, oven-dried the selected leaf 
segments at 72 °C for 48 h and weighed again to find 
out dried weight (DW). RWC was calculated using 
the formula given by Egert and Tevini (2002).

Osmotic adjustment (MPa) 
Irrigation was given to treatments for saturation 
before sampling in the afternoon and then covered 
with a transparent plastic sheet. Flag leaves were 
put into Eppendorf tubes and placed the sample in 
deep freezer. Cell sap was extracted after thawing 
and centrifugation and then osmotic potential was 
recorded by using Osmometer. The osmotic potential 
was measured in mmol kg-1 and then converted to MPa 
(pressure unit) by the formula as used by Nobel (1991): 

Where: 
R= 0.008314 (gas constant); T= laboratory temperature. 
OA is measured by OA = OPnon-stressed – OPstressed

Cell membrane stability (%)
Fully expanded uppermost leaves were taken as 
leaf samples and cut into 1 cm pieces following 

Premachandra and Shimada, (1988). Leaf sample 
(0.5g) was cut into pieces and put in deionized water 
for 90 minutes. During this time, deionized water 
was changed three times at different time intervals. 
Two sets were made separately for control and 
stress. Control samples were kept in 15 ml deionized 
distilled water at 10 °C for 24 hours. Whereas, stress 
samples were kept into 15 ml 25% polyethylene glycol 
(PEG 6000) solution at 10 °C for 24 hours. Again, 
the samples were kept in deionized water for 90 
minutes while changing deionized water at different 
time intervals. After that, both sets were kept in 15 
ml deionized distilled water at 10 °C for 24 hours. 
Electrical conductivity (EC) of control (C1) and 
stress (T1) samples were measured by using EC meter. 
Then, autoclaved the leaf samples of both sets for 15 
minutes at 121 °C. The second electrical conductivity 
of control (C2) and stress (T2) was measured. CMS 
value was estimated by using the following equation; 

Canopy temperature (°C)
Canopy temperature was measured by using Infrared 
Thermometer (Model AG-42, Tela-temp Crop, 
Fullerton, CA.). One measurement per polythene bag 
was taken from nearly 50 cm above the canopy with 
an angle of 30° from the horizontal. Data presented 
for each treatment was the mean of three sets of 
measurements made pre-heading between 12:00 and 
16:00 hours.

Excised leaf water retention (%)
Prior to anthesis, the second leaf was taken and 
weighed (FW), left for 4 hr at 25°C and reweighed 
in the wilted form (WW4h). ELWR was measured 
by using the following formula as used by Farshadfar 
et al. (2002).

Proline concentration (µg/g)
Proline content was measured according to Bates 
et al. (1973) by using acid ninhydrin reagent. Fresh 
leaf samples (250 mg each) were homogenized in 
5 ml of 3% aqueous sulfosalicylic acid and then 
centrifuged for 15 minutes at 12000 rpm by keeping 
the temperature 4 °C. About 2 ml supernatant was 
taken and mixed with the same amount of acid 
ninhydrin and acetic acid. Then, incubated the 
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samples in test tubes at 100 °C for 1 hr. Terminate 
the reaction in the ice bath after incubation. Add 
4 ml toluene to the product and shake gently for 
15-20 seconds. Optical density was measured using 
spectrophotometer (Spekol 1300) at the wavelength 
of 520 nm against the blank containing toluene. 
A standard curve was made and the quantity of 
proline was quantified from standard curve. Proline 
content was determined by following the formula 
of Bates et al. (1973):

Where; 
115.5 = molecular weight of proline.

Statistical analysis
Data collected for various physiological traits viz. 
proline content, osmotic adjustment, excised leaf 
water retention (ELWR), relative water content 
(RWC), cell membrane stability (CMS), chlorophyll 
content and canopy temperature were subjected to 
the analysis of variance (ANOVA) following Steel et 
al., (1997). Means of genotypes were separated using 
duncan’s multiple range test. Correlation coefficients 
were computed using statistical analysis system 
computer software (SAS, 2009).
 
Results and Discussion

Analysis of variance
Mean squares for various physiological traits of 
varieties, treatments and treatments × varieties 
are presented in Table 2. Results revealed that 
significant variability existed among varieties for all 
the studied traits and both the treatments expressed 
significant impacts on all characters studied. 
Interaction due to treatments by varieties (T×V) 
was also significant for all the studied traits. The 
significant results indicated that varieties’ tolerance 
level varied against drought stress.

Evaluation of varieties on the basis of their average 
performance
The mean performance of each trait for all varieties 
under both treatment conditions is graphically 
represented in Figure 1 to Figure 8. The maximum, 
minimum and mean values of all varieties for each 
studied trait under both environments are given in 
Table 3. Overall, chlorophyll content under normal 

condition was 41.6% while 45.3% under water stress 
conditions. This indicated that the chlorophyll content 
increased significantly under drought conditions 
which is similar to the results reported by Hennouni 
et al. (2012). Generally, higher chlorophyll content 
indicates less photoinhibition to the photosynthetic 
apparatus and increases drought resistance in plants. 
Mean values for chlorophyll content ranged between 
35.47 and 47.73% in normal growing plants whereas, 
from 34.77 to 55.83% in water-stressed plants. 
Hence, results revealed that more variation existed 
for chlorophyll content under both normal and stress 
conditions. The minimum chlorophyll content was 
observed for variety Mexipak under both normal 
(35.47%) and stress (34.77%) conditions. Under 
normal condition, maximum chlorophyll content 
was exhibited by Shahkar-13 (47.73%) followed 
by Bahawalpur-2000 (46.93%) while Lasani-08 
(55.83%) had the highest mean value for chlorophyll 
content followed by Pirsabak-05 (55.73%) in drought 
stress condition as showed in Figure 1.

Table 2: Mean Square eight physiological traits studied 
under normal and stress conditions.
Variables Varieties Treat-

ments
T×V CV

Chlorophyll content (CC) 73.61** 1174.02** 37.21** 6.66
Canopy Temperature (CT) 4.62** 50.138** 6.855** 6.09
Proline Content (PC) 0.0563** 0.1332** 0.0042** 10.14
Osmotic Potential (OP) 1.435** 5.000** 2.368** 3.37
Relative Water Content 
(RWC)

119.97** 6869.32* 109.93* 9.85

Excised Leaf Water Reten-
tion (ELWR)

66.321** 983.503** 58.578* 6.75

Cell Membrane Stability 
(CMS)

2545.65** 9.35

Osmotic Adjustment (OA) 5.970* 6.40

*: Significant; **: Highly Significant; ns: Non-Significant.

According to the results shown in Table 3, mean 
value of all varieties for canopy temperature under 
normal conditions was recorded as 24.31°C while 
under drought stress condition was recorded as 25°C. 
Data for canopy temperature ranged between 22.43 
and 26.20°C under normal conditions whereas, 
under stress, it ranged between 21.90 and 28.10°C. 
According to Figure 2, maximum mean temperature 
was observed for Chakwal-50 (26.20°C) followed 
by AARI-011 (25.63°C) under normal conditions 
whereas under stress conditions, variety Anmol-91 
(28.10°C) had maximum canopy temperature 
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followed by AUR-09 (27.93°C). The minimum 
canopy temperature was observed for Bwp-97 
(22.43°C) followed by Mexipak (22.67°C) under 
normal condition while Fakhre-Sarhad (21.90°C) 
and Barani-83 (22.33°C) in stress condition. Results 
revealed that varieties under non-stress conditions 
had high canopy temperature as compared to 
stress. This could be due to the fact that canopy 
temperature is related to the rate of transpiration in 
plants. Plants with low canopy temperatures show 
more transpiration, which generates cooling effect. 
Contrarily, plants having high canopy temperature 
indicate the shortage of water in soil as drought. 

Table 3: Descriptive statistics of eight physiological 
traits in thirty wheat varieties under normal and stress 
conditions.
Traits Normal Stress

Max. Min. Mean Max. Min. Mean
CC 47.73 35.47 41.6 55.83 34.77 45.3
CT 26.20 22.43 24.315 28.10 21.90 25
PC 0.479 0.133 0.306 0.493 0.154 0.3235
OP -0.00010 -0.00016 -0.00013 -0.00014 -0.00020 -0.00017
RWC 95.922 78.396 87.159 88.830 60.316 74.573
ELWR 93.712 75.202 84.457 96.226 80.005 88.1155
CMS 149.745 33.025 91.385
OA 5.965 1.112 3.5385

CC: Chlorophyll Content; CT: Canopy Temperature; PC: Proline 
Concentration; OP: Osmotic Potential; RWC: Relative Water 
Content; ELWR: Excised Leaf Water Retention; CMS: Cell 
Membrane Stability and 0A: Osmotic Adjustment.

Figure 1: Mean performance of 30 wheat varieties for chlorophyll 
content.

Under normal conditions, the mean performance of 
all varieties for proline content was 0.306 µg/g while 
0.323 µg/g under drought condition (Table 3). These 
results indicated that proline concentration increased 
under stress conditions which is similar to the findings 
of Chorfi and Taibi (2011) and Hennouni et al. (2012). 
Mean values for proline content ranged from 0.133 to 
0.479 µg/g under normal conditions while from 0.154 
to 0.493 µg/g under drought conditions. Differences 
in means suggested a greater variation under both 

conditions. Minimum proline content was observed 
by AUR-09 (0.133 µg/g) followed by Chakwal-50 
(0.143 µg/g) under normal while Millat-011 (0.154 
µg/g) followed by Chakwal-50 (0.157 µg/g) under 
stress environment. Similarly, higher proline content 
was recorded for Pak-81 (0.479 µg/g) followed by 
Sarhad-82 (0.475 µg/g) under normal conditions. 
Pak-81 (0.493 µg/g) followed by Shahkar-13 (0.492 
µg/g) possessed higher proline content under stress 
condition (Figure 3). Chorfi and Taibi (2011) also 
reported that varieties that had higher proline content 
were more likely to perform better under drought 
conditions, therefore, screening of germplasm for 
drought tolerance based on this parameter was very 
useful.

Figure 2: Mean performance of 30 wheat varieties for canopy 
temperature.

Figure 3: Mean performance of 30 wheat varieties for proline 
content.

Overall, osmotic potential under normal condition 
was -0.00013 mmol kg-1, while -0.00017 mmol kg-1 

under stress condition. Data for osmotic potential 
ranged between -0.00016 and -0.00010 mmol kg-1 

under normal whereas -0.00020 and -0.00014 mmol 
kg-1 under water stress condition. According to 
Figure 4, maximum osmotic potential under stress 
environment was observed for Barani-83 (-0.00014 
mmol kg-1) followed by Chakwal-86 and LU-26 
(-0.00015 mmol kg-1) while Millat-011, Barani-83 
and LU-26 (-0.00010 mmol kg-1) followed by AUR-
09 (-0.00011 mmol kg-1) under normal. Similarly, 
Lasani-08, Bhakkar-02, Sariab-92 and Pirsabak-91 
exhibited the minimum (-0.00016 mmol kg-1) 
osmotic potential under normal conditions whereas, 
Bhakkar-02 and Pirsabak-91 (-0.00020 mmol kg-1) 
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had minimum osmotic pressure under stress condition. 
The degree of osmotic potential indicates the solute 
concentration of the cell. Due to osmoregulation, 
plants that could maintain high turgor pressure usually 
survives under drought conditions. These results were 
similar to the findings of Sayar et al. (2008), that 
efficient osmoregulation was the key phenomenon in 
drought tolerant varieties.

Figure 4: Mean values of 30 wheat varieties for osmotic potential.

Figure 5: Mean values of 30 wheat varieties for relative water 
content.

The mean performance of all varieties under normal 
condition for relative water content was 87.16 %, 
while 74.57% under stress condition. These findings 
are similar to those reported by Keshavars, et al. 
(2012) that under stress conditions plants had lower 
relative water content. The RWC ranged from 78.396 
to 95.922% under normal condition, whereas from 
60.316 to 88.83% under water stress conditions. These 
results indicated the existence of sufficient variation 
for this character under both conditions. Variety LU-
26 had lowest mean value (78.396%) under normal, 
while SA-75 (60.32%) had lowest mean value for 
RWC under stress environment. Similarly, NARC-
09 exhibited higher mean value (95.922%) for 
RWC followed by Bwp-97 (94.578%) under normal 
experiment, whereas AUR-10 (88.83%) possessed 
higher mean value under water stress conditions 
(Figure 5). This indicated that the varieties had more 
RWC under normal conditions than stress. Similar 
findings were also reported by Gunes et al. (2008). 
Hasheminasab et al. (2012) advocated the use of 
relative water content as a key selection measure to 

identify drought-tolerant varieties.

The mean value for excised leaf water retention 
(ELWR) under normal condition was 84.457% while 
under stress it was 88.115% (Table 3). Under normal 
condition, the mean ELWR ranged from 75.202 to 
93.712% whereas from 80.005 to 96.226% under 
stress condition. These findings indicated differential 
performance of varieties for ELWR under both 
environmental conditions. Lower mean value for 
ELWR was recorded for variety Barani-83 (75.202%) 
under normal while AUR-10 had higher (80.005%) 
mean value for ELWR under stress condition. Higher 
mean values for ELWR were recorded for Sariab-92 
(93.71%) followed by Pirsabak-91 (92.564%) under 
normal conditions, whereas Pirsabak-91 (96.23%) 
followed by Shahkar-13 (95.95%) had higher mean 
values under drought condition (Figure 6). Results 
revealed that under stress conditions excised leaves 
tended to lose less water than normal condition 
because of the scarcity of water in leaves. Generally, 
drought tolerant plants have more ELWR under 
stress conditions. Therefore, under stress conditions, 
higher excised leaf water retention has been proposed 
as a key water status indicator in drought tolerant 
plants (Gunes et al., 2008).

Figure 6: Mean performance of 30 wheat varieties for excised leaf 
water retention.

Mean data for cell membrane stability was 91.385% 
(Table 3). Mean values of CMS ranged from 33.025 
to 149.745%. Th results indicated the substantial 
influence of drought stress on cell membrane stability 
which are in line with Razzaq et al. (2013). Overall, 
lowest cell membrane stability was observed for 
Chakwal-86 (33.025%) followed by NARC-09 
(40.725%), whereas higher membrane stability was 
observed for SA-75 (149.745%) followed by Fakhre-
Sarhad (136.36%) (Figure 7). The CMS indicates the 
normal functionality cellular machinery. Therefore, 
plant with higher CMS could perform reasonably 
better under drought conditions than those having 
lower CMS (Sairam et al., 2002).
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Figure 7: Mean performance of 30 wheat varieties for cell membrane 
stability.

Average osmotic adjustment of 30 wheat varieties was 
3.538 MPa. Overall, mean values ranged from 1.112 
to 5.965 MPa. Significant phenotypic variations for 
osmotic adjustment were observed among all the 
varieties. Similar results were reported by Moinuddin 
et al. (2005). Lower value for osmotic adjustment 
varieties was recorded for Sarhad-82 (1.112 MPa) 
followed by Chakwal-86 (1.434 MPa), whereas 
NARC-09 (5.965 MPa) followed by Millat-011 
(5.872 MPa) had higher value as represented in 
Figure 8. It has been reported that varieties with 
higher osmotic adjustment had superior performance 
under drought stress conditions (Ming et al., 2012).

Figure 8: Mean performance of 30 wheat varieties for osmotic 
adjustment.

Correlation analysis among various physiological traits
Correlation coefficients under normal conditions: 
The coefficient of correlation is the measurement of 
the linear relationship between two variables. The 
Pearson correlation of six physiological parameters 
under control conditions is presented in Table 4. 
Chlorophyll content had positive correlation with 
proline content only which is supported by the 
findings of Khaket et al. (2014), whereas it had negative 
correlation with all other studied traits under normal 
condition. Cell membrane stability demonstrated 
positive correlation with canopy temperature, osmotic 
adjustment and proline content while expressed 
negative correlation with excised leaf water retention 
and relative water content. According to Farooq et 
al. (2011b), CMS is a major component of drought 
tolerance and its positive association with mentioned 
physiological traits indicated stability under moisture 

stress conditions. Canopy temperature expressed 
positive correlation with excised leaf water retention 
and relative water content while it showed negative 
correlation with osmotic adjustment and proline 
content. Excised leaf water retention demonstrated 
positive correlation only with canopy temperature 
and negative correlation with other five studied 
physiological traits. These results are in agreement 
with the findings of Geravandi et al. (2011). Osmotic 
adjustment represented positive correlation with 
relative water content while negative with proline 
content as described by Naeem et al. (2016). Proline 
content expressed negative correlation with relative 
water content. These findings are in accordance with 
earlier results of Geravandi et al. (2011) and Rehman 
et al. (2016). This indicates that genotypes with high 
CMS will have low RWC which make them impotent 
for water stress condition.

Table 4: Pearson correlation eight physiological traits 
under control conditions.

CC CMS CT ELWR OA OP Proline
CMS -0.216
CT -0.088 0.016
ELWR -0.093 -0.002 0.087
OA -0.293 0.072 -0.122 -0.142
OP 0.239 0.170 -0.439 -0.133 -0.174
Proline 0.282 0.069 -0.305 -0.213 -0.423 0.226
RWC -0.117 -0.081 0.031 -0.120 0.131 -0.354 -0.089

Chlorophyll Content (CC); Cell Membrane Stability (CMS); 
Canopy Temperature (CT); Excised Leaf Water Retention (ELWR); 
Osmotic Adjustment (OA); Proline Concentration (PC); Relative 
Water Content (RWC).

Correlation coefficients under stress condition 
In the stressed environment, chlorophyll content 
was positively correlated with canopy temperature, 
excised leaf water retention and proline content 
while it expressed negative correlation with cell 
membrane stability, osmotic adjustment and relative 
water content (Table 5). According to the findings 
of Shamsi (2010), drought-tolerant wheat cultivars 
had higher chlorophyll content under water stress 
conditions. Cell membrane stability demonstrated 
positive correlation with excised leaf water retention 
and osmotic adjustment as also observed by Naeem 
et al. (2016), while it expressed negative correlation 
with canopy temperature, proline content and relative 
water content. Under abiotic stresses, wheat varieties 
with higher cell membrane stability and chlorophyll 
content tended to produce higher yield as also 
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reported by Blum et al. (2001). Canopy temperature 
expressed positive correlation with excised leaf water 
retention, osmotic adjustment and relative water 
content while negative with proline content. So, 
cooler canopy temperature could be used as a selection 
criterion for drought-tolerant genotypes as suggested 
by Olivares-Villegas et al. (2007). Excised leaf water 
retention demonstrated positive correlation with all 
studied physiological traits except proline content. 
Osmotic adjustment represented positive correlation 
with relative water content while negative with 
proline content. Proline content expressed negative 
correlation with all studied traits except chlorophyll 
content. Drought tolerance at a molecular level is 
associated with the capability to accumulate proline 
and high-water level conservation (Sultan et al., 2012).

Table 5: Pearson correlation eight physiological traits un-
der stress conditions.

CC CMS CT ELWR OA OP Proline
CMS -0.129
CT 0.058 -0.209
ELWR 0.056 0.017 0.093
OA -0.074 0.072 0.112 0.162
OP 0.008   0.195   -0.188   -0.033    0.527
Proline 0.199 -0.145 -0.173 -0.164 -0.407 -0.113
RWC -0.037 -0.120 0.073 0.029 0.354 -0.081 -0.051

Chlorophyll Content (CC); Cell Membrane Stability (CMS); 
Canopy Temperature (CT); Excised Leaf Water Retention (ELWR); 
Osmotic Adjustment (OA); Proline Concentration (PC); Relative 
Water Content (RWC).

Conclusions and Recommendations

Based on higher OA, CMS and ELWR, genotypes 
NARC-09, AUR-10, SA-75, Mexipak and AUR-09 
are suitable for cultivation under drought conditions. 
The mentioned traits are encouraged to be used as 
screening criteria to breed for drought-tolerant wheat. 
This study recommends cell membrane stability 
(CMS) as better selection criterion in developing 
wheat lines for drought tolerance because it had 
positive correlation with Osmotic Adjustment (OA), 
Excised Leaf Water Retention (ELWR) and expressed 
negative correlation with canopy temperature (CT). 
Cooler canopy temperature with high CMS, OA, and 
ELWR indicates drought tolerance in bread wheat.
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