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Introduction 

Sesame (Sesamum indicum L.) belonging to the 
Pedaliaceae family possesses the title queen of 

oilseeds owing to its superior oil quality along with 
beneficial compounds like sterols, sesamin, sesamolin, 
and tocopherols, which serve as nutraceuticals 

contributing to various physiological and nutritional 
advantages (Langyan et al., 2022). The growth of 
sesame plants is sustained by tropical, subtropical, 
and southern temperate regions. Leading sesame-
exporting countries include China, Myanmar, 
India, and Sudan (Chen et al., 2020). Sesame can 
replace animal proteins and fats used in human food 
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because it contains a plenty of fats and plant proteins 
(Rahman et al., 2020) and seeds of sesame are rich in 
oil contents ranging from 45% to 63% (Biswas et al., 
2018). Additionally, it is a valuable source of minerals, 
fibers, and vitamins (Zebib et al., 2015). Furthermore, 
sesame possesses antioxidant properties which 
render it a desirable ingredient in pharmaceutical 
formulations (Wan et al., 2023).

Besides its significance, various climatic factors 
impact the productivity of sesame. Sesame cultivation 
is challenged by the occurrence of multiple abiotic 
stresses consequently leading to a reduction in yield 
(Wang et al., 2021). Several abiotic stresses such as 
drought, waterlogging, salt, and heat have an impact 
on sesame efficiency, yield, and seed quality (Dossa 
et al., 2019). The most significant abiotic factor 
limiting sesame growth and productivity is salinity. 
Salt stress influences emergence, growth and yield 
potential (Kanagaraj and Sathish, 2017). Salt stress 
has three major effects on plant growth including 
reduced soil water potential known as osmotic stress, 
ionic imbalance in cells and ion toxicity (Franzisky 
et al., 2023; Hualpa-Ramirez et al., 2024). Salinity 
affects a variety of physiological processes including 
transpiration, stomatal conductance, photosynthesis, 
water potential and ultimately declines the growth 
and yield production (Desingh and Kanagaraj, 2019; 
Taratima et al., 2023; Victoria et al., 2023). During 
salt stress conditions, the substantial amount of salt 
in the leaf reduces water potential. The presence of an 
elevated level of salts in the leaf caused the stomata to 
close which reduced transpiration and CO2 resulting 
in decreased photosynthesis (Rangani et al., 2016). 
Salt stress inhibits photosynthesis by triggering 
closure of stomata and averting the diffusion of CO2 
(Zahra et al., 2022a). Saline stress may also influence 
non-stomatal properties like chlorophyll synthesis, 
photosystem structure, and electron transport (Pan et 
al., 2021). 

To mitigate the negative effects of salinity in sesame 
various strategies were used including seed priming 
(Tariq and Shahbaz, 2020), plant growth-promoting 
rhizobacteria (Khademian et al., 2019), and effective 
use of nitrogen fertilizers (Waqas et al., 2023) and 
other fertilizers application (Mahdavi-Khorami et al., 
2020; Dollison and Dollison, 2023). Thiourea (TU) 
which is a sulfur and nitrogen-containing compound, 
is an important plant growth regulator that influences 
plant growth, particularly under stressed conditions 

(Hafeez et al., 2024). Thiourea can reduce oxidative 
stress-induced growth impairment by increasing the 
activity of antioxidant enzymes involved in ROS 
scavenging and modulating calcium signaling, redox 
state, and hormonal homeostasis (Ahmad et al., 2022a). 
Farooq et al. (2023), reported that the application of 
foliar thiourea increased the activity of peroxidase 
(POD) and potassium (K) levels in roots under salt 
stress conditions. Additionally, it led to elevated levels 
of chlorophyll b, total chlorophyll, and carotenoids. 
Overall, it can be concluded that foliar application 
of thiourea mitigated the negative effects of salinity 
by enhancing potassium ion content and antioxidant 
activity including peroxidase. Similarly, in another 
study Jhanji and Dhingra (2020) the germination 
characteristics of unsoaked seeds, hydroprimed seeds, 
and thiourea-primed seeds (at 750 ppm concentration) 
were examined under varying conditions of water and 
NaCl (30 and 50 mM). However, foliar application 
of thiourea on sesame have been reported by Dhillon 
et al. (2023) under salinity, and Sonia et al. (2024) 
under drought. However, there is no study present on 
seed priming with thiourea to mitigate the adverse 
effects of salinity in sesame. Hypothetically, thiourea 
seed priming may enhance growth, physio-chemical 
processes under salinity stress. Therefore, the present 
study was proposed to assess the impact of thiourea 
seed priming to mitigate the salt stress effect in 
sesame.

Materials and Methods

Experimental detail
The pot experiment was conducted at Botany 
Garden, University of Agriculture, Faisalabad 
and the experimental design was used complete 
randomized design (CRD) with 3 way factorial 
arrangements to check the effectiveness of thiourea 
(150 mM) seed priming under normal (10.8 mM) 
and saline conditions (70 mM). The seeds of these 
two varieties (TS-05 and TH-06) obtained from Oil 
Seed Research Institute, Faisalabad) were soaked 
in the 150 mM solution of thiourea for 16 hours. 
Then, seeds of varieties were sown in soil (autoclave 
at 121°C for 120 minutes) with ten seeds in each 
pot. The size of each pot having the dimensions 14 
inch width and 16 inch depth were filled with 10 
kg of soil. After seed germination five plants per pot 
were maintained. Salinity stress was imposed after 
one week of germination in each pot, the salt stress 
(0 and 70 mM) was imposed after germination of 
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seeds in increments of 35 mM initially and then was 
attained to the 70 mM and sodium chloride (NaCl) 
was used for salinity imposition and the harvesting 
was done after one month of sowing date for growth 
and biochemical analysis. The growth parameters 
including root length, shoot length, root and shoot 
fresh weight were determined. 

Nutrient content
Root and shoot samples were digested following the 
procedure described by Wolf (1982). Initially, 0.1 g of 
dry root and shoot sample was placed in a digestion 
flask containing 2 mL of concentrated hydrogen sulfate 
and allowed to stand overnight. The subsequent day, 
the sample underwent heating on a hot plate at 50°C 
for an hour. After removing the hydrogen peroxide (2 
mL) was mixed in the sample, followed by continued 
heating until the sample became colorless. To make 
a volume of 50 mL, distilled water was added. The 
resulting solution was then filtered, and the filtered 
sample was utilized to determine the concentrations 
of K+, Na+, and Ca2+ using a flame photometer.

Photosynthetic pigments
The method of Arnon (1949) and Takaichi et al. 
(1995) was used to measure photosynthetic pigments. 
Fresh leaf (0.1g) was mixed in 80% acetone having a 
volume of 5 milliliters. The absorbance was observed 
with the help of ultraviolet-visible spectrophotometer 
at a wavelength of 645, 480, and 663 nm.

Antioxidants
A pre-chilled mortar and pestle was utilized to grind 
fresh leaves (0.5 g) in buffer solution (10 mL) having pH 
7.8. After homogenization, the liquid was centrifuged 
for 20 minutes at 12,000 rpm. The supernatant with 
enzymatic antioxidants was collected and stored at 
-20°C for subsequent analysis of peroxidase, catalase, 
and superoxide dismutase activity based on protein 
content. The catalase activity was determined using 
the method ascribed by Chance and Maehly (1955). 
The peroxidase estimation was conducted following 
the Chance and Maehly (1955) method. The activity 
of superoxide dismutase was determined using the 
technique described by Giannopolitis and Ries 
(1977). 

Reactive oxygen species 
The H2O2 was assessed using the protocol described 
by Velikova et al. (2000). The malondialdehyde 
content was assessed using the method followed by 

Heath and Packer (1968).
 
Secondary metabolites
Total phenolic were calculated following the 
technique used by Julkunen-Tiitto (1985). The total 
alkaloid content was determined using the method 
outlined by Singh and Sahu (2006). The flavonoid 
content was assessed using the method developed by 
Zhishen et al. (1999). Riboflavin was extracted using 
the technique described by Okwu and Josiah (2006). 

Gas exchange attributes
Attributes related to gas exchange were assessed 
with the help of a transferable infrared gas analyzer 
(LCA – 4 ACD, Hoddesdon, UK). A fully exposed 
and mature third leaf from each treatment group was 
randomly chosen for data collection. Measurements 
were taken between 12:00 and 14:00 hours on the 
respective day.

Statistical analysis 
A complete block design (CRD) under a factorial 
arrangement with three replications was used. The 
analysis and evaluation of data were done by using a 
statistical package (Statistics 8.1). HSD test was used 
to compare the treatment means.

Results and Discussion

Growth attributes
Data depicted in Table 1 showed that root length (RL), 
shoot length (SL), root fresh weight (RFW), root dry 
weight (RDW), shoot fresh weight (SFW), and shoot 
dry weight (SDW) varied significantly (P≤0.05) 
in both varieties, salinity stress and seed priming 
treatments but, interaction between them was non-
signifcant (P>0.05) differences. Salinity stress resulted 
in reduced root length in both varieties but, the seed 
priming with 150 mM thiourea improved the RL up 
to 20.06% and 27.13% in TS-5 and TH-6 varieties, 
respectively. Salinity conditions decreased the SL of 
both varieties. However, seed priming with thiourea 
increased the SL 19.26% (TS-5) and 12.63% (TH-6) 
when compared with their respective controls. Salinity 
condition decreased the RFW of both varieties, but, 
the seed priming with 150 mM thiourea increased 
the RFW up to 49.01% and 28.47% in TS-5 and 
TH-6 varieties, respectively, when compared with 
their respective controls. Saline strress decreased the 
RDW of both varieties however, the seed priming 
with thiourea increased the RDW up to 98.59%
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Table 1: Influence of seed priming of thiourea on growth parameters of sesame varieties under saline conditions.
Treatments RDW SL RFW RL SDW SFW

(cm) (cm) (cm) (cm) (g) (g)
Salinity treatments (ST)
Normal conditions (NC) 0.79 A 65.32 A 3.94 A 14.43 A 3.96 A 23.65 A
Saline conditions (SC) 0.28 B 46.66 B 2.25 B 10.78 B 2.66 B 16.92 B
Varieties (Vr)
TS-5 0.39 B 51.91 B 2.34 B 11.39 B 3.04 B 17.9 B
TH-6 0.69 A 60.06 A 3.85 A 13.81 A 3.58 A 22.67 A
Seed Priming (SP)
Hyrdo priming (HP) 0.47 B 52.43 B 2.63 B 11.39 B 2.97 B 18.81 B
Thiourea priming (TP) 0.6106 A 59.54 A 3.55 A 13.81 A 3.65 A 21.76 A
ST×Vr
NC×TS-5 0.65 b 58.89 b 3.09 b 14.08 ab 3.69 a 22.13 ab
NC×TH-6 0.93 a 71.75 a 4.7875 a 14.77 a 4.22 a 25.17 a
SC×TS-5 0.13 d 44.95 c 1.57 c 9.71 c 2.38 b 13.75 c
SC×TH-6 0.44 c 48.37 c 2.91 b 11.84 bc 2.94 b 20.16 b
ST×SP
NC×HP 0.70 a 61.63 a 3.38 b 13.16 b 3.54 b 21.87 a
NC× TP 0.88c 69.01 a 4.50 a 15.69 a 4.36 a 25.43 a
SC×HP 0.2369 b 43.25 b 1.88 d 9.63 c 2.39 c 15.75 b
SC×TP 0.33 b 50.07 b 2.61 c 11.92 bc 2.94 bc 18.08 b
Vr×SP
TS-5×TP 0.48 bc 55.96 ab 2.76 b 12.89 ab 3.37 ab 18.93 bc
TH-6× HP 0.63 ab 57.00 a 3.36 b 11.89 b 3.23 ab 20.75 b
TS-5×HP 0.31 c 47.87 c 1.91 c 10.89 b 2.70 b 16.87 c
TH-6×TP 0.74 a 63.13 a 4.34 a 14.73 a 3.93 a 24.59 a
ST×Vr×SP
NC×TS-5×HP 0.52 ns 54.7 ns 2.55 ns 12.97 ns 3.28 ns 21.14 ns
NC×TS-5×TP 0.78 ns 63.0 ns 3.64 ns 15.19 ns 4.11 ns 23.13 ns
SC×TS-5×HP 0.08 ns 41.0 ns 1.26 ns 8.82 ns 2.12 ns 12.61 ns
SC×TS-5×TP 0.17 ns 48.9 ns 1.88 ns 10.59 ns 2.64 ns 14.72 ns
NC×TH-6×HP 0.87 ns 68.5 ns 4.21 ns 13.35 ns 3.81 ns 22.61 ns
NC×TH-6×TP 0.99 ns 75.0 ns 5.36 ns 16.2 ns 4.63 ns 27.74 ns
SC×TH-6×HP 0.38 ns 45.5 ns 2.50 ns 10.43 ns 2.65 ns 18.88 ns
SC×TH-6×TP 0.48 ns 51.2 ns 3.33 ns 13.26 ns 3.24 ns 21.44 ns
Significance
ST 0.000** 0.000** 0.000** 0.000** 0.000** 0.000**
SP 0.025* 0.002** 0.000** 0.001** 0.001** 0.003**
Vr 0.0000** 0.001** 0.000** 0.032* 0.007** 0.000**
ST× SP 0.411ns 0.89ns 0.276ns 0.854ns 0.468ns 0.506ns
ST× Vr 0.785ns 0.06ns 0.336ns 0.260ns 0.935ns 0.071ns
Vr×SP 0.564ns 0.64ns 0.713ns 0.507ns 0.943ns 0.335ns
ST× SP×Vr 0.469ns 0.96ns 0.835ns 0.863ns 0.913ns 0.467ns

ST, Salinity treatments, NC, normal conditions, SC, saline conditions, Vr, Varieties, SP, Seed Priming, HP, Hyrdo priming, TP, Thiourea 
priming. * depicted significant (p < 0.05), ns depicted non significant (p > 0.05).

and 26.94% in TS-5 and TH-6 varieties, respectively, 
when compared with their respective controls. 
Salinity stress resulted in decrease in the SFW of 
both varieties. But, the seed priming with 150 mM 
thiourea increased the SFW up to 16.70% and 
13.52% in TS-5 and TH-6 varieties, respectively. 

Salinity decreased the SDW of both varieties, though, 
the seed priming with 150 mM thiourea improved 
the SDW up to 24.20% and 21.93% in TS-5 and 
TH-6 varieties, respectively, when compared with 
their respective controls. 
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Table 2: Influence of seed priming of thiourea on growth parameters of sesame varieties under saline conditions.
Treatments Shoot Na+ Root Na+ Root K+ Shoot K+ Root Ca+ Shoot Ca+ 

(mg/g d.wt.) (mg/g d.wt.) (mg/g d.wt.) (mg/g d.wt.) (mg/g d.wt.) (mg/g d.wt.)
Salinity treatments (ST)
Normal conditions (NC) 4.34 B 10.75 B 9.56 A 15.34 A 8.56 A 12.59 A
Saline conditions (SC) 5.65 A 14.71 A 7.13 B 10.719 B 5.7187 B 8.563 B
Varieties (Vr)
TS-5 4.84 A 11.93 B 8.06 A 13.46 A 5.78 B 9.46 B
TH-6 5.15 A 13.53 A 8.62 A 12.59 A 8.5 A 11.688 A
Seed priming (SP)
Hyrdo priming (HP) 5.46 A 13.81 A 7.59 B 11.93 B 6.41 B 9.25 B
Thiourea priming (TP) 4.53 B 11.65 B 9.09 A 14.12 A 7.87 A 11.91 A
ST×Vr
NC×TS-5 4.5 bc 10.87 c 8.37 c 15.5 a 7.43 b 12.18 ab
NC×TH-6 4.18 c 10.62 c 10.75 a 15.18 a 9.68 a 13.0 a
SC×TS-5 5.18 b 13.0 b 7.75 b 11.43 b 4.12 c 6.75 c
SC×TH-6 6.12 a 16.43 a 6.5 b 10.0 b 7.31 b 10.37 b
ST×SP
NC×HP 4.75 b 11.87 b 8.68 ab 14.43 ab 7.43 b 10.37 b
NC× TP 3.94 c 9.62 c 10.43 a 16.25 a 9.68 a 14.81 a
SC×HP 6.18 a 15.75 a 6.50 c 9.43 c 5.37 b 8.12 b
SC×TP 5.12 b 13.68 b 7.75 bc 12.0 bc 6.06 b 9.0 b
Vr×SP
TS-5×HP 5.50 a 13.12 a 6.93 b 12.00 a 5.31 c 8.62 b
TH-6× TP 4.87 ab 12.6 ab 9.0 ab 13.31 a 9.5 a 13.5 a
TS-5×TP 4.18 b 10.75 b 9.18 a 14.93 a 6.25 bc 10.31 b
TH-6×HP 5.43 a 14.5 a 8.25 ab 11.87 a 7.50 ab 9.87 b
ST×Vr×SP
NC×TS-5×HP 5.25 ns 12.3 ns 7.12 ns 14.87 ns 6.87 ns 10.75 ns
NC×TS-5×TP 3.75 ns 9.5 ns 9.62 ns 16.12 ns 8.00 ns 13.62 ns
SC×TS-5×HP 5.75 ns 14.0 ns 6.75 ns 9.12 ns 3.75 ns 6.50 ns
SC×TS-5×TP 4.62 ns 12.0 ns 8.75 ns 13.75 ns 4.5 ns 7.0 ns
NC×TH-6×HP 4.25 ns 11.5 ns 10.25 ns 14.0 ns 8.0 ns 10.0 ns
NC×TH-6×TP 4.12 ns 9.75 ns 11.25 ns 16.37 ns 11.37 ns 16.0 ns
SC×TH-6×HP 6.62 ns 17.5 ns 6.25 ns 9.75 ns 7.0 ns 9.75 ns
SC×TH-6×TP 5.62 ns 15.4 ns 6.75 ns 10.25 ns 7.62 ns 11.0 ns
Significance
ST 0.000** 0.000** 0.000** 0.000** 0.000** 0.000**
SP 0.000** 0.000** 0.009** 0.021* 0.021* 0.000**
Vr 0.02* 0.005** 0.298ns 0.313ns 0.000** 0.001**
ST× SP 0.526ns 0.85ns 0.641ns 0.662ns 0.170ns 0.09ns
ST× Vr 0.07ns 0.06ns 0.07ns 0.514ns 0.405ns 0.04ns
Vr×SP 0.065ns 0.68ns 0.169ns 0.386ns 0.346ns 0.139ns
ST× SP×Vr 0.121ns 0.59ns 1.000ns 0.135ns 0.294ns 0.358ns

ST, Salinity treatments, NC, normal conditions, SC, saline conditions, Vr, Varieties, SP, Seed Priming, HP, Hyrdo priming, TP, Thiourea priming.

Ions
The shoot and root Na+, K+ and Ca2+ content varied 
significantly (P≤0.05) in both varieties, salinity and 
seed priming, whereas the interaction between them 
was found to be non-significant (Table 2). Salinity 

stress enhanced the shoot Na+ of both varieties 
however, the seed priming with 150 mM thiourea 
decreased the shoot Na+ up to 19.56% and 15.09% 
in TS-5 and TH-6 varieties respectively when 
compared with their respective controls. Salinity 
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boosted the root Na+ in both varieties. However, the 
seed priming with 150 mM thiourea reduced the root 
Na+ up to 14.28% and 12.14% in TS-5 and TH-6 
varieties, respectively, when compared with their 
respective controls. Overall, TH-6 variety performed 
better when compared with TS-5 variety. Salinity 
stress decreased the K+ ions in root in both varieties. 
However, the seed priming with 150 mM thiourea 
increased the K+ ions in root up to 29.62% and 8% 
in TS-5 and TH-6 varieties, respectively, when 
compared with their respective controls. Overall, 
TH-6 variety performed better when compared with 
TS-5 variety. Salinity decreased the K+ ions in shoot 
in TS-5 (38.65%) and in TH-6 (30.35%), moreover, 
the seed priming with thiourea improved the shoot 
K+ up to 50.68% and 5.13% in TS-5 and TH-6 
varieties, respectively, when compared with their 
respective controls. Salinity decreased the root Ca2+ 
in both varieties moreover the seed priming with 150 
mM thiourea increased the root Ca2+ 20% (TS-5) and 
8.92% (TH-6) when compared with their respective 
controls. Salinity stress decreased the shoot Ca2+ in 
both varieties; moreover, the seed priming with 150 
mM thiourea increased the shoot Ca2+ by 7.69% (TS-
5) and 12.82% (TH-6).
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Figure 1: Effect of thiourea seed priming on photosynthetic pigments 
of Sesame plant under salinity stress.

Photosynthetic pigments
The chlorophyll a content varied significantly 

(P≤0.05) in both varieties, salinity stress, and seed 
priming, although the interaction between them 
depicted non-significant (P>0.05) differences expect 
carotenoids (Figure 1; Table 3). Salt stress decreased 
the chlorophyll a content of both varieties; though, the 
seed priming with 150 mM thiourea increased the chl 
a 3.59% (TS-5) and 5.45% (TH-6) when compared 
with respective controls. Salinity stress reduced the 
contents of chlorophyll b in both varieties; however, 
the seed priming with 150 mM thiourea improved 
the chlorophyll b up to 8.33% and 34.69% in TS-5 
and TH-6 varieties, respectively, when compared 
with their respective controls. Overall, TH-6 variety 
performed better when compared with TS-5 variety. 
Salinity stress decreased the carotenoids contents of 
both varieties, however, the seed priming with 150 
mM thiourea increased the carotenoids 8.51% (TS-5) 
and 21.86% (TH-6) when compared with respective 
controls. 

Table 3: Influence of Seed priming of thiourea on 
photosynthetic pigments of sesame varieties under saline 
conditions.
Significance Chl a Chl b CAR

(mg/g f.wt.) (mg/g f.wt.) (mg/g f.wt.)
ST 0.000** 0.000** 0.000**
SP 0.02* 0.021* 0.004**
Vr 0.000** 0.150ns 0.000**
ST×SP 0.182ns 0.956ns 0.683ns
ST× Vr 0.498ns 0.08ns 0.06ns
Vr×SP 0.821ns 0.306ns 0.424ns
ST× SP×Vr 0.734ns 0.786ns 0.503ns

ST, Salinity treatments, NC, normal conditions, SC, saline 
conditions, Vr, Varieties, SP, Seed Priming, HP, Hyrdo priming, TP, 
Thiourea priming.

Oxidative stress
Statistical results for malondialdehyde and hydrogen 
peroxide revealed that salt stress and cultivars and seed 
priming had significant differences but the interaction 
among them was non-significant (P>0.05) (Figure 
2A; Table 4). Salinity stress increased the MDA of 
both varieties; however, the thiourea seed priming 
decreased the MDA up to 20.68% and 14.01% in 
TS-5 and TH-6, respectively, when compared with 
their respective controls. Salinity stress increased 
the hydrogen peroxide of both varieties by 63.51% 
(TS-5) and 10.45% (TH-6) as compared to controls; 
however, the seed priming with 150 mM thiourea 
decreased the hydrogen peroxide up to 25.26% and 
23.08 % in TS-5 and TH-6 varieties, respectively. 
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Table 4: Influence of Seed priming of thiourea on 
photosynthetic pigments of sesame varieties under saline 
conditions.
Signifi-
cance

SOD POD CAT H2O2 MDA
(units 
mg-1 
protein)

(units 
mg-1 
protein)

(units 
mg-1 
protein)

(µmolg-1 
f.wt.)

(mmolg-1 
f.wt.)

ST 0.000** 0.000** 0.000** 0.000** 0.005**
SP 0.000** 0.025* 0.000** 0.000** 0.008**
Vr 0.761ns 0.003** 0.135ns 0.005** 0.012**
ST×SP 0.137ns 0.276ns 0.984ns 0.638ns 0.983ns
ST× Vr 0.062ns 0.929ns 0.921ns 0.063ns 0.264ns
Vr×SP 0.389ns 0.359ns 0.766ns 0.237ns 0.278ns
ST× SP×Vr 0.061ns 0.976ns 0.539ns 0.073ns 0.871ns

ST, Salinity treatments, NC, normal conditions, SC, saline 
conditions, Vr, Varieties, SP, Seed Priming, HP, Hyrdo priming, TP, 
Thiourea priming.

Figure 2: Effect of thiourea seed priming on reactive oxygen species 
in sesame under salinity stress. 

Antioxidants
The SOD, POD, CAT varied significantly (P≤0.05) 
in salinity stress, seed priming, and varieties while 
the interaction among them was non-significant 
(P>0.05) differences (Figure 3A; Table 4). Salinity 
stress increased the SOD of both varieties. Likewise, 
the seed priming 150 mM thiourea also increased 
the SOD up to 7.57% (TS-5) and 38.32% (TH-
6) as compared to their respective controls. Salinity 
stress increased this attribute by 14.41 and 17.15% 
respectively as compared to control plants. Salinity 
stress increased the CAT of both varieties. Moreover, 
the seed priming with 150 mM thiourea also increased 
the CAT upto 14.14% and 17.51% in TS-5 and TH-6, 

respectively, as compared to their respective controls.
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Figure 3: Effect of thiourea seed priming on enzymatic antioxidant 
in sesame under salinity stress.
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Figure 4: Effect of thiourea seed priming on osmolytes and secondary 
metabolites in sesame under salinity stress.

Secondary metabolites
Statistical data presenting total phenolics, alkaloids, 
flavonoids, and riboflavin, salinity stress, seed 
priming, and varieties displayed significant (P≤0.05) 
differences, however, the interaction was found to be 
non-significant (P>0.05) difference (Figure 4A; Table 
5). Salt stress increased the total phenolics of both 
varieties; likewise, the seed priming also increased the 
total phenolics up to 11.03% and 8.53% in TS-5 and 
TH-6 varieties, respectively, when compared with 
their respective controls. Salinity stress increased the 
alkaloids of both varieties and the seed priming also 
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increased alkaloids up to 10% and 3.28%, in TS-5 
and TH-6 varieties, respectively, when compared 
with their respective controls. Salinity stress increased 
the flavonoids in both varieties and the seed priming 
also increased flavonoids upto 4.83% (TS-5) and 
5.83% (TH-6), when compared with their respective 
controls. Salinity stress increased the riboflavin of 
both varieties and the seed priming with thiourea also 
increased riboflavin up to 14.81% and 1.45% in TS-5 
and TH-6 varieties respectively, when compared with 
their respective controls. 

Table 5: Influence of Seed priming of thiourea on 
secondary metabolites of sesame varieties under saline 
conditions.
Significance Total soluble 

phenolics
Alkaloids Flavo-

noids
Ribofla-
vin

(mg g-1 fresh 
wt.)

(μg/g 
fwt.)

(μg/g 
fwt.)

(μg/g 
fwt.)

ST 0.000** 0.000** 0.000** 0.000**
SP 0.000** 0.003** 0.004** 0.000**
Vr 0.008** 0.0001** 0.029* 0.108ns
ST×SP 0.111ns 0.872ns 0.686ns 0.103ns
ST× Vr 0.17ns 0.827ns 0.064ns 0.085ns
Vr×SP 0.55ns 0.329ns 0.223ns 0.08ns
ST× SP×Vr 0.74ns 0.458ns 0.278ns 0.06ns

ST, Salinity treatments, NC, normal conditions, SC, saline 
conditions, Vr, Varieties, SP, Seed Priming, HP, Hyrdo priming, TP, 
Thiourea priming. 

Gas exchange attributes
The photosynthetic rate, Ci, gs, and Tr varied 
significantly (P≤0.05) in varieties, salinity stress and 
seed priming, while the interaction among them was 
non-significant (P>0.05) differences (Figure 5A; 
Table 6). Salinity stress decreased the photosynthetic 
activity upto 41.8% (TS-5) and 51.14% (TH-6) of 
both varieties. Moreover, the seed priming with 
150 mM thiourea also increased the photosynthetic 
activity upto 47.88% and 48.23% in TS-5 and TH-6, 
respectively, as compared to their respective controls. 
Salinity stress increased the Ci of both varieties 
however, the seed priming with 150 mM thiourea 
decreased the Ci up to 16.10% and 12.84% in TS-5 
and TH-6 varieties, respectively. Salt stress reduced 
the Stomatal conductivity in both varieties; conversely, 
the seed priming increased Stomatal conductivity 
up to 6.10% (TS-5) and 13.73% (TH-6), when 
compared with their respective controls. Salinity 
stress decreased the transpiration rate in both varieties 
but the seed priming with 150 mM thiourea increased 

transpiration rate up to 54.74% and 34.16%, in TS-5 
and TH-6 varieties, respectively, when compared with 
their respective controls. 
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Figure 5: Effect of thiourea seed priming on gaseous exchange 
attributes in sesame under salinity stress.

Table 6: Influence of Seed priming of thiourea on gas 
exchange parameters of sesame varieties under saline 
conditions.
Significance gs PN E Ci

(mmol H2O 
m-2 g-1)

(µmol 
m-2 g -1)

(mmol H2O 
m-2 s-1)

(µmol CO2 
mol -1)

ST 0.000** 0.000** 0.000** 0.000**
SP 0.026* 0.000** 0.000** 0.000**
Vr 0.000** 0.011** 0.034* 0.000**
ST×SP 0.366ns 0.349ns 0.09ns 0.08ns
ST× Vr 0.80ns 0.249ns 0.268ns 0.06ns
Vr×SP 0.178ns 0.822ns 0.182ns 0.268ns
ST× SP×Vr 0.582ns 0.591ns 0.919ns 0.869ns

ST, Salinity treatments, NC, normal conditions, SC, saline 
conditions, Vr, Varieties, SP, Seed Priming, HP, Hyrdo priming, TP, 
Thiourea priming.

Plants response under stress conditions is to employ 
their potential to advance the defense mechanism 
instead of productivity (Zhang et al., 2023). Likewise 
salinity stress also negatively affected the mechanisms 
in plants and ultimately reduced growth (Dabravolski 
and Isayenkov, 2023). It also negatively exaggerated 
the root and shoot lengths, root fresh and dry weight 
(Table 1), this research was supported by Nikfekr et al. 
(2023) and Dangue et al. (2022). Similar reduction was 
observed in various other crops such as maize (Sabagh 
et al., 2021; Ali et al., 2023), wheat (Hmissi et al., 2023), 
sorghum (Kaur et al., 2023) and coriander (Vojodi-
Mehrabani and Kheirollahi, 2023; Sánchez-Navarro 
et al., 2024). Thiourea could effectively alleviate the 
adverse effects of salt stress and toxicities (Yadav et 
al., 2023), for example, thiourea application increased 
the growth and physiological attributes of mustard 
(Saleem et al., 2024), enhanced the antioxidant 
enzymes and decreased reactive oxygen species 
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(Ahmad et al., 2023; Fiaz et al., 2024). The mechanism 
for stress mitigating effects of TU applications either 
foliar or seed priming have been investigated at 
physiological and molecular levels. Thiourea mainly 
controls the redox equilibrium mechanism in a 
cellular environment under stress (Patade et al., 2020).

Thiourea (TU) is increasingly being studied as a 
bioregulator for crop plant growth and development 
(Ahmad et al., 2022b). TU seed priming increased 
the root and shoot lengths, root fresh and dry 
weight of sesame varieties, however, TH-6 showed 
better growth indicators than TS-5 (Table 1), 
Exogenous administration of TU increases plant 
growth and productivity in both normal and stressful 
conditions (Zahra et al., 2022b). Previous research 
has demonstrated the benefits of exogenous TU 
application as a priming agent for seed pretreatment, 
foliar spray, and medium supplement for a variety 
of crop species. The use of TU has been shown to 
improve plant tolerance to a variety of environmental 
stresses, including salinity, heat, heavy metals, and 
drought (Granaz et al., 2022; Harisha et al., 2023; 
Zahid et al., 2024). 

Salinity stress negatively impacts the photosynthetic 
machinery and causes irreparable damage to it 
at any developmental stage. Photosynthesis is 
essential for the survival of all organisms and is a 
major factor in plant productivity by creating all 
precursor biomolecules. Both varieties TS-5 and 
TH-6, photosynthetic pigments (Chl a, Chl b, and 
carotenoids) were decreased under salinity, however, 
seed priming with thiourea improved photosynthetic 
pigments (Figure 1). The present study outcomes 
corroborate with the results of Saddiq et al. (2021), 
Shahid et al. (2023), and Lalarukh et al. (2023). 
Under salinity stress, a significant decrease in 
photosynthetic content was observed; this could be 
because salinity stress negatively affects leaf anatomy, 
chloroplast ultrastructure and metabolism (Hameed 
et al., 2021; Barhoumi et al., 2022). Moreover, salinity 
stress decreased the gas exchange indicators like 
transpiration rate, photosynthetic rate and stomatal 
conductance while increased the sub-stomatal CO2 
level (Figure 1). Lower gas exchange characteristics 
under salinity stress may be associated with increased 
ROS generation, which closes the stomata while 
thiourea application decreased the production of 
abscisic acid and controls the ROS induced stomatal 
closure (Sahoo et al., 2023). 

Oxidative stress is one of the most promising effects 
on plants resulting in the reactive oxygen species 
production, causing the cellular compartments 
degradation and inhibition of their functions 
(Hasanuzzaman et al., 2021; Zahra et al., 2021). 
However, there is noteworthy inter and intraspecific 
variance in production of ROS and also tolerance 
against salinity stress. In the current study, there was 
a significant increase in the production of H2O2 and 
MDA under saline conditions while the seed priming 
with thiourea proved helpful to limit their production 
in both normal and saline conditions (Figure 4). 
Moreover, higher H2O2 and MDA production was 
noted in TH-5 than TS-6. Among various harmful 
ions the Na+ and Cl- were proved particularly to be 
more damaging in terms of plants cellular membranes 
(Khare et al., 2020). These ions move taken up by 
roots and transported to other plant bodies causing 
additional damage. Impairment to cellular structures 
results in the increase in the production of ROS, and in 
different reactive species H2O2 is the most damaging 
and longer half-life (Dumanović et al., 2021). In 
salinity stress, the production of antioxidants assists 
the plants to overcome the adverse oxidative stress 
(Ahmad et al., 2019). Sesame priming with thiourea 
under saline conditions exhibited higher activities of 
POD, CAT and SOD (Figure 5). Fiaz et al. (2024) 
noted that the application of thiourea enhanced the 
activity of SOD, CAT and POD and reduced the level 
of MDA and H2O2. The results of the current trial 
were similar with the outcomes of Nouman and Aziz 
(2022) which depicted that seed priming of thiourea 
the increased activity of SOD, CAT, POD, riboflavin, 
flavonoids, and alkaloids in Calotropis procera. Salinity 
stress increased total phenolics, flavonoids, riboflavin 
and alkaloids in both varieties. Moreover, thiourea seed 
priming also improved these secondary metabolites 
under saline and control conditions (Figure 2). Zhang 
et al. (2017) reported that amino acid and carbohydrate 
metabolic pathways significantly improved in the 
adaption to salinity stress. In current experiment, the 
total phenolics, flavonoids, riboflavin and alkaloids 
enhanced under salinity stress was comarable in sugar 
beet (El-Mageed et al., 2022), maize (Shahid et al., 
2023) and sunflower (Barros et al., 2019). Salinity 
stress resulted in the increase of Na+ ions in both root 
and shoot while resulted in a decrease in the Ca2+ 
and K+, while the thiourea treatment decreased the 
accumulation of Na+ ions and increased the K+ and Ca2+ 

ions (Table 2). High salinity results in disturbance of 
K+ ions cytosolic homeostasis and plants endurance, 
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which are deliberates the most essential salt tolerance 
mechanisms in plants, resulting in significant K+ 
efflux and Na+ buildup (Abbasi et al., 2014). In the 
current trial, salinity-stressed plants mount up more 
Na+ and less K+ than control sesame plants, this could 
be the consequence of potential antagonism between 
K+ and Na+ (Ferreira et al., 2020).

Conclusions and Recommendations

Salinity is the major threat to the growth of sesame. 
Salinity decreases the photosynthetic pigments and 
efficiency, impairs the balance between antioxidants 
and oxidants, and lessens the uptake of essential 
minerals irrespective of varietal differences. However, 
the performance of TH-6 was better than TS-5. In 
addition, the seed priming of thiourea enhanced 
the sesame photosynthetic pigments and efficiency, 
secondary metabolites production, antioxidant 
machinery, and nutrient uptake in both varieties 
which increased growth and development as a result. 
So, thiourea seed priming is an effective strategy 
to counteract the negative effects of salt stress by 
improving tolerance mechanisms.
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