RACIAL DIFFERENCE IN THE EFFICIENCY OF FOOD UTILIZATION OF SILKWORM, BOMBYX MORI L.

Sardar M. Rafique¹ and Ghulam Ali Bajwa²

Abstract

Coefficients of food utilization namely, ingestibility, efficiency of conversion of ingested food (ECI), efficiency of conversion of digested food (ECD) and approximate digestibility (AD), vis-à-vis larval body weight gain (LBWG) were calculated for seven silkworm strains (J-99, J-101, 205-MKD, 206-MKD, 206-PO, 207-PO, 208-PO) during Spring (26±1°C, 75±5% RH) and Autumn (30±2, 80±1% RH) rearing seasons. The results revealed a significant difference among the silkworm strains for ingestibility, ECI, ECD, AD and LBWG. During spring season maximum and minimum ingestibility, ECI, ECD and AD were 69.08% (J-101, 5th instar), 34.93% (205-MKD, 5th instar), 54.4% (205-MKD, 5th instar), 56.48% (J-101, 4th instar) and 39.63% (207-PO, 4th instar), 18.86% (205-MKD, 4th instar), 23.85% (205-MKD, 4th instar), 43.86% (207-PO, 5th instar), respectively. Ingestibility, ECI and ECD increased with the development of larvae but AD decreased. Overall maximum and minimum larval body weight gain was recorded in 206-MKD and 207-PO, respectively. During autumn season the highest and lowest ingestibility, ECI, ECD and AD were 62.09% (206-MKD, 5th instar), 20.86% (208-PO, 5th instar), 31.24% (208-PO, 5th instar), 60.75% (207-PO, 4th instar) and 40.54% (207-PO, 5th instar), 16.95% (208-PO, 4th instar), 19.26% (208-PO, 4th instar), 40.26 (207-PO, 5th instar), respectively. A slight increase in ECI and ECD was observed with the age of larva however, AD showed negative relationship with age. Overall maximum (2014.13 g larva-1) and minimum (1547.75 g larva⁻¹) larval body weight gain was displayed by 206-MKD and 207-PO, respectively. During penultimate larval stage there was non-significant difference between spring and autumn season. On the other hand at high temperature (autumn season) ingestibility, ECI, ECD and LBWG were reduced drastically during final instar. It is therefore, recommended that for efficient utilization of food silkworm should not be reared above 26±1°C and 75±5% RH.

Key words: Silkworm *Bombyx mori*, Strains, Food consumption and utilization, ingestibility, ECI, ECD, AD, rearing season. Larval body weight.

Introduction

Studies on the consumption and utilization of food in insects facilitate the understanding of their adaptability to the environment. Efficient utilization of mulberry leaves by silkworm is vital for profitable sericulture enterprise. Because 60 percent of the total cost of production of silk is incurred on mulberry leaves (Rangaswami et al., 1976). Moreover, nutritional background significantly

¹ Director General, Pakistan Forest Institute

² Senior Research Officer, Pakistan Forest Institute

influences the status of larval growth, silk quantity and quality, pupae, adult, silk seed production, cocoon shell ratio, etc.

The food consumption and utilization, however is subjected to various biotic and abiotic factors. For example, it was found that food consumption was decreased with an increase in the period of food deprivation (Nath et al., 1990), with the age of foliage (Blake and Wagner, 1986), parasitism of larvae by uzi fly (Srikanth et al., 1988), infection of BmNPV (Gururaj et al., 2001). On the other hand consumption, assimilation, conversion and metabolism increased with an increase in feeding duration (Mathavan et al., 1987) with nutritional quality of the food (Senthamizhselvan and Muthukrishnan, 1989). Similarly food consumption, weight gain and weight of frass produced increased with the age of Erinnyis elle ello (Filho and Vendramim, 1989). However, very little information is available on the racial variation in the consumption and utilization of food.

Present study was undertaken to workout coefficients of food utilization of different silkworm strains during 4th and 5th instars. As 97% of the food consumption of the whole larval duration takes place during these two stages (Nath *et al.*, 1990) and 80% just in 5th instar (Hemavathi and Bharathi, 2003).

Materials and Methods

Seven exotic bivoltine silkworm strains, viz. J-99, J-101, 205-MKD, 206-MKD, 206-PO, 207-PO and 208-PO were utilized for the present study. 100 disease free larvae for each strain were selected at random during 3rd moult from the stock culture and weighed. They were fed weighed mulberry leaves (*Morus alba var. PFI-I*) five times a day, i.e. 6000, 1000, 1400, 1800, 2200 hrs up to spinning stage in woody trays (30 x 20 x 2.5 cm). The larval body weight, food ingested, left over food and feces were weighed daily at 1000 hrs. During spring seasons (March-April) temperature was 26 ± 1°C and relative humidity 75±5%. The trial was carried out in randomized complete block design with four replications. Same experiment was repeated in autumn season (September-October). During autumn season temperature was 30±2°C with 80±1% rH. For studying the food consumption and utilization gravimetric method was adapted (McFarlance, 1985). The formulae used for calculation of different coefficients were:

i. Ingestibility (%): Amount of ingested leaf × 100

Total leaf supplied

ii. Efficiency of conversion of ingested food(ECI): Weight gained by larva Weight of food ingested × 100

iii. Efficiency of conversion of digested food (ECD):

Weight gained by larva
Weight of food ingested - Weight of feces

veight of food frigested - veright of feces

iv. Approximate digestibility (AD):

Weight of food ingested – Weight of feces
Weight of food ingested

Mean data of various parameters were statistically analyzed applying twoway analysis of variance (ANOVA) and difference among individual silkworm strains was effectuated by least significant difference (LSD) test.

Results

Data on food ingestibility (I), efficiency of conversion of ingested (ECI) and digested food (ECD), approximate digestibility (AD), *vis-à-vis* larval body weight gain (LBWG) in 4th, 5th instars and overall are presented in table 1. Overall differences in LBWG, Ingestibility, ECI, ECD and AD were highly significant during 4th and 5th instars as well as spring and autumn rearing seasons with exception of non-significance of AD in spring during 4th instar. The variation among individual silkworm strains for different indices of food consumption and utilization and LBWG revealed complex presentation. Seasonwise outcome of the study is as follow:

Spring Rearing

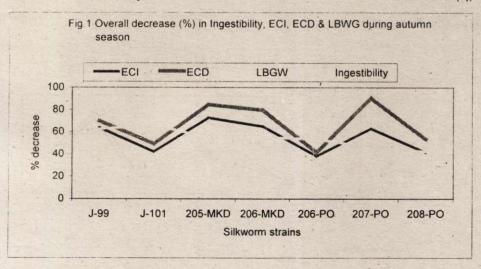
During 4th instar maximum (402 mg larva⁻¹) LBWG was recorded in 206-PO, however this was statistically non-significant with 206-MKD, J-101 and 208-PO. Overall LBWG was highest in 206-MKD (3122.55 mg larva⁻¹) and statistically bracketed with J-99 and 205-MKD. On the other hand minimum LBWG during 4th and 5th stadia was in 205-MKD. (306.55 mg larva⁻¹) and 207-PO (1954.78 mg larva⁻¹), respectively. 206-MKD gained 6.8 times body weight during 5th instar while 207-PO 6.3 times. Ingestibility showed almost a linear relationship with body weight. Maximum ingestibility (61.08%) and minimum (39.63%) was registered in 206-PO and 207-PO, respectively during 4th instar while during 5th instar these entities were in J-101 and 207-PO. Food ingestibility was escalated with the larval development in all silkworm strains. During 4th instar 207-PO was

the most efficient strain to convert ingested (26.19%) and digested (38.01%) mulberry leaves into body weight while 205-MKD the least efficient for these indices (18.86%, 23.85%). ECI was increased from 12.91 percent (207-PO) to 85.21 percent (205-MKD) during 5th instar. Similarly, ECD was also increased from 21.6 to 128.09 percent. Contrarily, approximate digestibility lessene in final instar compared to that of penultimate one. Overall (4th and 5th instar combined) ingestibility, ECI, AD and ECD approximated to that of 5th instar. The least (2264.6 mg larva 1) and most (3122.55 mg larva 1) overall LBWG was achieved by 207-PO and 206-MKD, respectively. Japanese silkworm strains were relatively more efficient in food conversion and consequently gained more body weight.

Autumn Rearing

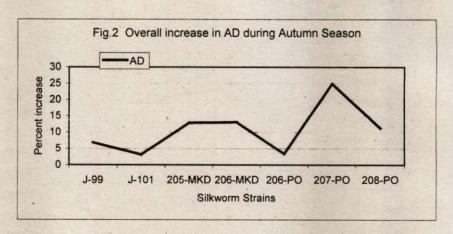
Difference in efficiency of food consumption and utilization among the seven silkworm strains during 4th instar, 5th instar and over all was highly significant. This also led to variation in larval body weight gain by silkworm strains. 206-MKD gained maximum LBWG during 4th instar (431.5 mg/larva), 5th instar (1582.63 mg/larva) and overall (2014.13 mg/larva). In contrast 207-PO gained overall least body weight. Maximum food was ingested by J-99 (4th Instar), 206-MKD (5th instar) and J-101 & 206 PO (overall) which were significantly high while 207-PO overall was least ingesting strain. J-99, 205-MKD, 206-MKD, 206-PO and 207-PO were statistically non-significant among them for ECI during 4th instar. All these five strains converted above 20% ingested food into body matter. During 5th instar J-101 and 208-PO converted maximum ingested food and they did not differ statistically between themselves. A touch of decrease in ECI was found during 5th and overall as compared to 4th instar. Maximum AD was in 207-PO (4th instar), 208-PO (5th instar) and 207-PO (overall). Approximate digestibility was slightly decreased during 5th instar and in over all. The lowest AD (40.26%) was in 207-PO during 5th instar. As far as efficiency of conversion of digested food was concerned it followed almost the same pattern as ECI. Maximum (25.94%) ECD was recorded in 207-PO during 4th instar. Increase in ECD during 5th instar was 1.0-1.6 times over 4th instar. There was statistically non-significant difference in ECD among 207-PO, 206-PO, 205-MKD, 206-MKD, 206-PO (5th instar); J-99, J-101, 205-MKD, 206-MKD, 206-MKD, 206-PO (overall).

Table 1. Food consumption and utilization indices of some silkworm strains in different developmental stages


CD	208-PO	207-PO	206-PO	206-MKD	205-MKD	J-101	J-99		CD	208-PO	207-PO	206-PO	206-MKD	205-MKD	J-101	J-99		CD	208-PO	207-PO	206-PO	206-MKD	205-MKD	J-101	J-99				Strains			
352.73	2617.4 b	2264.6 c	2683.4 b	3122.55 a	2817.90ab	2746.83b	2897.08 ab			339.12	2262.0bcd	1954.78d	2181.23cd	2723.03a	2511.35abc	2383.0bc	2571.98 ab		50.73	355.40abc	309.83c	402.18a	399.53a	306.55c	363.83ab	325.10 bc		(mg/larva)	LBWG			
3.78	63.39abc	53.43d	64.87ab	66.37a	60.45c	66.54a	62.58 bc						4.45	64.69ab	56.99c	65.84ab	68.2a	62.11b	69.08a	64.66 ab		3.47	58.12ab	39.63d	61.08a	59.33ab	54.05c	56.93bc	54.52 c		(%)	-
3.08	28.29c	29.05bc	27.32c	32.26a	31.96ab	28.28c	31.65 ab		3.74	29.39b	29.57b	28.60b	34.50a	34.93a	· 29.77b	34.22 a		3.52	20.30bc	26.19a	21.95bc	22.51b	18.86c	21.31bc	19.87 bc		(%)	ECI ·	Spring			
4.44	49.94ab	45.56b	50.56a	50.99a	49.81ab	54.21a	52.73 a	00	3.52	54.35a	43.86c	51.31ab	51.05ab	48.12b	49.42b	48.2 b			50.22	50.41	51.72	52.25	51.58	56.48	55.03 ^{ns}		(%)	AD				
4.26	42.77bcd	44,87abc	41.13cd	48.50a	47.76a	40.6d	45.79 ab	Over all (4+5th in	5.61	48.54bcd	46.22cd	45.05d	54.13ab	54.40a	43.96d	51.17 abc	5 th Instar	5.29	24.48b	38.01a	27.98b	28.40b	23.85b	27.06b	26.37b	4 ^m instar	(%)	ECD				
59.55	1839.0b	1547.75e	1748.83bc	2014.13a	1822.30b	1652.08d	1784.13 bc	instars)	62.52	1481.63b	1178.08e	1332.83c	1582.63a	1433.48b	1259.08d	1355.13 c		13.64	357.33d	369.67d	416.0b	431.5a	391.25c	393.0c	429.0 ab		(mg/larva)	LBWG				
3.23	50.67ab	41.12c	52.07a	49.45ab	50.16ab	52.28a	48.79 b		3.7	43.38ef	40.54f	56.32b	62.09a	50.73c	44.5de	47.82 cd		2.38	51.84b	44.15d	53.03ab	47.59c	48.24c	52.5b	54.92a		(%)					
0.69	19.96a	17.82c	19.78a	19.56a	18.52b	19.91a	19.33 a		0.87	20.86a	17.073e	19.56bc	19.36bc	18.08d	20.07ab	19.10°c		0.92	16.95c	20.43a	20.08ab	20.32ab	20.39a	19.40b	20.13ab		(%)	ECI	Autumn			
4.71	56.23ab	60.67a	52.31b	58.62a	57.15a	55.97ab	56.59 ab		2.18	54.83a	40.26d	45.03c	49.01b	44.988c	49.17b	50.51 b		4.58	54.19cd	60.75a	51.56d	59.50a	56.83abc	54.90bcd	59.43 ab			AD				
2.13	27.85ab	23.57c	29.03a	27.0ab	25.89b	27.23ab	26.94 ab		1.55	31.24a	23.17d	26.58c	27.46bc	26.485c	29.0b	26.58°c		0.912	19.26c	25.94a	25.46ab	24.82bc	25.03abc	23.17d	24.15 c		(%)	ECD				

sharing same alphabets are non-significant among themselves (P 0.05) LBWG: Larval body weight gain, I: Ingestibility, ECI: Efficiency of conversion of ingested food, ECD: Efficiency of conversion of digested food, AD: Approximate digestibility, * Significant at 95% level, ** Significant at 99% level, - Figures in a coloumn of a particular development stage Two rearing seasons, i.e. Spring and autumn had profound impact on larval body weight gain in the seven silkworm strains. During 4th instar the difference in LBWG was 1.93 mg/larva (208-PO) to 103.9 mg/larva (J-99) in favour of Autumn Season. Whereas, during 5th instar LBWG in all strains was almost double in Spring rearing to that of autumn. However, food consumption and utilization indices like ingestibility, ECI, AD and ECD were higher in spring season than that of autumn. ECI was 38.12 (206-PO) to 72.57 (205-MKD) percent more in spring season. Similarly, ECD surged in spring season up to 84.47 (205-MKD) percent. However AD was high in autumn season than that of spring. Maximum (25.91%) and minimum (3.14%) increase of approximate digestibility was observed in 207-PO and J-101, respectively.

Discussion


The silkworm, Bombyx mori is an monophagous insect that feeds mainly on mulberry leaves. Efficiency with which food consumed and utilized has paramount importance in sericulture, because the food consumption has a direct relevance on the body weight of larva, cocoon, pupa eggs and shell ratio. To determine the overall efficiency with which insects utilize their food, calculation of one or more of the coefficients like efficiency of conversion of ingested food (ECI), efficiency of conversion of digested food (ECD), approximate digestibility (AD) and food ingestibility (I) is involved. These coefficients of food utilization however, vary widely with the insect species. These coefficients also change with age both within and between instars (Mohanty and Mittra, 1992), sex (male & female) and with environmental factors such as temperature, humidity, degree of crowding, etc. (McFarlance, 1985). Present findings also reveal that ingestibility, ECI, ECD, AD and larval body weight gain (LBWG) vary considerably among the seven silkworm strains both within and between instars as well as two rearing seasons. High intake of food, ECI, and ECD shows a positive relationship with LBWG. For instance, in case of 206-MKD maximum ingestibility (66.37%), ECD (32.26%) and ECD (48.50%) culminate into maximum LBWG (3122.55mg larva⁻¹).

In spring season overall ECI, ECD and AD fluctuate between 27.32-32.26%, 40.6-48.50% and 45.56-54.21%, respectively. Whereas, in autumn season overall ECI, ECD and AD move from 17.82 to 19.96%, 23.57 to 29.03% and 52.31 to 60.67%, respectively. These parameters are in conformity with McFarlance (1985), Ito & Kobayashi (1978) and Horie & Watanabe (1983). However, these values are slightly higher than Gururaj *et al.* (2001). This discrepancy may be due to changed silkworm strains, quality of food and other rearing conditions.

Temperature depicts an inverse proportion with food ingestibility, ECI, ECD and LBWG. Reduction in food intake (17.02-25.49%), ECI (38.12-72.57%), ECD (41.68-90.37) and LBWG (42.33-66.26%) at 30±2°C (autumn season) substantiate this negative relationship (Fig. 1). Khawaja and Haq (1991) have also reported this seasonal inflict on larval body weight and coefficient of food utilization. Similarly, Reynolds and Nottingham (1985) have also reported reduction in food intake with increase in temperature.

In contrast, AD relates positively with high temperature (Fig.2). This reveals an important feature of food utilization, i.e. approximate digestibility in not a contributory of ECD. Food digestion in insects depends upon many digestive enzymes. These enzymes play a major role in the body of insects by converting complex food materials into micro molecules necessary to provide energy and metabolites for growth, development and other vital functions. However, enzymatic activities are subjected, among other factors, to temperature. High temperature has expedited enzymes interaction, while end metabolic products may have utilized for other vital functions like respiration, metamorphic actions, etc. rather than body weight.

In addition, silkworm has developed a mechanism whereby low ECI and ECD are compensated by high AD. For example, in autumn season ECI and ECD are low but AD is high on the other hand, in spring season ECI and ECD are high and AD low. Furthermore, outcomes of the study indicate that ECI and ECD are two important coefficients, which show efficiency of food utilization in terms of body weight. Strains with high ECI and ECD are more efficient converter of food and vice versa.

Conclusion

In nutshell, it is concluded that efficiency of food utilization varies with silkworm strains. J-101, 206-MKD, 206-PO and 208-PO ingested the highest mulberry leaves while 207-PO was the lowest food ingesting strains both in spring and autumn season. In spring season J-99, 205-MKD, 206-MKD converted food into body matter more efficiently than J-101, 206-PO and 208-PO. More or less same pattern of ECI and ECD was observed in autumn season. However, comparative efficiency of conversion of ingested and digested food was low in all silkworm strains in autumn season, i.e. at higher temperature (32±2°C). Therefore, for economical utilization of food temperature and relative humidity should not be high than 26±1°C and 75±5%, respectively during 4th and 5th instars. Moreover, AD has little contribution towards larval body weight.

References

Blake, E.A. and M.R. Wagner, 1986. Foliage age as a factor in food utilization by the Western spruce budworm, *Choristoneura occidentalis*. Great Basin Naturalist, 46(1): 169-172.

Filho, W.R. and J.D. Vendramim, 1989. Consumption and utilization of leaves of rubber tree clones (*Hevea brasiliensis*) by *Erinnyis ello ello* (L. 17581) (Lepidoptera-Sphingidae). Anais-da-Sociedade Entomol. 18(2): 295-311.

Gururaj, C.S., B.M. Sekharappa and S.K. Sarangi, 2001. Chronological variation in the food consumption and utilization in BmNPV infected silkworm, *Bombyx mori* L. Indian Jour. Seri., 40(2): 115-118.

Hemavathi, B. and D. Bharathi, 2003. Effect of thyroxine on food utilization by silkworm, *Bombyx mori* L. Indian Jour. Seri., 42(1): 16-20.

Horie, Y. and K. Watanabe, 1983. Daily utilization and consumption of dry matter in food by the silkworm, *Bombyx mori* (Lepidoptera: Bombycidae). Appl. Entomol. & Zool., 18(1): 70-80.

Ito, T. and M. Kobayashi, 1978. Rearing of the silkworm. In The Silkworm: an important laboratory tool, Y. Tazima [Ed.] kodansha Ltd., Tokyo. P.86.

Khawaja, K.A. and M.U. Haq, 1991. Comparative studies on the prospects of silkworm (*Bombyx mori* L.) rearing during autumn and spring season at Faisalabad. Pak. Entomol., 13(1-2): 46-49.

Mathavan, S., G. Santhi and N.B. Sethuraman, 1987. Effects of feeding regime on energy allocation to reproduction in the silkworm, *Bombyx mori*. Proc. Indian Acad. Sci. (Animal Sci.), 96(3): 333-340.

McFarlance, J.E., 1985. Nutrition and Digestion organs. In Fundamentals of Insect Physiology, Murray S. Blum [Ed.], Johan Wiley and Sons, New York, pp. 71-72.

Mohanty, A.K. and A. Mittra, 1992. Food utilization efficiency of tropical tsar silkworm *Antheraea mylitta* Drury (Lepidoptera: Saturniidae) on *Terminalia tomentosa* Arn. Phytophaga-Madras (India), 4(2): 73-80.

Nath, T.N., S. Nath, M. Shamsuddin and G.S. Rao, 1990. Effect of food deprivation on dry matter utilization, shell and cocoon weight and fecundity of multivoltine silkworm, *Bombyx mori* L., race Nistari. Indian Jour. Seri., 29(2): 174-181.

Rangaswami, G., M.N. Narasimhanna, K. Kasiviswanathan, C.R. Sastry and M.S. Jolly, 1976. Sericulture Manual 1-Mulberry cultivation. FAO, Rome, Italy, pp.150.

Reynolds, S.E. and S.F. Nottingham, 1985. Effect of temperature on growth and efficiency of food utilization in fifth instar caterpillar of the tobacco hornworm, *Manduca sexta*. Jour. Insect Physiol., 31(2): 129-134.

Senthamizhselvan, M., and J. Muthukrishnan, 1989. Effect of feeding tender and senescent leaf by *Eupterote mollifera* and leaf and flower by *Spodoptera exigua* on food utilization. Proc. Indian Acad. Sci. (animal Sci.), 98 (2): 77-84.

Srikanth, J., H. Basappa and S. Lingappa, 1988. Effect of Uzi-fly parasitization on food consumption and growth of the mulberry silkworm, *Bombyx mori* L. Insect Sci. & Applicat., 9(3): 373-376.