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Introduction

The occurrence of sudden and drastic changes 
in the global climate is seen as a risk for all 

natural habitats. These sudden and dramatic changes 
in climate can result in unfavorable environmental 
conditions that impact the natural Earth’s ecosystem 
through a variety of mechanisms including biotic and 
abiotic mechanisms (Chaudhry and Sidhu, 2021). 
There are several forms of stress, which include 

both biotic and abiotic elements. Among the biotic 
factors are the pathogens that attack the plants, such 
as different types of microbes, insects, weeds, and 
various infections (Mulla, 2013; Pantazi et al., 2019). 
However, abiotic factors include radiation, high 
and low temperatures, water stress such as drought, 
floods, submergence, and salinity stress. Plant growth 
and yield suffer greatly from these alterations. 
Nevertheless, these stresses due to climate change 
are being researched within regulated circumstances 
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in the lab to understand and overcome the stress 
tolerance behavior of plants (Suzuki et al., 2014). 
Naturally, plants secrete various primary and 
secondary metabolites into their surrounding region 
via various organs such as roots, shoots, and leaves in 
different aggregate states, for instance, solid, liquid, 
and gaseous. This process is called exudation (Vives-
Peris et al., 2020). However, this evaluation is centered 
around the secretion of these root exudates under biotic 
and abiotic conditions that contribute to the plant’s 
beneficial and potential growth and development. The 
root exudation process involves the secretion of ions, 
a variety of primary and secondary metabolites that 
include carbon, as well as various enzymes (Bertin 
et al., 2003). The secretion of root exudates leads to 
various interactions in the rhizosphere. However, 
the most positive and productive interaction is 
symbiotic communication, which is caused by PGPR, 
mycorrhizal  fungi, and other microbial components. 
According to Vishwakarma (2017a, b), the significant 
changes in the microbiology of the rhizosphere region 
are due to the different biotic and abiotic stress factors, 
which can be extremely influenced by root exudation. 
Several investigations have been carried out on 
various herbaceous plants and show that PGPR and 
mycorrhizal fungi may have the ability to lessen the 
harm that biotic and abiotic variables might cause 
when there is root exudation (Lumibao et al., 2020; 
Wang et al., 2021; Sharma et al., 2023). 

Root exudates
Root exudates are substances released by rhizo-
deposits by passive diffusion into the surrounding 
region of the rhizosphere (Canarini et al., 2019). 
These root exudates secrete a wide variety of 
substances that are divided into classes called main 
and secondary metabolites. They contain low and 
high  molecular weights (Vives-Peris et al., 2019). 
Primary metabolites that are secreted include 
sugars, amino acids, and organic acids in a bulk, as 
compared to secondary metabolites such as auxin, 
glucosinolates, and flavonoids (Badri and Vivanco, 
2009; Canarini et al., 2019). Prior research conducted 
on Arabidopsis, Soybean, and Cucumber showed 
that primary metabolites are released in significantly 
greater amounts than secondary metabolites. Secreted 
metabolites include sugars, organic acids, and amino 
acids secreted by root exudation (Strehmel et al., 2014; 
Tawaraya et al., 2014).

Conversely, however, the microbial diversity of the soil 

and plant development are impacted by root exudates. 
A recent study by Zhalnina et al. (2018) on Avena 
barbata plant indicates that plant growth influences 
root exudation secretion and the bacteria community 
existing inside the rhizosphere.
 
The release of symbiosis signaling molecules is 
the main purpose of the root exudates. Symbiotic 
signal molecules exist in a wide variety of amino 
acids, flavonoids, non-flavonoids. These signaling 
metabolites perform various symbiotic functions such 
as root colonization, biofilm formation for plants 
and beneficial microbial interaction, constrain the 
growth of competitive plant species, and also inhibit 
the growth of pathogenic microbes by secreting 
secondary metabolites (Bertin et al., 2003; Haichar et 
al., 2014). Additionally, plant root exudates may leak 
as much as 50% of photosynthetic products (Dam 
and Bouwmeester, 2016). Different plant species 
and stages can have an impact on the quantity and 
diversity of root exudates of plant aging the variety 
of microorganisms, and by different biotic and abiotic 
conditions (Rovira, 1969; Vives-Peris et al., 2019). 
Different root exudate secretion was observed on 
Arabidopsis  plants at different growth stages, the 
study was performed by using GC-MS approach. It is 
observed that in the early stages of plant development, 
the concentration of sugars and sugar alcohols 
is higher as compared to later stage in the study. 
However, at the conclusion of plant development, 
there is an active rise in the synthesis of amino acids 
and phenolic chemicals (Chaparro et al., 2013).

Mechanism of root exudate secretion
Root exudates are released from various plants via root 
tips in the rhizosphere. The roots react differentially 
depending on the environment and under different 
stress conditions, such as biotic and abiotic conditions 
(Doan et al., 2017; Canarin et al., 2019). Generally, 
the secretion mechanism of primary and secondary 
metabolites by root is thought to be mainly passive 
process, which is further facilitated through three 
different routes that vary based on the root exudates’ 
makeup. Diffusion, vesicle transport, and ion channels 
(Badri and Vivanco, 2009). Certain transporters 
responsible for the transport of exudates across 
plasma membranes are also subdivided based on what 
makes up root exudates, such as ATP-binding cassette 
(ABC), aluminium activated malate transporter 
(ALMT). Usually, multiple acid moves in and move 
out transporter (UMAMIT), multidrug and toxic 
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compound extrusion MATE (Canarin et al., 2019).

The diffusion process typically involves the transport 
of polar molecules, uncharged and low-molecule-
weight organic metabolites such as sugars, amino 
and carboxylic acid, and phenolic compounds are 
transported across plasma membrane. This process 
is a passive process that depends on the different 
concentration gradient between the inter cytoplasmic 
region of the rhizosphere’s outer layer and the root 
cell. The permeability of the membrane determines 
the secretion, the cytosolic pH and the polarity of the 
secreted metabolites (Bertin et al., 2003; Badri and 
Vivanco, 2009; Vives-Peris et al., 2019).

The release of organic acids such as sugars, amino 
acids, malate involves two different mechanisms 
such as passive efflux transport of anions and active 
transport of protons, which involves the pumping of 
H+ ions by using ATPase energy (Yan et al., 2002; 
Hedrich, 2012; Huang et al., 2021). Therefore, these 
organic acids transport through the plasma membrane, 
which transports these metabolites via a specific 
transmembrane protein, also known as transporter, 
that transports them from the inner region of the 
plasma membrane to outer region of plasma membrane 
without the interaction of polar and charged molecules 
with hydrophobic layer of the plasma membrane (Sasee 
et al., 2018; Yang and Hinner, 2014). Transporters 
that involve H+ ion pumping active transport using 
ATPase energy include ATP- dependent ABC 
transporters responsible for secondary metabolite’s 
secretion and MATE transporter responsible for the 
secretion of organic acid (Badri and Vivanco, 2009; 
Radchenko et al., 2015).

Passive efflux of certain compounds is transported 
via simple diffusion or facilitated diffusion which 
in turn are divided into two different mechanisms, 
namely membrane channels. and carrier-mediated 
pathway. These pathways transport various types of 
primary metabolites from high concentration to low 
concentration without using ATP energy (Chen and 
Lui, 2019). The transporter responsible for the amino 
acids is recognized as UMAMIT, cationic amino acid 
transporter (CAT) and glutamine Dumper (amino 
acid transporter) (GDU) transporter (Yang et al., 
2010; Dinkeloo et al., 2017; Suleiman and Tran, 2018).

Sugar will eventually be exposed transporters, or 
SWEET transporters, are responsible for sugar 

transport (Slewinski, 2011; Breia et al., 2021). ALMT 
transporters, on the other hand, are responsible for 
the transport of organic acids (Sharma et al., 2016). 
The transportation of polysaccharides, mucilage, and 
other high-molecular-weight substances that are 
secreted via the root cap, is referred to as the vesicle 
transport pathway (Becard, 2017). To understand 
the full mechanism of membrane transport, read the 
review article by Inada and Ueda (2014). These-high-
molecular weight compounds facilitate the defense 
mechanism (Preston, 2017). Studies related to Al+ 
toxicity and P deficiency have shown that transporter 
are involved in the root exudation process (Canarin et 
al., 2019).

Root exudates stress mediator
As mentioned earlier, root exudates play a significant 
role in plant growth promotion. Badri and Vivanco 
(2009), on the other hand, state that the root exudation 
pattern may have an impact under biotic and abiotic 
stress. In general, the biotic factor promotes the 
negative and positive interaction in the rhizosphere 
between plants and microorganisms like fungus, 
bacteria, and insects, or the control of the nod gene 
in plant roots (Bais et al., 2006; Vishwakarma et al., 
2020). Whereas abiotic factors are usually involved 
with environmental stress, such as insufficient 
nutrient availability, salinity stress, drought stress, pH, 
and temperature. These factors or conditions alter the 
root exudate composition, which affects the overall 
soil structure, including microbial communication, 
nutrient availability, and plant defense mechanisms. 
(Henry et al., 2007). In this investigation, we will 
focus on biotic and abiotic elements influencing the 
composition of the root exudates.
 
Abiotic stress
Abiotic stress comprises various non-living factors 
that cause different stresses. These stresses can 
negatively affect a plant’s ability to grow and develop 
and, under certain conditions may cause the plant 
cells to deteriorate. Abiotic stress factors include 
salinity stress, drought stress, also known as water 
deficit stress, and heat or temperature stress (Ben-
Ari and Lavi, 2012; Kopecká et al., 2023). In this 
review, we have exchanged information on the various 
and diverse root exudates that can support plants 
under various stress situations and get through the 
difficulties they face in the stages of development and 
expansion of various plants seen in Table 1.
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Table 1: Root exudates and their function in various plants in abiotic stress condition.
Root exudates metabolites Abiotic factor Function Plant References
7’,4-Dihydroxyflavone, 
Hesperetin, Isoliquiritigenin, 
Naringenin, Quercetin and 
Umbelliferone

Salinity stress Plant growth regulation Phaseolus 
vulgaris

Dardanelli et al., 2012; 
Mondal et al., 2023

Caffeic, Cinnamic acids, Feru-
lic, Gallic, Syringic, Quercetin 
and Vanillic

Salinity stress Plant growth and development Triticum 
aestivum

Tiwar et al., 2011;
Wang et al., 2021

Abscisic acid, Acacetin, Cho-
line, Homoorientin, Leucine, 
Malic acid, and Proline

Drought stress Plant defense mechanisms, symbiotic 
signaling system, antioxidant properties, 
drought tolerance, cellular redox buffer-
ing, and plant growth regulation.

Quercus ilex Gargallo-Garriga et al., 
2018

Fumaric acid, Malic acid and 
Succinic acid

Drought stress Plant growth regulation Agropyron 
cristatum 

Bertin et al., 2003; Henry 
et al., 2007; Qu et al., 
2018; Meena et al., 2020

abscisic acid, indole acetic acid, 
jasmonic acid and salicylic acid,

Heat stress Plant growth regulation Citrus
macrophylla

Vives-Peris et al., 2018a

ascorbate, carotene, glutathione, 
or various flavonoids

Heat and 
drought stress 

Help plants by providing potential 
antioxidants, Plant growth and 
development 

Sorghum 
bicolor

Yaqoob et al., 2020

Salinity stress
Salinity stress is a major abiotic problem that affects 
agricultural land by creating limited ways of crop 
production. The Na+ causes toxicity and disrupts 
ion channels in plants (Kudo et al., 2010; Isayenkov 
and Maathuis, 2019). In addition, salt stress not 
only impairs plant growth and nutrient distribution 
through plant roots, it also adversely impacts the 
pace at which plant roots absorb nutrients and water. 
It also causes an increase in salt concentration and 
produce high toxicity in plants (Munns and Tester, 
2008; Fageria et al., 2011). Therefore, many plant 
species, including P. australis and P. vulgaris, release a 
wide range of organic compounds, such as flavonoids, 
amino acids, sugars, and other components, in the 
form of root exudates throughout the salt stress to 
adjust plants to overcome the stress condition and up-
regulate plant growth and health (Dardanelli et al., 
2012; Xie et al., 2020). 

Salt stress causes some physiological and biochemical 
changes in plants that make them adaptive to the 
stress condition. These changes include the root 
exudation patterns, different compounds released by 
plants in the rhizosphere ecosystem that affect the 
microbial community in the soil, and the nutrients 
available in the soil (Acosta-motos et al., 2017; Arif 
et al., 2020). Massive amounts of organic acid, such 
as malic acid and citric acid, are released in the soil 
by roots to improve ion absorption as well as preserve 

homeostasis during salinity stress (Chakraborty et al., 
2018). Refer to Table 1.

Furthermore, various root exudates released from root 
exudates act as signaling molecules, which creates 
a symbiotic relationship. This relationship between 
roots and microbes helps plants with nutrient uptake 
and mobilization and reduces the harmful effects of 
salinity stress on plants. Increasing nutrient availability 
improves water absorption efficiency (Tahjib-Ul-Arif 
et al., 2021). Gaining knowledge of and control over 
these root exudation processes are sustainable and 
friendly farming methods for salt-tolerant plants.

Drought stress
Drought or lack of water is a known stress that 
occurs for various reasons, for example changes in 
temperature, high light intensity, and low rainfall. 
Drought stress can regulate plant activities by affecting 
morphological, physiological, biochemical, and 
genetic changes (Salehi-Lisar and Bakhshayeshan-
Agdam, 2016; Seleiman et al., 2021; Takahash et al., 
2020). Drought stress can strongly influence different 
chemical cycles, like the nitrogen and carbon cycles. 
Root exudates are significant in the rhizosphere 
region, creating an excellent symbiotic environment to 
combat drought stress. The key role of root exudation 
is to provide Nitrogen when there is little nitrogen 
in the soil. During the drought stress stage, the 
plants produce primary and secondary metabolites to 
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support plant growth and development (Canarini et 
al., 2016; Gargallo-Garriga et al., 2018).

In times of drought, plants modify soil interactions 
and enhance water absorption by releasing a range 
of chemicals into the rhizosphere. The exudation of 
organic acids, such as citric and malic acids, increases 
the solubility of minerals and facilitates the uptake 
of nutrients (Xu et al., 2021). As osmoprotectants, 
sugars and amino acids assist in preserving cellular 
turgor and reducing water loss (Khan et al., 2020).

The significance of root exudate secretion during 
drought stress is to create a symbiotic relationship 
by releasing various chemicals in the form of root 
exudates, which facilitates microbial movement. 
This collaboration improves the soil structure, 
optimizes water retention, and increases nutrient 
availability, which creates a favorable environment in 
the rhizosphere that is crucial during drought stress 
(Bhattacharyya et al., 2021).

Heat stress 
Heat and temperature stress caused by climate change 
is an irreversible stress that can cause severe damage to 
crop production (Hasanuzzaman et al., 2013a). High 
temperature can affect plant growth by denaturing 
their enzymes and destroying metabolism in various 
ways, which can affect plants both physiologically 
and physically (Firmansyah and Argosubekti, 2020). 
The physiological damage caused by heat stress is 
permanent and irreversible, which can cause the death 
of various cells, tissues, and organs, which affects the 
growth and overall development of plants. Long 
term heat stress can affect the seed sprouting stage as 
well as the overall health of seed formation in plants 
(Weaich et al., 1996). 

Table 1 represents the various abiotic conditions 
and several root exudates secreted in different 
conditions. Each root exudate plays an important 
role and functions to help plants overcome stress and 
provide sufficient nutrients. According to Dardanelli 
et al. (2009) and Schlaman et al. (1998), phenolic 
compounds such as flavonoids and isoflavonoids 
play an important role in nod gene regulation, which 
stimulates the nodulation process in stem and root 
cells, also known as DNA promoters. They perform 
a wide variety of functions to regulate plant growth 
and development, such as UV protection, defense 
mechanisms against various pathogens, antioxidant 

components, and the symbiosis signaling pathway 
between the leguminous plant root and rhizobia 
(Dardanelli et al., 2012; Hassan and Mathesius, 2012).

Root exudates are categorized as organic acids and 
amino acids can play a vital function in preventing 
plant diseases as well as helping suppress various 
pathogens (Wen et al., 2021; Yuan et al., 2018). 
Moreover, proline root exudation plays an essential 
function during abiotic stress, such as membrane 
protection and protection of proteins that have 
antagonistic properties against inorganic ions. 
Moreover, in Pancratium maritime, proline improves 
the NaCl tolerance level by upregulating the stress-
protective proteins and by guarding the protein 
turnover machinery against stress and damage caused 
by abiotic factors (Khedr et al., 2003). During salt 
stress conditions, proline plays an important role in 
acclimatizing the plant via adjusting the osmotic 
regulation and also by protecting the plant cell (Ashraf 
and Harris, 2004; Naliwajski and Skłodowska, 2021).

Biotic stress
Biotic stress is a factor that affects plant growth 
and development via living organisms. These living 
organisms are bacteria, fungi, nematodes, protists, 
insects, viruses, and viroids (Hill et al., 1998; Das 
and Rakshit, 2016). Plant growth and development 
AND quality of crop yield are the factors that can 
be influenced by environmental differences in various 
regions, country to country, as well as the resistance 
level of plants to certain aspects that can be studied 
and observed under the intensity of biotic stress 
(Angessa and Li, 2016). Various root exudates that 
secrete in response to these biotic stresses can act 
as attractants and signaling molecules for various 
microbes. Signaling molecules can also have certain 
effects as stimulants. The root exudates can inhibit 
and repel various pathogens and pests (Baetz and 
Martinoia, 2014). Root exudates in rhizodeposits 
emit lower-molecular-weight compounds with 
antibacterial capabilities (VanEtten et al., 1994; 
Hassan et al., 2019). Other primary metabolites 
act as growth regulators in certain plants (Li et al., 
2013). Certain root exudate compounds, which are 
secondary metabolites, have strong antibacterial and 
antifungal qualities (Hasegawa et al., 2010; Vukovic 
et al., 2013; Wurst et al., 2010). Overall, root exudates 
play an important role in plants affected by various 
biotic factors and help in the plant’s growth and 
regulation both internally and externally.
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Table 2: Root exudates and their function in various plants in biotic stress condition.
Root exudates metabolites Function Plants References
Alanine, Benzoic acid, p-coumaric 
acid, p-hydroxybenzoic acid and 
sugars

Regulating the growth of Fusarium 
oxysporum Fusarium solani

Peanut Cul-
tivars

Li et al., 2013; Ho et al., 2017

Daidzein and Genistein Control the expression of nod genes, 
the nodYABCSUIJ operon, and the nod 
box-associated genes.

Soybean 
plant

Lang et al., 2008

Succinic acid Suppress the growth of soil-borne fungus 
F. oxysporum and F. sp. niveum

Watermelon Wu et al., 2011, Ragman et al., 2021

2,4-di-tert-butylphenol and   
3,3-dimethyloctane

Nematocidal activity against M. incognita Tomato Li et al., 2019; Du et al 2021

Benzoic acid and Salicylic acid Inhibits the growth of Fungus Sclerotium 
rolfsii

Ground nut Ankati et al., 2018; Mahatma, et al., 
2021

α-terthienyl Nematicidal, Insecticidal, Fungicidal, 
Antiviral and Cytotoxic activities

Marigold Wang et al., 2007; Hamaguchi et al., 
2019

Ferulic acid Decomposition of organic matter in soil Strawberry 
Taro

Asao et al., 2003; Asaduzzaman and 
Asao, 2020; Lal and Biswas, 2023

2,4-Dihydroxy-7-methoxy-2 H -1 
and 4-benzoxazin-3(4 H )-1

Allelopathic and antibiotic properties 
reduce the harmful trichothecene 
(mycotoxin) produce by fungi.

Maize plant Neal et al., 2012; Etzerodt et al., 
2015

In Table 2, the root exudates that it secretes in various 
biotic conditions may impact its growth and regulation 
in a positive way. The most common function of these 
exudates is their antimicrobial effect. Different types 
of exudates prevent the growth of various microbes in 
soil, which can have devastating effects on the plant’s 
growth.

Conclusions and Recommendations

In a nutshell, root exudates are an essential component 
of plant-soil interactions and play a critical role in 
plant growth, nutrition, and adaptation to changing 
environments. The secretion of root exudates is 
regulated by complex signaling pathways, which 
respond to both biotic and abiotic factors. The 
functions of root exudates are diverse and include 
nutrient acquisition, soil conditioning, defense against 
herbivores and pathogens, and communication 
with other plants. Understanding the mechanisms 
and functions of root exudate secretion is of great 
importance for developing sustainable agricultural 
practices, improving soil health, and enhancing plant 
growth and productivity. For future recommendation 
more research on the regulation of root exudate 
secretion can be done by isolating microbes from 
various mangrove sites will helps to study the specific 
functions that contribute to the creation of cutting-
edge, economically, and ecologically sustainable 
farming techniques.

Novelty Statement

This review paper offers a comprehensive synthesis 
of current knowledge on the multifaceted roles of 
root exudates under both biotic and abiotic stress 
conditions. Further, this work uniquely elucidates how 
root exudates contribute to plant resilience, nutrient 
acquisition, and symbiotic interactions, presenting 
novel insights into the potential applications of root 
exudate manipulation for enhancing crop productivity 
and soil health.
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