Mohammad Rafique Sardar, Range Management Officer, Pakistan Forest Institute, Peshawar

ABSTRACT

This study was carried out during September,1987 and April, 1988 in the Hazargangi-Chiltan National Park to evaluate the effect of enclosure on carrying capacity, trend and other vegetation characteristics. One hundred twenty semipermanent quadrats (plots) of I sq.m. area both in fall 1987 and spring 1988 were laid out at six representative sites along 400 meter long transect line running across the contours. Out of these, 60 were clipped for estimation of forage production and 60 were studied for vegetation characteristics in two seasons. The study revealed that enclosure had positive effects on range vegetation. Vegetation recovery was remarkably rapid. decreasers (highly palatable) species were reappearing. The estimated forage production was 1234 Kg/per hectare, carrying capacity was I.I ha/Markhor/annum and range condition(health) had improved inside the enclosure. The study also suggested detailed investigation on proper use-factor of different forage/browse species, their palatability index and the climax species in the park.

INTRODUCTION

Hazargangi-Chiltan National Park, Balochistan extends over an area of 13166 hectares. The Park is located at a 15 km distance in south-western direction from Quetta, the capital city of Balochistan. It was declared National Park in 1980. During 1978 to 1987 about 30 Km long barbed fence was erected on its boundary to eliminate human and livestock interference. In addition 46 Km Jeep road, a rest house and museum have also been constructed inside the fenced area to provide excess to the visitors.

Chiltan Markhor (Capra falconeri Chiltanensis), one of the rarest species of wild goat, has been protected by establishing the Hazargangi-Chiltan National Park. The estimated population of Markhor varied from 302 heads in November, 1985 to 360 heads in November, 1987(PFI, 1985-86 and 1987-88). The increase in population, besides other factors, may be due to the increase in forages in the Park due to enclosure (fencing).

The effect of exclosure on forage production and carrying capacity has been studied in Pakistan by a number of investigators. Khan (1977) and Noor (1978) have reported an increase in forage production from 1.5 times to 3.7 times due to this treatment. Similarly, 7 times increase in grazing capacity due to exclosure has been reported (Noor, 1989). However, enclosure effects on forage production, carrying capacity and other aspects of range vegetation have not so far been studied.

Range carrying capacity has been

defined as the maximum number of livestock which can graze each year, on a given area of range, for a specific number of days without inducing a downward trend in vegetation or soil(Hussain, 1968B; Amin, 1985). It is generally expressed as ha/AUM. In other words it is the number of ha. which can supply adequate forage for one animal unit (AU) for one month. An adult cow with a calf is equivalent to one AU and requires 9.1 Kg (20 Lbs)air dried forage per day(Hussain, 1968B).

Forage production and allowable use factor are the important components for the estimation of the carrying capacity. Since use factor for individual forage species has so far not been estimated in the country, therefore it is considered as 0.5 for all practical purposes (Hussain, 1968B).

Amin (1985) had recommended that clipping should be done at 2-4 weeks interval during the growing season for reliable estimate of carrying capacity. Malechek et. al. (1972) estimated forage production by clipping 250 plots of 2 square feet area once during each of 4 seasons in a year. They calculated carrying capacity for domestic goats using an index e.i. product of forage production of each species and its proper use factor. They also established that goats were grazers rather than browsers on the basis of proportionate grass and browse feed consumed by the animal.

Humphrey (1945) stated that range condition class rating is an evaluation of present forage production of an area in relation to its maximum possible production under the best practical management methods. He further opined that such rating is basically applicable to the sites because forage production is variable. Dyksterhuis (1949) made ecological classification of range species using cover percent and assigning them the terms like Decreaser, Increaser and Invader, Based on this

quantitative ecology he classified range condition into 4 classes namely; Excellent, Good, Poor and Very Poor. Hanson (1951) based on observed vegetation composition, soil condition, plant vigor and to lesser degree upon plant density, classified bunch type rangelands into 4 classes. Hussain (1968B) suggested canopy coverage method for estimation of range condition and range trend.

Estimation of carrying capacity is one of the major problems faced by the range managers. However, its knowledge is essential for proper range land management. In the absence of its knowledge the ranges may be overgrazed and hence cause degradation and deterioration. Unfortunately it is happening in the country.

Similarly, existing range condition and range trend are important indicators for planners and range managers for proper range management. Though their estimation poses lot of difficulties yet such are equally important.

This study was carried out to investigate the effect of enclosures in Hazargangi-Chiltan National Park on carrying capacity, range condition and range trend and other changes in the vegetation.

MATERIALS AND METHODS

Six representative sites, where markhors were mostly found, 3 in Hazargangi and 3 in Chiltan mountains were selected collaboration with the Wildlife Management Branch, Pakistan Forest Institute, Peshawar and local staff of the Park. These sites were Shamtar, Kangri and Mashan in Hazargangi and Chashma, Gharak and Wastangi in Chiltan, A 400 meters long transect was laid out at each site across the contour lines (along slope)during September, 1987. Forty quadrats of I square meter at 10 meter spacing were laid out along each transect line and was marked on the

ground. Twenty alternate quadrats were clipped for estimation of forage production while remaining 20 were studied for other desired vegetation characteristics. Similar data were collected during April,1988.In all 240 quadrats were studied at six sites. Out of these, I20 were clipped for forage estimation and I20 were studied for vegetation cover percent, surface material distribution and ecological recovery.

For forage estimation clipping data were collected once during November, 1987 (late Autumn) and second time during April, 1988 (early summer). Hence data for two seasons were collected. Current year's growth of browse and forage species was clipped. The clipped material was weighed in the field immediately for its green weight. The samples were dried in open air for 7 days and their air

dried(AD) weight was recorded for estimation of forage production. Data computed per square meter were transformed into per ha. basis where required. Data on cover percent were recorded separately for grasses, forbs and trees/shrubs species. Data for percent distribution of surface material on plant base, litter, cryptogam, rock pavement and bare soil were recorded for each quadrat.

RESULTS AND DISCUSSION

(i) Forage production: Table I indicates that total herbage and browse production of the park was 2468 kg/ha. Out of which major portion (52%) or 1282 kg/ha. was browse followed by grass which was 34% or 828 kg/ha. It appears that browse was major feed available for Markhor particularly in winter when there was snow on the ground. In spring/early summer available feed was forbs and annuals.

Table 1: Herbage and browse production in Hazargangi-Chiltan National Park(kg/ha.)

S.No.	Sites	Grass		Forb		Browse		Total	
		Nov. 87	Apr. 88	Nov. 87	Apr. 88	Nov. 87	Apr. 88	Nov. 87	Apr. 88
1. 2. 3.	A.Hazargangi Shamtar Kangri Mashan Ave.	390 370 158 306	525 410 195 377	138 40 88 89	269 97 227 198	523 513 600 545	232 955 800 662	1051 923 846 940	1026 1462 1222 1237
nawada 1 aw a	B. Chiltan Chashma (Nullah)	405	437	145	155	1065	1318	1615	1910
2. 3.	Gharak Wastangi Ave.	613 318 445	710 435 527	75 30 83	820 62 346	478 450 664	290 468 692	1166 798 1193	1820 965 1565
Park Av	verage: otal(Annual)	376 828	452	86 358	272	605 128	677	1067 246	1401

Since the Use Factor for each forage species of the national park was not known so a general factor of 0.5 was applied to estimate useable forage. Accordingly, air dried useable quantity of forage was 1234 (2468 x 0.5) kg/ha during September, 1987 to April, 1988 in the park.

- (ii) Animal Unit Month(AUM): The AU equivalent of Markhor is not known. An adult domestic goat is equivalent to 0.3 AU. Presumably an adult markhor has more body weight than an adult domestic goat. Hence an adult markhor is considered equivalent to 0.4 AU a little more than a domestic goat. Accordingly, an adult markhor requires 3.64 (9.1 x 0.4) Kg air dried forage per day. Its AUM is estimated at 109.2 Kg air dried forage. The annual forage requirement of the animal is estimated at 1328 Kg.
- (iii) Carrying capacity: In Hazargangi-Chiltan National Park the useable air dried forage was estimated at 1234 kg/ha/annum or 102.8 kg/ha/month for the growing seasons of 1987-88. Consequently carrying capacity of the park was estimated at 1.1 ha/ Markhor/annum. Accordingly, about 11969 adults animal could be grazed/browsed in the National Park with a total area of 13166 ha. However, the stocking rate during 1987-88 was I markhor/37 ha. Since the cover percent and forage production were improving therefore, the National Park was understocked. The upward range trend indicated that the Park could supply forage to a larger herd of markhor than existing stocking.

Forage production varies from year to year depending on seasonal changes in precipitation and other climatic factors. Further this herbage consists of many species of grasses, forbs and trees/shrubs and all of them are not equally palatable. Their qualitative palatability is recorded elsewhere in this article. Accordingly the estimated carrying capacity is

provisional and applicable to the year of estimation only. Carrying capacity is generally estimated every year for each kind of animals for effective rangeland management.

B. Range Condition

(i) Ecological Recovery: Intermountain valleys and mountains in Balochistan province are generally denuded. The valley may have a few bunches of coarse grasses and unpalatable bushes. Major parts of mountains surface consist of exposed rocks and very shallow soil layer. A scanty vegetation cover exists in the rock crevasses and narrow strips between rock series.

The vegetation response to protection through fencing was very positive and recovery was rather quick in the Park. However, vegetation recovery in valleys and on mountain was variable. Valleys had more vegetation cover than mountains.

(ii) Vegetation Cover and Palatability Rating: Cover percent of grasses, forbs and shrubs/trees follows same trend as their forage production shown in table I. There was higher cover percent (30.2%) of shrubs/trees followed by grasses (13.6%). Among grasses Stipa spp. had maximum cover percent (6.8%) followed by Rotoballia sp. which had 2 percent cover in the Park. All the forb species have nominal (less than 1%) cover except Silene sp. which had 1.7% cover. Among shrubs/trees species Atrimizia sp. had maximum cover percent (6.7%) followed by Ephedra sp. which had 4.7 percent. Further all the grasses, forbs/ shrubs and trees were not relished by markhor. Majority of the vegetation had Poor(P) palatability. The cover percent of vegetation of Excellent(E) and Good(G) palatability was very low (table 2). Less cover percent of highly palatable(Decreaser species) species is generally due to heavy grazing/browsing

pressure or due to secondary succession process where in such species reappear. Evidences show that it was due to reappearance of the decreaser species.

Table 2: Specieswise palatability and cover percent in Hazargangi-Chiltan National Park

Palata-				Park A	verage	
bility						
2	3			6	119 2 7 faon	
				And the second	and the same of	
-2	ed Johan A	sankud	Arron aloin			
G-	0.6	0.9	2.2	1501.1029m	1.2	
F			1.2	1 4	0.7	
AND THE			1.2	51111.4 6 110	0.7	
P	3.3	4.3	Fert 8518	per whiten	1.0	
					Ko air dried in	
F	0.01				.003	
S VIET & D	0.0		an lamins	ent to ther	TO HEAD TO BE	
	0.9	0.9	0.2	0.2	0.6	
F	Carubban dos	IP4efisA	0.02	0.03	0.01	
			9771041101	H 0.03	150 0.01	
G	0.02	0.3	0.1	0.3	0.2	
1011	IGHT DESIGNA					
F	2.8	1.6	10.8	12.0	6.8	
G	7.5	7 /	0.7	ORO COMPANY	onsera vano	
d Mis	3.5	3.4	0.7	0.4	2.0	
			THUMB 10			
F	0.03	0.2	0.3	0.4	0.2	
			and the stands	I Bookisteld of	to make and	
tal:	11.2	11.6	15.5	15.8	13.6	
				DI FEARNAGE	BILL OF LIVE	
E180 1	stato eranik	nad me	7 hs Sings,		28 T-38 Was	
F	· con million	the gate		0.07		
P	AL THE BIRGH	0.2	-			
P	L IFE IA S	154. 611	0.1			
P	- 21 mg	0.1	hour so			
E	•	0.05		0.05		
G	LA - ISVOSTICE	0.1.0811	- Disagnior	0.02	0.01	
MINKBITT	0.07		stocking.			
G	0.03	CAST AL	0.07	0.1	0.04	
D	An real Leading		0.0			
D	1.0	1.0				
F 10	- 9191U-28	0.02	mi zapno	leasonar. of		
E	•		0.2	0.4		
F	0.3					
tal:	1.3	1.6	2.9	4.1		
ea Table	and bos (B)	sollanka	ment to lin	Ditt app and	east priced	TERRES: IT
18A03	0.7	MACH			draind Amora	
odds y	0.3	0.5	2.2	4.19 Wes	8 DE 1.7 DEC 21	
G	2.3	3.5	9.8	11.0	6.7	
	bility' 2 G F P F G F G F G F P E G P P E G P P E G P P F F F P P F F F F F F	bility Hazargany Nov.87 App 2	bility Hazargangi Nov.87 Apr. 88 Nov. 87 Q² 0.6 0.9 F - - P 3.3 4.3 F 0.01 - P 0.9 0.9 F - - G 0.02 0.3 F 2.8 1.6 G 3.5 3.4 F 0.03 0.2 tal: 11.2 11.6 F - - P - - P - - P - - P - - P - - P - - P - - P - - P - - P - - P - - P - - P -	Hazargangi	Hazargangi Nov.87 Apr. 88 Nov.87 Apr. 89 Apr.	Hazargangi

4. Astragalus						
trichocarpus	G	4.9	4.1	3.4	1.2	3.4
. Casenia					8.81	
heterophylla	F	0.00		0.3	C G .	.08
. Carangana ambigua	G	3.1	0.3	0.7	0.75	1.2
. Convolvolus sp.	G	3.5	2.9		0.8	1.8
. Cousemia sp.	P	.0.		0.2	0.3	0.1
 Daphne oleoides 	F	2.3	2.1	0.7	0.5	1.4
0.Ephedra						
intermedia	G	6.0	6.4	3.7	2.5	4.7
1. Gaillonis					artindered home	mal to the same
eriantha	P	0.6	0.5	SHAN SE	CITARRANTE DITE	0.3
2. Haloxylon sp.	G	A Section of the	a mediano.	0.5	0.4	0.2
3. Juniperus						0.2
macropoda	F	2.6	2.0	2.1	1.6	2.1
4. Lactuca serrila	G	0.02		- JE00E	18 malanxa	0.005
5. Nepeta bracteata	P	0.4	0.5	0.2	0.1	0.3
6.Pith	F			1.1	1.0	0.5
7. Peganum harmala	N			0.7	0.3	0.3
8. Persokia						0.5
abrotanoides	F		-	· Aliansis	0.2	0.05
9. Pistacia khinjuk	F	0.2	0.3	· spanie	ri leto i Li ale	0.1
0.Prunus eburnea	G	1.6	1.4	8.1	1.9	3.3
1. Sop ra mollis	P	0.7	0.7	. Das a	HISTORY OF THE	0.4
2. Sagrutia sp.	F	1.4	0.9	0.4	0.3	0.8
3. Salvia cabulica	Р	1.6	0.8	0.3	0.02	0.7
4.Unidentified	Р		0.6	•	0.04	0.2
Sub-to	tal:	31.5	27.3	34.6	28.0	30.2

Note: 1. This was an observed palatability and is applicable for Markhor only.

- Palatability ratings: E stands for excellent, G for Good, F for Fair, P for Poor and N for nonpalatable.
- 3. (-) indicates that the listed species was not present in that locality or season.

(iii) Distribution of surface material: Table 3 shows that more than (50%) of the surface area of the park was covered with fixed rocks and gravels or rock pieces. Therefore, park had less than 50% potential for complete vegetation cover. Further, about 27 percent of total surface area was bare soil, which was

susceptible to erosion. However, it has thepotential to grow vegetation in future under proper management. However, plant base or vegetation basal area was very low (5.8%). On the other hand presence of litter (I5.5%) was good indication for improvement of the soil characteristics.

Table 3: Percent distribution of surface material

Locality	Plant base	Litter	Cryptogams	Rock pavement	Bare
Hazargangi				pavement	5011
1.Shamtar	5.4	15.2	0.3	66.5	11.6
2.Kangri	5.1	17.4	0.1	64.9	12.5
3.Mashan	6.3	20.9	0.2	55.0	17.6
Ave	2. 5.6	18.2	0.2	62.1	13.9

Chiltan					
1.Chashma	6.9	11.5	2.9	44.1	34.6
2.Gharak	6.7	18.8	0.2	37.6	36.8
3.Wastangi	4.5	8.2	6.4	33.9	47.0
Ave.	6.0	12.8	3.2	8.5	39.5
Park Average	5.8	15.5	5.0 1.7	50.3	26.7

(iv) Range Condition Classes: Total cover percent of grasses, forbs and shrubs/trees was used to classify the different sites of Park for range condition classes. Five standard range condition classes namely, Excellent (8I-100% cover), Good (6I-80% cover), Fair (4I-60% cover), Poor(2I-40% cover) and very poor (less than 20% cover) were used for different locations of the park (Table 4). Total herbage production, surface material distribution and ecological recovery were also

considered while assigning these condition classes. Accordingly, overall existing range condition during 1987-88 was Fair. The range trend was upwards as cover percent and species composition were on increase.

Table 4: Range condition and range trend of different sites at National Park by cover percent.

Locality	visia norts	hald for Mark	Cover P	ercent	Range trend	Range condition
of M bila 100	Grasses	Forbs	Shrubs/ trees	Total	.eldst	lagnon
Hazargangi	ocality or so,	Hadi ni inat	s was not pres	sipode ostell	ent tent sere.	HOTH AT 1.8
1. Shamtar	9.2	2.1	25.4	36.7	Upward	Poor
2. Kangri	14.7	0.4	30.5	45.6	v benevon asv	Fair
3. Mashan	9.8	1.5	40.5	51.8	sk pieces. Thei	d gravals of rocks to their 50%
Ave.	11.2	1.3	32.2	44.7	Further, abou	getation coller.
Chiltan						
1. Chashma	18.3	3.7	31.6	53.6	Upward	Fair
2. Gharak	17.7	4.2	27.6	49.6	Plant	cality "
3. Wastangi	10.9	9.4	24.9	37.2	w easd	Poor
Ave.	15.6	3.1	28.0	46.7	• N. 8	Fair Made
Park Ave.	13.4	2.2	30.1	45.7	Upward	Fair sda6M

CONCLUSION CONCLUSION CONCLUSION CONCLUSION

Enclosure had positive effect on grazing capacity and other characteristics of vegetation of Hazargangi-Chiltan National Park, There was remarkable vegetation recovery. This indicates that rangelands of Balochistn could be rehabilitated quickly through appropriate and socially acceptable activities. It may include voluntarily closure of rangeland for specific period or introduction and adoption of suitable grazing system like rest and rotation or deferred grazing system. Herbage production was on increase. Vegetation cover percent and presence of litter indicated that range trend was upward and range condition (health) was improving. The Range Condition was fair and had further potential for improvement.

There is need to conduct more range research studies to explore certain important factors which were out of the scope of this study. The important factors to be explored include proper utiliza-tion of different species by markhor, palatability index of different species, production potential of the park, climax species of the area etc.

ACKNOWLEDGEMENT

The author acknowledges the help rendered by M/s Mohammad Khan, the then Assistnt Research Officer, Bashir Khan, Technician and other Field Assistants of the PFI, Peshawar for data collection and data compilation.

REFERENCES

Anon. Annual Progress Reports for year 1985-86 and 1986-87. Pakistan Forest Institute, Peshawar.

Amin, Anjum, 1985. Range Improvement Principles and Practices in the southern ranges of the United States. Report on Range Management and Forage Production. 6l p. PARC, Islamabad.

Dyksterhuis, E.J. 1949. Condition and Management Rangeland Based on Quantitative Ecology. Jour. Range Management, 2: 104-115.

Hanson, W.R. 1951. Condition Classes on Mountain Range in Southern Alberta. Jour. Range Management, 4: 165-170.

Humphrey, R.R. 1945. Some Fundamentals of the Classification of Range Condition. Jour. Forestry, 43:646-647.

Hussain, Ijaz. 1968A. Determination of Forage Production. Division of Forestry Research, Leaflet No.I.IO.p. PFI, Peshawar,

Hussain, Ijaz. 1968 B. The canopy coverage method for the Determination of Range Condition. Division of Forestry Research, Leaflet No. 2.22 p. PFI, Peshawar.

Khan, S. Magsood. 1977. Ecological changes in the Alpine Pasture Vegetation at Paya (Kaghan) due to complete protection from Grazing, Pak. Jour. For. 27(3) pp 139-142.

Malechek, John C. and C.L. Leinweber. 1972. Forage Selectivity by Goats on Lightly and Heavily Grazed Ranges. Jour. Range Management, 25: 105-111.

Noor, Mohammad. 1978. Comparison of grazed and un-grazed vegetation of sub-alpine Ecological zone at Sari. Pak. Jour. For. 28(4) pp 196-189.

Noor, Mohammad. 1989. Vegetation changes Smith, A.P. 1965. Determining Common Use due to closure at Jaba Sheep Farm. Pak. Jour. Grazing Capacity by Application of the Key For. 39(4) pp 177-182. species concept. Jour. Range Management