A NOTE ON NUTRITIVE VALUE OF FORAGES FOR NILGAI

Abdul Aziz Khan*

Summary. Nutritive value of some forages preferred by Nilgai (Boselaphus trago-camelus) in Changa Manga Forest Plantation, has been estimated by chemical means and compared with that of Cenchrus ciliaris. The forages examined were generally found capable of supplying sufficient quantities of digestible fats and proteins to the animal.

Introduction. Blue bull (Boselaphus tragocamelus), locally known as nilgai, is one of the species of wildlife which has become almost extinct in Pakistan. Residential population of the animal in area between Siphon (Lahore district) and Bajwat (Sialkot district) is reported as 25 and approximately the same number is reported to dwell in the Changa Manga Forest Plantation (2).

In the present communication nutritive value of some of the common forages preferred by nilgai has been estimated through chemical means and compared with that of Cenchrus ciliaris, a nutritive grass relished by cattle throughout the country.

Material and Methods. Eighteen forages browsed by nilgai were collected from Changa Manga Forest Plantation in June, 1975. The samples were dried in shade and brought to our laboratories in Peshawar where these were powdered in grinder and stored in glass stoppered jars. The contents of fats, proteins, fibres, carbohydrates, mineral ash and moisture were determined following methods prescribed in A.O.A.C. (1).

Results and Discussion. Nutritive components of forages collected from Changa Manga are given on page 77 along with mean values of *Cenchrus ciliaris* samples earlier collected from Thal.

The proteins, fat and carbohydrate components, estimated above, were calculated in terms of digestible nutrients by multiplying them with respective digestive co-efficients. Since these valuese are not known in respect of forages under question, the same were taken equal to those of hay as mentioned by Williams (3) and reproduced below:

Nutritive component	Digestibility coefficient		
Carbohydrates	64		
Proteins	57		
Fats	53		

^{... .} Wood Chemist, Pakistan Forest Institute, Peshawar.

Name of forage	Moisture %	Total ash	Fats %	Fibres %	Proteins %	Carbohy- drates %
Acacia leucophloea	14.6	14.9	3.4	35.4	12.4	19.3
Acacia modesta	11.0	33.5	2.1	23.2	13.8	16.4
Albizzia lebbek	10.5	9.4	3.0	26.9	19.0	31.2
Amarantus spinosus	13.5	2.7	4.1	19.2	10.5	50.0
Andropogon annulatus	11.3	11.0	1.1	41.9	5.7	29.0
Cedrela toona	9.8	14.6	3.6	22.3	13.6	36.1
Cordia myxa	12.5	14.5	2.3	37.9	13.8	19.0
Cynodon dactylon	10.5	1.2	3.8	30.7	10.2	43.6
Dalbergia sissoo	13.5	18.3	2.9	13.6	17.1	34.6
Eclipta alba	10.0	24.3	3.2	11.9	9.1	41.0
Ficus glomerata	12.0	15.2	0.2	2.4	12.1	58.1
Ficus religiosa	11.0	11.7	3.0	28.8	15.3	30.2
Mentha sylvestris	15.7	19.4	3.3	30.9	11.0	19.7
Morus alba	16.2	20.5	5.1	13.6	20.5	24.1
Oxalis corniculata	10.7	0.9	5.7	14.2	11.7	56.8
Periploca aphylla	16.5	20.0	2.1	27.6	15.0	18.8
Prosopis specigera	11.2	7.0	2.8	29.1	9.4	40.
Tamarix dioca	13.0	21.3	2.1	12.5		40.7
Cenchrus ciliaris	7.8	9.6	0.9	34.5	7.0	40.2

Digestible nutrients of forages under examination and of *Cenchrus ciliaris*, calculated on the basis of above mentioned coefficients, are tabulated below:

Name of forage	Fats	Proteins %	Carbohydrates %
Acacia leucophloea	1.9	7.1	12.4
Acacia modesta	1.1	7.9	10.5
Albizzia lebbek	1.5	10.8	20.9
Amarantus spinosus	2.2	6.0	32.0
Andropogon annulatus	0.6	3.3	18.5
Cedrela toona	1.9	7.8	23.1
Cordia myxa	1.2	7.9	12.2
Cynodon dactylon	2.0	5.8	27.9
Dalbergia si s soo	1.5	9.7	22.1
Eclipta alba	dT .21.7 vinit	bus alst 5.2 A	26.2
Ficus glomerata	0.1	6.9	37.2
Ficus religiosa	1.6	8.7	19.3
Mentha sylvestris	1.7	6.3	12.6
Morus alba	2.7	11.7	15.4
Oxalis corniculata	3.0	6.7	36.3
Periploca aphylla	1.1	8.6	12.0
Prosopis specigera	1.5	5.4	25.9
Tamarix dioca	1.1	5.9	26.0
Cenchrus ciliaris	0.5	5.0	25.7

Thus all the forages under examination, except Ficus glomerata, were richer in digestible fats as compared to Cenchrus ciliaris. Similarly, the content of digestible proteins of these forages, except in case of Andropogon annulatus, was also higher. Digestible carbohydrates were, however, on the whole lower than that of C. ciliaris. The exceptions being Oxalis corniculata, Eclipta alba, Tamarix dioca, Amarantus spinosus, Cynodon dactylon, Prosopis specigera and Ficus glomerata.

Palatability of 5 species out of those analysed by us has been estimated through feeding trials by Mirza and Khan (2). Judging from this point of view the palatable forages analysed by us are, in order of preference, *Morus alba*, *Ficus religiosa* and *Tamarix dioca*, while amongst grazeables the most favoured species is *Cynodon dactylon*. Oxalis corniculata is also liked by the animal but to a lesser extent.

Conclusion. The above studies indicate that although the forages under examination are generally lower in carbohydrates, these are capable of supplying sufficient quantities of digestible fats and proteins required for healthy growth of the animal.

Acknowledgement. Thanks are due to Mr. A. Aleem, Wildlife Management Specialist of this Institute for supply of material on distribution, habitat and food of nilgai.

References

- 1. A.O.A.C. Official Methods of Analysis, Association of Official Agricultural Chemists, Washington, D.C. (1975).
- 2. MIRZA, Z.B. and M.A. KHAN. Study of distribution, habitat and food of Nilgai (Boselaphus tragocamelus) in Punjab. Pak. J. Zool. 7(2): pp. 209-214, 1975.
- 3. WILLIAMS, K.A. Oils, fats and fatty foods. Their practical examination. 1950; p. 438.