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Introduction

Hierarchical or multilevel data structures have 
great utility in many areas of agricultural 

research including on-farm trials, where there can be 
information at the village, farm and plot or animal 
level. Experiments in animal breeding are often 
concerned with attributing variation in traits of 
offspring, such as their mortality, fertility rates and 
subsequent growth rates (Li et al., 2017). All those 
concerned with agricultural research are quite familiar 
with the phenomena that livestock data often have 
some hierarchical structure with different levels of 
variation. Analysis of variance except in balanced or 
nested designs has been difficult to apply to data with 
a multilevel structure. Mixed modelling is becoming 
a standard approach for analyzing these types of data, 
particularly since it can deal with complicated or 
“messy” structures (Hebblewhite, 2008).

In multilevel data structures there are different types 
of investigational units at different levels or layers, 
e.g. plots within farms, or animals within herds  
and attributes associated with these different units 
whose effects we wish to assess, e.g. planting density, 
thinning practice, breed or sex of the animal. The 
response of interest, such as crop yield or weaning 
weight, is usually measured at the lowest level, but 
the variation in these responses is due to variability 
at the different levels. For example, variation in crop 
yields collected in an on farm trial is partly due to 
village to village variability, farm to farm variability 
or partly due to plot to plot variability. To incorporate 
these different levels of variability into our multilevel 
model for hierarchical data, we specify the units in 
the levels as random effects.

Multilevel model (MLM) is very powerful technique 
and has wide range of applications (Gilbert, 2008). 
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One strong reason for using mixed modelling is that it 
can deal effectively with levels or layers in the data and 
can give more valid, though theoretically approximate, 
significance tests and standard errors, something that 
conventional analysis of variance methods cannot do 
except in one or two specific circumstances. Secondly, 
it has the ability, with unbalanced structures, to 
combine information from different level in the data 
(Kreft and Leeuw, 1998). Readers who are familiar 
with the analysis of lattice designs will recognize that 
this is akin to “recovering inter-block information”. 
This has the added advantage of improving the 
precision of fixed effect comparisons such as the 
experimental treatments or other covariates. The one 
slight drawback of the model is that initially it seems 
relatively complex compared to analysis of variance. 
For a start, the model is more difficult to specify one 
needs to correctly identify which effects are random 
and which are fixed. The resulting computer output is 
also less familiar and not easy to use than ANOVA 
outputs. However, researchers who are familiar with 
split-plot analysis of variance will probably have less 
difficulty in formulating the multilevel model, since 
the principles of identifying and evaluating variation 
of more than one level in the data is the same. Thus, 
wherever, the composition of data is hierarchical in 
nature, we should go for the appropriate mixed model 
analysis (Goldstein, 2011). This study is intended to 
explore and understand the multilevel modeling that 
will lead to a better ability on the part of the reader 
to recognize the correct analysis-  a step closer to the 
best model. Multilevel model is capable to extract 
interaction between level 2 and level 1, say village 
× field, often such interactions are of key interest 
(Aguinis et al., 2013). Finally, a clear awareness at the 
planning stage is definitely needed to ensure that how 
much different levels of units should be included in a 
proposed study and also to add sufficient replication 
at each level.

It is often observed in agriculture, particularly in 
agriculture economics and agriculture extension that 
sampling methodology desire the use of multistage 
cluster sampling. In this context sampling from certain 
district involve random selection of villages and 
from villages fields are randomly selected, similarly, 
sampling can be extended from two to higher stages. In 
such type of sampling the neighborhood effect is most 
likely to carry over. To capture this effect an important 
class of statistical modeling called multilevel modeling 
came into limelight, which not only investigate the 

individual effect but also the contextual effect as 
well (Goldstein, 2003; Raudenbush and Bryk, 2002; 
Snijders and Bosker, 1999). 

Another problem which can be confronted in these 
situations is the dependence of the observations 
and consequently the violation of the assumptions 
commonly known as Gauss-Markov assumption 
(where observations are regarded as independent and 
identically distributed). 

One of the foremost problem in handling multilevel 
modeling is the estimation of optimum sample 
size for carrying out the investigation. (Murray et 
al., 2006) This study is intending to investigate the 
problem by considering multilevel models restricted 
to two levels but the same reasoning can be extended 
to higher levels as well. At the outset we consider a 
basic multilevel model.

where;

which can be written more compactly.

where;
yij may be the yield of the ith field in the jth village 
randomly selected from district A. Model (1) is based 
on random intercept i.e. we allow intercept to vary from 
village to village while the slope coefficient is fixed for 
the villages. Here we need to estimates four parameters 
namely.β0, β1 and σ2

e, σ2
uo (Raudenbush, 2004).

In case it is expected that the role of the covariate also 
changes from village to village. In a given problem this 
may be the fertility gradient which may change from 
village to village and consequently we can consider 
it random as well and the model (1) now becomes, 
(Hox, 1995).
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For illustration, one can obtain the estimate of,

where;

It is evident that in model (2) there are two fixed 
coefficients, β0, β1 while σ2

uo, σuo1, σ
2

u1 and σ2
eo are the 

random parameters, σ2
uo and σ2

u1 are the variances 
associated with random intercept and random slope 
respectively, while σu 01 is the covariance between these 
terms. These variances and covariances are termed as 
random parameters. (Demidenko, 2013).

Sample size issue in multilevel modeling
One of the core issues in carrying multilevel modeling 
is estimation of sufficient sample size. Conventionally, 
the factors affecting sample size are the precision 
desired for the given type of estimate, its variability, 
and the types of sampling. The additional factors 
which are contributing in the estimation of sample 
size for multilevel models are intraclass correlation 
(ICC), the number of parameters in the model, and 
the balancing status of the data are vital. Generally, it 
is believed that multilevel modeling is a large sample 
activity (Snijders and Bosker, 1993).

The main concern of the present research study is: 
1. to assess the role of the sample size in obtaining 

precise estimates of the fixed and random effects 
for fitting linear multilevel models and to analyze 
their subsequent power patterns.

2. to find out the effect of level 1 and level 2 units in 
achieving optimum sampling results.

3. to investigate the situations where ignoring 
hierarchical data structure leads to seriously 
misleading conclusion. 

Materials and Methods 

The methodology adopted constitute two broad 
sections. One relating to optimum sample selection 
which includes sample size in multilevel modeling 
and its connected factors like ICC, test size, effect 
size, cluster size, power of the test and number of 
clusters to be sampled. The second component is 
relating to estimation of multilevel model. 

Sample size estimation
To investigate any of the problem concerning 
agricultural experiments in greatly dependent on 
the use of appropriate statistical model. Different 
statistical models are used for achieving the required 
objectives concerned with these experiments. Of 
these, MLM is of great importance as compared to 
usual traditional methods of ANOVA (Preacher, 
2010). An important problem in multilevel modeling 
is to estimate optimum sample size, and strive to 
achieve minimum variance unbiased estimates of the 
concerned parameters. In the uni-level modeling, the 
factors effecting the sample size are the standard error 
of the effect size, power of estimation, effect size and 
test size but in multilevel modeling additional factors 
to these, like the magnitude of the ICC, number of 
parameters to be estimated, cluster size, total number 
of clusters, and the information whether the design 
is balanced or unbalanced are playing vital role in the 
estimation of sample size (Sastry et al., 2006). The 
statistical significance of these factors for multilevel 
models are evaluated and their mutual relationship is 
explored. In case of linear models, all the inferences 
are performed under the assumption of multivariate 
normal distribution.
 
Generally, in simple case when dealing with 
univariate normal distribution, the following formula 
is considered for estimation of sample size which is 
extended to a wide range of situation.

 
Equation (3) comprises four quantities, namely, α, the 
size of the test, 1-β denote the power of the test, γ is 
the effect size which is based on the assumption that 
the null hypothesis about the underlying variable has 
value 0, i.e. the effect size represents the increase in the 
parameter value. The difficulty with this expression in 
case of multilevel modeling is the determination of 
mathematical expression for se(γ). For some specific 
sample sizes/designs the problem can be solved using 
the theory of package PinT, developed by Snijders et 
al. (2005). 

In the present research study, sample size consideration 
for two-factor regression and the power of estimation 
were observed through simulations. It is important 
to mention that for the regression and ANOVA type 
models, a specifically designed statistical package OD 
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(Optimal Design) was used for obtaining optimum 
sample size for performing agricultural experiments.

Estimation of multilevel model
To achieve the data of the desired nature, simulation 
seems the best option. In fact, this study is continuation 
of our previous work (Yar et al., 2016), where students 
score data was taken from the schools of district 
Charsadda and comparison between multilevel and 
multiple regression analysis was made. The nutshell 
of the study was that it will be far convenient to 
compare these two models through simulations. 
For estimating multilevel model, data will be 
simulated for the yield of the crop fulfilling normality 
assumption. Initially considering that the yield does 
not change significantly from village to village, then 
for the intercept model, the goodness of classical 
linear regression model (CLRM) and multilevel 
linear regression (MLM) are compared. Secondly, 
the data is simulated such that yield does changes 
significantly from village to village (cluster to cluster). 
Again, the same comparison as stated above is made.

The process mention will be repeated using extended 
model, by adding covariate (Random slope in case 
of multilevel linear regression) to the model and the 
models achieved in each case will be compared for 
adequacy. The analysis will be carried out using nlme 
package of R.

Statistical analysis and discussions
Estimation of optimum sample size for multilevel 
modeling: Optimum sample size is estimated for 
different type of models. Consider a random intercept 
model, for illustration it is assumed that the standard 
error of the estimate is fixed.

We consider the 2-level random intercept model 
given as (Hox, 1995).

where eij ~ N (0, σe
2 ) and uij ~ N (0, σu

2) contain no 
explanatory variable.

The mixed model is:

The response Yij is a Z-score of the crop yield which is 

expected to vary from field to field. The response may 
be any continuous variable, fulfilling the assumptions 
(say production of crop, income or profit of farmers, 
net weight of animals, crop or leaf quality index etc.) 
and is expected to vary from field to field (level-1) and 
from village to village (level-2 units).

 Let it is desired that within each level-2 unit (village) 
the mean should be estimated with a standard error 
of 0.03. If a simple random sample is to be taken it 
can readily be deduced that the sample size should be:

If a two stage sampling scheme is employed the 
interest will be to reassess the sample size and what will 
happen to the standard error if a two-stage sampling 
scheme is employed (first villages then fields), in case 
the between villages variance is 0.20, and assuming 
that there are direct extra budgetary consequences of 
sampling villages.

Case-I: when ρ = 0.1: In case intraclass correlation 
ρ is 0.1, then the estimated sample size in cases of 
two stage sampling or two level model when it is 
intending to brought down the standard error of the 
constant to 0.03 is given below. In these calculation, 
it was assumed that there is no extra cost involved in 
surveying an additional village.

In this case, ρ = 0.1. Using Cochran’s formulae and 
assuming that per cluster one unit will be sampled, 
so that n = 30, the total sample size for a two-stage 
random sample that is equivalent to a simple random 
sample (SRS) (size 1111) times design effect (3.9) 
that is 4333. 

To maintain the standard error of 0.03, the desired 
sample 144 villages ( J) and from each village 30 
fields (n) will be selected, which makes total of 4320 
fields, as given in the Supplementary Table 2 of the 
appendix. In these calculation the additional cost of 
surveying the extra cluster is taken as zero.

Case-II: when ρ = 0.2: When estimating the intercept 
of the multilevel model with the standard error of the 
estimates= 0.03. In case intra class correlation, ρ = 0.2, 
the desired standard error (0.03) of the estimate can 
be obtained using 128 villages (clusters, J) and from 
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each 59 fields (n), this makes a total ( J*n) of 7552 
units. Supplementary Table 1 of the Supplementary 
section gives the detail situation.

Where; J, indicates the number of (villages) clusters 
and n, is the size of the cluster (village) and c denotes 
the cost per unit(field). Similarly, if it is intended to 
lower the standard error to 0.02, the sample size for 
the simple random sample (SRS) will climb to 2500 
(Supplementary Table 2).

From the results of Supplementary Table 1, it is clear 
that there exists positive relationship between ICC 
and the sample size desired for the multilevel mode-
ling. Supplementary Table 2 further authenticate the 
relation between standard error, ρ and their respective 
sample sizes.

As indicated by the output that the standard error 
of 0.02 can be achieved if 566 clusters each of size 
30 units are surveyed. Further, it is evident that for a 
specified ρ, substantial reduction in the sample size 
and number of clusters (villages) to be sampled can 
be achieved if we allow the standard error to increase 
or add effective covariate in the model.

Two level, two factor ANOVA model
Revisit the level-1 model, the same as given in Model 
1,

The level 2 model, or cluster-level model has been 
changed, an additional indicator variable wj is added 
to the model,

where β0 is the grand mean, β01 is the mean difference 
between the treatment and control group or the main 
effect of treatment, wj is an indicator variable taking 
-½ for the control group and ½ for the experimental 
group, u0 j is the random effect associated with each 
cluster, σ2

uo is the variance between clusters.

The mixed model is:

ȲE is the mean for the experimental group, ȲC is the 
mean for the control group. 

Here testing H0 and H1 is equivalent to testing the 
main effect of the treatment. The problem is handled 
using OD (Optimal Design) for longitudinal and 
multilevel research. The above problem is discussed 
under different conditions, the main interest lies 
in how different factors i.e. number of clusters ( J), 
cluster size (n), standardized effect size (δ), Intra-class 
correlation (ρ) and Power of the test are interacting in 
the precision of estimation. In particular, total sample 
size J × n, the product of the number of clusters 
sampled and the cluster size is the focal point. In 
order to know how cluster size and sample size varies 
to achieve reasonable power for managing standard 
estimation, α is taken as fixed at 0.05, δ at 0.20 and 
varying J, n, and ρ to check the power of estimation 
of parameters involve in two factor ANOVA model. 

Sample size options when effect size is specified
The results regarding power of estimation for varying 
n, j, and ρ are obtained. The following outcomes are 
extracted from the results:

1. There will be a little problem in estimation 
of sample size for fitting multilevel model if 
standardized effect size δ is 0.2 or lower and 
intra-class correlation ρ is also low (0.05 or less). 
When ρ is low, it is evident that the design effect 
(1+ (n-1) ρ) will be low in this case. The power, 
here increase rapidly with increasing number of 
clusters. Substantial, Power (0.80) can be achieved 
for J=50 or more each of size 98 (total sample 
size 4900). A small upward shift in the ρ (0.07), 
causes the total number of clusters to jump to 
60 each of size 256 (total sample size 15360) for 
carrying a test of reasonable power (0.80) and this 
number rise to 85 each of size 145 (total sample 
size 12325) when ρ=0.10, which leads that the 
number of sampled clusters needed to be raised as 
the neighborhood effect, ρ (Intraclass correlation) 
increases.

2. Secondly, it is observed that the cluster size is also 
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playing a role in power enhancement, in case ρ is 
very small (ρ = 0.05), the influence of the cluster 
size diminishes when ρ increases. This can be 
viewed for changing the cluster size against the 
same cluster numbers for the respective ρs.

3. From the results it is concluded that a small 
standardized effect size (δ = 0.20) in multilevel 
modeling can be detected with reasonable small 
samples provided that the number of clusters 
exceed 100. However, these options needed to be 
reassessed if the cost per cluster is large and the 
budget constraint leads the researcher to go for 
optimal sample size.

4. It is found that generally, with the increasing 
number of cluster J, the cluster size n, as well as 
the total sample size decreases and the power 
of estimation is improving. For ρ = 0.05, the 
combination of (55, 55), (60, 40), (70, 25), (75, 
20), (80, 20), (85, 14), (90, 14), (100, 13), (102, 
10), (140, 8) and (160, 6), having the same power 
for varying number of J, n and total sample size. 

Multilevel modeling versus classical linear regression 
model
The simulated data is used to fit intercept model for 
the crop yield in case of classical linear regression 
model and then allow the mean yield to change from 
village to village and make use random intercept 
model (MLM). Two sets of data are generated, the 
fitted models are given in Supplementary Table 3(a) 
of the Supplenentary Material section:

 Intercept          Residual
Std Dev            3.76           88.78

The low amount of standard deviation (3.76) of the 
intercept indicate that the crop yield does not chang-
es markedly from village to village. Consequently, we 
gain nothing by using multilevel modeling approach. 
In fact, standard error in case of MLM is fractionally 
greater and t-value is low too because three parame-
ters will be estimated in case of multilevel model. 

Supplementary Table 3(b) compares the traditional 
linear regression model with the corresponding 
multilevel model on the basis of three criteria Akaike 
Information criteria (AIC), Bayesian Information 
criteria, and log likelihood function. 
The Akaike’s Information and Bayesian information 
are fractionally larger for the MLM. As AIC penal-
izes MLM, for the larger the number of parameters 
to be estimated. In this situation, considerable high 

p-value refer to the suitability of classical linear re-
gression model. The above process is repeated with 
another set of data, now inducing village to village 
variation (Standard deviation = 279.83) in the crop 
yield. Let’s see the output: 

Intercept          Residual
Std Dev            279.83           64.47

Supplementary Table 4(a) gives the coefficient of the 
fitted models from simulation 2, For the same mean 
value of the crop, MLM attribute more variation to 
the intercept term (88.54) with smaller degree of 
freedom because more parameters are estimated in 
case of MLM.

In Supplementary Table 4(b) of the Appendix, the 
goodness of the two models are compared, Now 
The MLM has now reduced the AIC and BIC by 
considerable margin, so is the margin between log 
likelihood score, consequently, the traditional and 
multilevel models are significantly different and the 
likelihood ratio test (L.Ratio) results indicates that 
MlM is much superior as compared to its counterpar 
(CLRM). 

Adding covariates in the model
Lets two covariates are added to the model which 
are expected to be influencing the yield (response) of 
the crop, say the amount time spend by the farmer in 
the field and the amount of urea under cultivation. 
Now the simulated data about the crop yield, along 
with the two covariates reveals the following findings 
taken from Supplementary Table 5 in the Appendix 
section.

Random effect 
of the intercept

Intercept Residual
Std Dev 279.83 64.47

Random effect 
of the covariate

Intercept
Time
Residual

Std Dev 2.56e + 
2 , 1.60e-04
6.42

Correlation

-0.001

The intercept of the constant and covariate 
(Time) possess high standard deviation and are 
highly expected to vary from village to village. In 
Supplementary Table 5(a) the results of the classical 
linear regression model and the corresponding 
multilevel model are given, Supplementary Table 
5(a) MLM has markedly changed the status of 
intercept and covariate 1 coefficient. In CLRM these 
coefficients are insignificant while in MLM they 
are significant. In particular, the sign of covariate 1 
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coefficient also changes.

From Supplementary Table 5(b) the difference 
between CLRM and MLM is evident. The three 
criteria used namely, AIC, BIC and log likelihood 
showing highly significant improvement when MLM 
is enacted as compared to CLRM. 

Supplementary Table 6(a) gives the summary of 
estimation when the same model is simulated once 
again two coefficient declared insignificant by CLRM 
becomes significant in MLM. Further, the sign of 
covariate 1 coefficient also changes. 

Supplementary Table 6(b) indicates the model com-
parison in simulation 2. The superiority of MLM is 
quite evident. The corresponding likelihood ratio test 
shows highly significant improvement while using  
MLM. 

Supplementary Table 7(a) gives simulation 3 history 
of the two models. Although the significance status of 
the coefficients does not change in MLM, even then  
the p-values declines considerably and the sign of the 
covariate 2 coefficient also changes.

From Supplementary Table 7(b) reveals the same 
conclusion as derived from previous two simulations. 
The results of these simulations are presented in the 
tables given in the Appendix. The likelihood test 
showing highly significant improvement when MLM 
is used instead of CLRM.

Supplementary Table 8(a) indicates that signifi-
cance of two coefficients are alter when we shift from 
CLRM to MLM they are the intercept and the co-
variate 1 coefficient. 

Supplementary Table 8(b) is repeating the same in-
formation by simulation 4, i.e. intra cluster variation 
if substantial then MLM is significantly improved 
model as compared to CLRM.

The extended model containing random intercept, 
random slope and fixed effect slope is simulated four 
times. The above results show that applying tradition-
al modeling approach and ignoring village (cluster or 
group) effect may be seriously misleading. The analy-
sis indicates that we may face all sorts of problem in 
the model, ranging from change in the size and sign 
of the regression coefficient(s) to the overall goodness 

of the model. Model comparison from all the four 
simulation indicate considerable higher value from 
likelihood ratio (L. Ratio) test which reflect highly 
significant difference when we shift from classical 
approach to the multilevel modeling approach under 
the conditions that between clusters (villages) varia-
tions are substantial. Significant changes are observed 
in the all the three criteria used for the best model 
selection, namely, Akaike information, Bayesian in-
formation criterion and log likelihood criteria.

Conclusions and Recommendations

From the above discussion, it came to the knowledge 
that sample size estimation in multilevel modeling 
is a complex issue, as many factors are interplaying 
and each has a role to play in the process. However, 
after thorough assessment of the factors involved in 
estimation of sample size for multilevel modeling, we 
conclude with the following points.

1. In agricultural trials, one of the major components 
in the sample size estimation is intra- class 
correlation i.e. correlation between fields, villages, 
tehsils and districts etc. This causes the sample 
size to rise sharply. It is observed that an intra-
class correlation of small amount (say 0.1) inflates 
the sample size to almost 4 times as compared to 
simple random sampling. However, it is recorded 
that equal increment in ICC does not change the 
sample size uniformly i.e. its effect reduces slowly 
as ICC is increasing.

2. There are variety of choices available for the 
researchers, with multistage sample having the 
same power status, which can suits the study if 
the resources permits. For example, when ρ = 
0.05, all combinations of J and n given by (35, 
6), (50, 4), (65, 3), (70, 3), (85, 2), (100, 2) which 
makes total sample ( J×n) of considerable small 
size, possess sufficient power for estimation and 
are in contention, if the cost incurred in observing 
additional cluster is not creating problem. If this 
is not the case, then naturally option one (35, 
6) seems to be a better choice. This conclusion 
is supported by McNeish and Stapleton (2016) 
that is to effectively utilize multilevel models, 
one must have an adequately large number of 
clusters; otherwise, some model parameters will 
be estimated with bias. 

3. In agricultural experiments conducted at 
different locations, in field trials experiments, 
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the observations are often effected by the 
neighbourhood or environmental effect which may 
vary from small to large in magnitude. This effect is 
needed to be captured in the statistical model and 
ignoring such effect by considering observations to 
be independently distributed may leads to serious 
consequences ranges from misleading conclusion 
to the lack of model adequacy. In case of no or 
negligible effect, ignoring village (cluster) effect 
does not create estimation problems. However, 
if the variable of interest (yield of crop) varies 
from village to village, now ignoring multilevel 
modeling approach may alter the sign of the 
coefficient, the size of these regression coefficients 
and their significant status as well. 

The study tries to identify and assess the problem 
relating to hierarchical data structure (agricultural 
data) effectively, however, detail investigation 
incorporating extensive simulation will enable to 
elaborate the issue and its related factors like number 
of clusters, cluster size, ICC, test size and effect size 
more compactly. 
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